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Abstract. We consider a mathematical model which describes the fric-
tional contact between a deformable body and an obstacle, say a foun-
dation. The body is assumed to be linear elastic and the contact is
modeled with a version of Coulomb’s law of dry friction in which the
normal stress is prescribed on the contact surface. The novelty consists
here in the fact that we consider a slip dependent coefficient of friction
and a quasistatic process. We present two alternative yet equivalent
formulations of the problem and establish existence and uniqueness re-
sults. The proofs are based on a new result obtained in [10] in the study
of evolutionary variational inequalities.

1. Introduction

Contact phenomena among deformable bodies abound in industry and
everyday life and play an important role in structural and mechanical sys-
tems. The complicated surface structure, physics and chemistry involved in
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contact processes make it necessary to model them with highly nonlinear
initial-boundary value problems.

An early attempt to study frictional contact problems within the the-
ory of variational inequalities was made in [4]. An excellent reference on
analysis and numerical approximations of contact problems involving elastic
materials with or without friction is [8]. The mathematical, mechanical and
numerical state of the art can be found in the proceedings [15] and in the
special issue [17].

Quasistatic contact process arise when the forces applied to a system vary
slowly in time so that acceleration is negligible. The mathematical treat-
ment of quasistatic contact process is recent. The reason lies in the consid-
erable difficulties that the nonlinear evolutionary inequalities modeling the
quasistatic contact problems present in the variational analysis. Existence
and uniqueness results in the study of quasistatic contact problems can be
found for instance in [1, 2, 3, 9] within linearized elasticity. There, the
friction has been modeled with versions of Coulomb’s law in which the coef-
ficient of friction was assumed to be constant. A dynamic frictional elastic
problem in which the coeficient of friction is assumed to depend on the slip
rate has been studied in [5]. Recent existence and uniqueness results for a
class of evolutionary variational inequalities arising in quasistatic frictional
contact problems for linear elastic materials were obtained in [10].

The aim of this paper is to study a problem of frictional contact between
an elastic body and a foundation. We model the contact with a version of
Coulomb’s law of dry friction in which the normal stress is prescribed on the
contact surface and the coefficient of friction depends on the slip. The static
version of the model was already considered in [6]. There, the existence of
the weak solution of the problem has been proved using a Weierstrass type
theorem, based on lower semicontinuity arguments. The uniqueness was
derived under an inequality assumption involving two scalar parameters:
the first one depends on the geometry and on the elastic coefficients of the
material, the second one measures the slip weakening and the normal stress.

The novelty in the present paper consists in the fact that here we consider
a quasistatic process, which leads to a new and nonstandard mathematical
model. We derive two variational formulations of the problem, denoted P1
and P2. Problem P1 is formulated in terms of displacements while problem
P2 is formulated in terms of stress. For the variational problem P1 we prove
the existence of the solution using the abstract result obtained recently in
[10]. Then, we present an equivalence result which allows us to deduce the
existence of the solution for the variational problem P2. We also investigate
the uniqueness of the solutions for problems P1 and P2 as well as their
dependence with respect to the data.
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The paper is organized as follows. In Section 2 we introduce the notation
and some preliminary material. In the Section 3 we present the mechanical
problem and discuss the contact boundary conditions. In Section 4 we
list the assumptions on the given data, derive variational formulations to
the model and state our main results, Theorems 4.2–4.4. The proofs of
the theorems are established in Section 6 and are based on the abstract
result on evolutionary variational inequalities that we recall in Section 5.
Finally, in Section 7 we present some concluding remarks and we compare
our results with the results obtained in [6] in the case of the corresponding
static process.

2. Notation and preliminaries

In this section we present the notation we shall and some preliminary
material. For futher details, we refer the reader to [4, 7, 13].

We denote by Sd the space of second order symmetric tensors on Rd
(d = 2, 3), while “ · ” and | · | will represent the inner product and the
Euclidean norm on Sd and Rd, respectively, i.e.

u · v = uivi, |v| = (v.v)1/2 ∀u,v ∈ Rd,
σ · τ = σijτij |τ | = (τ · τ )1/2 ∀σ, τ ∈ Sd.

Here and below the indices i and j run between 1 and d and the summation
convention over repeated indices is adopted. Let Ω ⊂ Rd be a bounded
domain with a Lipschitz boundary Γ and let ν denote the unit outer normal
on Γ.

We shall use the notation

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω) },
H = {σ = (σij) | σij = σji ∈ L2(Ω) },
H1 = {u = (ui) | ε(u) ∈ H},
H1 = {σ ∈ H | Divσ ∈ H }.

Here ε : H1 −→ H and Div : H1 −→ H are the deformation and the
divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Div σ = (σij,j),

where the index that follows a comma indicates a partial derivative with
respect to the corresponding component of the independent variable. The
spacesH,H, H1 andH1 are real Hilbert spaces endowed with the cannonical
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inner products given by

(u,v)H =
∫

Ω
uivi dx, (σ, τ )H =

∫
Ω
σijτij dx,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H .

The associated norms on this spaces are denoted by | · |H , | · |H, | · |H1 and
| · |H1 , respectively.

Let HΓ = H1/2(Γ)d and let γ : H1 −→ HΓ be the trace map. For every
element v ∈ H1 we also write v for the trace γv of v on Γ and we denote by
vν and vτ the normal and the tangential components of v on the boundary
Γ given by

vν = v · ν, vτ = v − vνν.(2.1)

Let H
′
Γ be the dual of HΓ and let (·, ·) denote the duality pairing between

H
′
Γ and HΓ. For every σ ∈ H1 there exists an element σν ∈ H ′Γ such that

(σ, ε(v))H + (Divσ, v)H = (σν, γv) ∀v ∈ H1.(2.2)

Moreover, we denote by σν and στ the normal and tangential traces of σ
and we recall that, when σ is a regular (say C1) function, then

(σν, γv) =
∫

Γ
σν · v da ∀v ∈ H1,(2.3)

σν = (σν) · ν, στ = σν − σνν.(2.4)

Finally, for every real Hilbert space X and T > 0, we use the classical
notation for Lp(0, T ;X) spaces (1 ≤ p ≤ +∞). We also use the Sobolev
space W 1,∞(0, T ;X), with the norm

|u|W 1,∞(0,T ;V ) = |u|L∞(0,T ;V ) + | :u|L∞(0,T ;V ).

Here and everywhere in this paper a dot above represents the weak derivative
with respect to the time variable.

3. Problem statement

We consider a deformable body, which occupies a domain Ω ⊂ Rd (d =
2, 3) with outer Lipschitz surface Γ that is divided into three disjoint mea-
surable parts Γi, i = 1, 2, 3, such that measΓ1 > 0. Let [0, T ] be the time
interval of interest, where T > 0. The body is clamped on Γ1 × (0, T ) and
therefore the displacement field vanishes there. A volume force of density
f0 acts in Ω× (0, T ) and surface tractions of density f2 act on Γ2 × (0, T ).
We assume that the body forces and tractions vary slowly in time, so the
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inertial terms may be neglected in the equation of motion, leading to a qua-
sistatic problem. The body is in contact on Γ3 × (0, T ) with an obstacle,
the so called foundation. The contact is frictional and it is modeled with
a version of Coulomb’s law in which the normal stress is prescribed on the
contact surface and the coefficient of friction depends on the slip.

With these assumptions, the classical formulation of the frictional contact
problem of the elastic body is the following.

Problem P. Find a displacement field u : Ω × [0, T ] −→ Rd and a stress
field σ : Ω× [0, T ] −→ Sd such that

σ = Eε(u) in Ω× (0, T ),(3.1)
Divσ + f0 = 0 in Ω× (0, T ),(3.2)

u = 0 on Γ1 × (0, T ),(3.3)
σν = f2 on Γ2 × (0, T ),(3.4)
σν = S on Γ3 × (0, T ),(3.5) 

|στ | ≤ µ(|uτ |)|S|,
|στ | < µ(|uτ |)|S| ⇒

:
uτ = 0

|στ | = µ(|uτ |)|S| ⇒ ∃ λ ≥ 0, στ = −λ :
uτ ,

on Γ3 × (0, T ),(3.6)

u(0) = u0 in Ω.(3.7)

In (3.1)–(3.7) and below, in order to simplify the notation, we do not indicate
explicitely the dependence of various functions on the variables x ∈ Ω ∪ Γ
and t ∈ [0, T ]. The equation (3.1) represents the linear elastic constituve
law in which E is the fourth order tensor of elastic coefficients and ε(u)
denotes the small strain tensor. Equation (3.2) is the equilibrium equation,
while conditions (3.3), (3.4) are the displacement and traction boundary
conditions, respectively. Finally, (3.7) represents the initial condition in
which u0 is the initial displacement.

We make some comments on the contact conditions (3.5) and (3.6) in
which our interest lies. Condition (3.5) states that the normal stress σν
is prescribed on the contact surface, since S is a given datum. Such kind
conditions arise in the study of some mechanisms and were already used in
[4, 13]. Conditions (3.6) represent the Coulomb’s law of dry friction. Here
στ is the tangential stress, uτ and

:
uτ are the tangential displacement and

velocity, respectively. The function µ represents the coefficient of friction.
When the strong inequality holds the surface of the body adheres to the
foundation and is in the so-called stick state and when equality holds, there
is relative sliding, the so-called slip state. Therefore, the contact surface Γ3
is divided at each time moment into two zones : the stick zone and the slip
zone. The boundaries of these zones are unknown a priori and therefore
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their determination represents a part of the problem. We note that in (3.6)
the coefficient of friction is assumed to depend on the slip |uτ |. Such kind
of dependence was pointed out in [14] in order to take into account the
changes in the contact surface structure that result from sliding. It was
used afterwards in a number of papers (see, e.g. [6, 16] and the references
therein) in the geophysical context of earthquakes modeling. In this context
it is usual to suppose that the slip rate has a single direction and a single
sense during the slip and the slip dependent friction models the stick-slip-
stick motions on the geological scales. Generally speaking, the dependence
of the friction forces upon the surface displacements is usually accepted
when the slip is very small on laboratory scales (see for instance [12] and
[16]).

The variational analysis of the frictional contact problem (3.1)–(3.7) will
be presented in the next sections, where the existence of the weak solutions
to the problem will be proved.

4. Variational formulations and main results

To obtain variational formulations of the problem P, we need additional
notations. To this end, we introduce the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.

Since measΓ1 > 0, Korn’s inequality holds, thus there exists CK > 0 which
depends only on Ω and Γ1 such that

|ε(v)|H ≥ CK |v|H1 ∀v ∈ V.(4.1)

A proof of Korn’s inequality (4.1) may be found in [11, p. 79]. On V we
consider the inner product given by

(u,v)V = (ε(u), ε(v))H ∀u, v ∈ V,(4.2)

and let | · |V be the associated norm, i.e.

|v|V = |ε(v)|H ∀v ∈ V.(4.3)

It follows from Korn’s inequality and (4.3) that | · |H1 and | · |V are equivalent
norms on V and therefore (V, | · |V ) is a real Hilbert space. Moreover, by
the Sobolev’s trace theorem and Korn’s inequality, there exists C0 > 0
depending only on the domain Ω, Γ1 and Γ3 such that

|v|L2(Γ3)d ≤ C0|v|V ∀v ∈ V.(4.4)
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In the study of the mechanical problem (3.1)–(3.7), we assume that the
elasticity tensor E = (Eijkl) satisfies

(4.5)



(a) E : Ω× S → S.
(b) Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d.
(c) Eσ · τ = σ · Eτ ∀σ, τ ∈ S, a.e. in Ω.
(d) There exists m > 0 such that Eτ · τ ≥ m|τ |2 ∀ τ ∈ S,

a.e. in Ω.

The coefficient of friction satisfies

(4.6)



(a) µ : Γ3 × R+ −→ R+.

(b) There exists Lµ > 0 such that
|µ(x, r1)− µ(x, r2)| ≤ Lµ|r1 − r2| ∀ r1, r2 ∈ R+,

a.e. x ∈ Γ3.

(c) The mapping x 7−→ µ(x, r) is Lebesgue measurable on Γ3,

∀ r ∈ R+.

(d) The mapping x 7−→ µ(x, 0) ∈ L2(Γ3).

We note that the assumptions (4.6) on the coefficient of friction are fairly
general and are weaker than those considered in [6], where µ was assumed
to be bounded and continuous differentiable with respect to the second
argument. However, to provide existence results, we need to impose an
additional smallness assumption involving the coefficient of friction µ, which
is not needed in the static case treated in [6]. Also, to provide uniqueness
results, we need to replace assumption (4.6) by a stronger condition. Thus,
we alternatively consider that µ does not depend on the slip |uτ |, i.e.{

µ is a given function which satisfies
µ ∈ L2(Γ3) and µ(x) ≥ 0 a.e. on Γ3.

(4.7)

The forces and tractions are asumed to satisfy

f0 ∈W 1,∞(0, T ;H), f2 ∈W 1,∞(0, T ;L2(Γ2)d),(4.8)

and the given normal stress is such that

S ∈ L∞(Γ3).(4.9)

Next we define the bilinear form a : V × V → R by

a(u,v) = (Eε(u), ε(v))H,(4.10)

and the functional j : V × V → R by

j(η,v) =
∫

Γ3

µ(|ητ |) |S| |vτ | da.(4.11)
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Using conditions (4.6) and (4.9), it follows that the integral in (4.11) is well
defined.

Let f : [0, T ]→ V be given by

(4.12) (f(t),v)V =
∫

Ω
f0(t) · v dx +

∫
Γ2

f2(t) · v da +
∫

Γ3

S vν da.

The definition of (4.12) is based on Riesz’s representation theorem, and we
note that conditions (4.8) and (4.9) imply

f ∈W 1,∞(0, T ;V ).(4.13)

We assume that the initial data satisfies

u0 ∈ V,(4.14)

a(u0,v) + j(u0,v) ≥ (f(0),v)V ∀v ∈ V.(4.15)

To derive a variational formulation of problem P, in terms of stress, we
denote the family of sets Σ(t,η), defined for all η ∈ V and t ∈ [0, T ] by

(4.16) Σ(t,η) = {τ ∈ H | (τ , ε(v))H+j(η,v) ≥ (f(t),v)V ∀ v ∈ V }.

Taking v = ±ϕ with ϕ ∈ D(Ω)d in (4.16) and using (4.11) and (4.12), it
follows that

τ ∈ Σ(t,η)⇒ Div τ + f0(t) = 0 in Ω.(4.17)

We also denote by D(A) the subspace of H given by

D(A) = {z ∈ H | ∃v ∈ V such that E(ε(v)) = z}(4.18)

and we note that from (4.5) and Korn’s inequality (4.1), it follows that
the operator E ◦ ε : V → D(A) is invertible. Therefore, we denote by
A : D(A)→ V its inverse and we find

v = A(τ ) ⇐⇒ E(ε(v)) = τ .(4.19)

Finally, keeping in mind (3.1) and (3.7), we introduce the initial stress σ0
by

σ0 = E(ε(u0))(4.20)

and we assume that it satisfies

σ0 ∈ D(A) ∩ Σ(0, Aσ0).(4.21)

We have the following result.
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Lemma 4.1. If {u,σ} are sufficiently smooth functions satifying
(3.1)–(3.7) then, for all t ∈ [0, T ],

u(t) ∈ V,
(σ(t), ε(v)− ε( :u(t))H + j(u(t),v)− j(u(t),

:
u(t))

≥ (f(t),v − :
u(t))V ∀v ∈ V,

(4.22)

σ(t) ∈ D(A) ∩ Σ(t, Aσ(t)),

(τ − σ(t), ε(
:
u(t))H ≥ 0 ∀τ ∈ Σ(t, Aσ(t)).

(4.23)

Proof. Let t ∈ [0, T ] and v ∈ V . Using (3.2)–(3.5) and (2.1)–(2.4) we have

(σ(t), ε(v))H =
∫

Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da

+
∫

Γ3

S vν da+
∫

Γ3

στ (t) · vτ da,
(4.24)

and, using (3.6), we deduce that∫
Γ3

στ (t) · vτ da ≥ −
∫

Γ3

µ(|uτ (t)|) |S| |vτ | da.(4.25)

Therefore, from (4.11), (4.12), (4.24) and (4.25), we find

(σ(t), ε(v))H + j(u(t),v) ≥ (f(t),v)V .(4.26)

The regularity σ(t) ∈ D(A) ∩ Σ(t, Aσ(t)) follows from (3.1), (4.16), (4.18)
and (4.26). Moreover, we note that (3.6) and (4.11) imply∫

Γ3

στ (t) · :uτ (t) da = −j(u(t),
:
u(t)).(4.27)

Thus, taking v =
:
u(t) in (4.24) and using again (4.12) and (4.27), we deduce

that

(σ(t), ε(
:
u(t)))H + j(u(t),

:
u(t)) = (f(t),

:
u(t))V .(4.28)

The inequatilies in (4.22) and (4.23) are now a consequence of (4.16), (4.26)
and (4.28).

Lemma 4.1, (3.1), (3.7), (4.10), (4.19) and (4.20) leads us to consider the
following two variational problems.

Problem P1. Find a displacement field u : [0, T ]→ V such that

a(u(t),v − :
u(t)) + j(u(t),v)− j(u(t),

:
u(t))

≥ (f(t),v − :
u(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

(4.29)

u(0) = u0.(4.30)
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Problem P2. Find a stress field σ : [0, T ]→ H such that

σ(t) ∈ D(A) ∩ Σ(t, Aσ(t)) ∀t ∈ [0, T ],

(E−1 :σ(t), τ − σ(t))H ≥ 0 ∀τ ∈ Σ(t, Aσ(t)),

a.e. on (0, T ),

(4.31)

σ(0) = σ0.(4.32)

Our main results, which we establish in Section 6, are the followings.

Theorem 4.2. Assume that conditions (4.5), (4.8), (4.9), (4.14) and (4.15)
hold. Then:

(i) Under the assumption (4.6), there exists L0 > 0 depending only on Ω,
Γ1, Γ3 and E such that if Lµ|S|L∞(Γ3) < L0 then problem P1 has at
least a solution u which satisfies u ∈W 1,∞(0, T ;V ).

(ii) Under the assumption (4.7), there exists a unique solution
u ∈W 1,∞(0, T ;V ) for problem P1. Moreover the mapping (f ,u0) 7−→
u is Lipschitz continuous from W 1,∞(0, T ;V )× V to L∞(0, T ;V ).

Theorem 4.3. Assume that conditions (4.5), (4.6), (4.8) and (4.9) hold.
Then:

(i) If u ∈ W 1,∞(0, T ;V ) is a solution of problem P1 then σ = Eε(u)
represents a solution of problem P2 which satisfies σ ∈W 1,∞(0, T ;H).

(ii) Conversely, if σ ∈ W 1,∞(0, T ;H) is a solution of problem P2 then
u = Aσ represents a solution of problem P1 which satisfies u ∈
W 1,∞(0, T ;V ).

Theorem 4.4. Assume that conditions (4.5), (4.8), (4.9) and (4.21) hold.
(i) Let (4.6) hold and let L0 be defined as in Theorem 4.2. Then problem
P2 has at least a solution if Lµ|S|L∞(Γ3) < L0. Moreover the solution
satisfies σ ∈W 1,∞(0, T ;H).

(ii) Under the assumption (4.7), there exists a unique solution
σ ∈W 1,∞(0, T ;H) for problem P2. Moreover the mapping (f ,σ0) 7−→
σ is Lipschitz continuous from W 1,∞(0, T ;H)× V to L∞(0, T ;H).

The proofs of Theorems 4.2–4.4 are based on an abstract result in the
study of a class of evolutionary variational inequalities, recently obtained in
[10], that we recall in Section 5. Here, to end this section, we present the
mechanical interpretation of our results.
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We note that problems P1 and P2 represent variational formulations of
the frictional contact problem P in terms of displacements and stress, re-
spectively. Theorems 4.2 and 4.4 show the solvability of the mechanical
problem P in terms of displacements and stress, respectively, under the
smallness assumption Lµ|S|L∞(Γ3) < L0. Notice that here L0 represents a
scalar parameter which depends only on the elasticity operator and on the
geometry of the problem but does not depend on the external forces, nor
on the initial displacement. From mathematical point of view the previous
inequality represents a sufficient condition for the solvability of the varia-
tional problems P1 and P2, and it is requested by the abstract theorem we
use in solving these problems. From mechanical point of view this inequality
shows that problem P can be solved if either the slip weakening or the given
normal stress on the contact surface are small enough. Notice that a similar
condition was used in [6] in order to derive the uniqueness of the solution in
the static model. Theorem 4.3 shows that the operator A : D(A) −→ V rep-
resents a bijective correspondence between the solutions of the variational
problems P2 and P1. We also note that if the coefficient of friction does
not depend on the slip (i.e. assumption (4.6) is replaced by the stronger
condition (4.7)), then Theorems 4.2 and 4.4 show the unique solvability of
problems P1 and P2, respectively. Moreover, in this case the solutions are
connected by the elastic constitutive law σ = Eε(u). Also, keeping in mind
(4.17) and (4.8), we remark that if σ ∈ W 1,∞(0, T ;H) solves problem P2
then σ has stronger regularity, i.e. σ ∈W 1,∞(0, T ;H1).

Finally, we note that the choice of the homogeneous boundary condition
(3.3) in the mechanical problem P was made for simplicity. This choice
is not restrictive. Indeed, in the case when non homogeneous Dirichlet
boundary conditions in displacements are assumed on Γ1×(0, T ) then, using
a change of variable in the unknown functions u and σ similar to that used in
[6], we obtain a homogenized problem with friction in the study of which our
arguments hold and lead to similar results as those presented in Theorems
4.2–4.4.

5. An abstract existence and uniqueness result

Let V be a real Hilbert space endowed with the inner product (·, ·)V
and the associated norm | · |V . We denote by “⇀” and “→” the weak
convergence and the strong convergence on V, respectively. In the sequel 0V
will represent the zero element of V . Let a : V −→ V be a bilinear form
on V , j : V × V −→ R, f : [0, T ] −→ V and u0 ∈ V . With these data, we
consider the following quasivariational problem: find u : [0, T ] −→ V such
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that

a(u(t), v − :
u(t)) + j(u(t), v)− j(u(t),

:
u(t))

≥ (f(t), v − :
u(t))V ∀v ∈ V, a.e. t ∈ (0, T ),

(5.1)

u(0) = u0.(5.2)

In order to solve (5.1)–(5.2), we consider the following assumptions.

(5.3)


a : V × V → R is a bilinear symmetric form and
(a) there exists M > 0 such that
|a(u, v)|V ≤M |u|V |v|V ∀u, v ∈ V ;

(b) there exists m > 0 such that a(v, v) ≥ m|v|2V ∀v ∈ V.

(5.4)


j : V × V → R and for every η ∈ V, j(η, ·) : V → R
is a positively homogenuous subadditive functional, i.e.
(a) j(η, λu) = λj(η, u) ∀u ∈ V, λ ∈ R+;
(b) j(η, u+ v) ≤ j(η, u) + j(η, v) ∀u, v ∈ V.

f ∈W 1,∞(0, T ;V ).(5.5)

u0 ∈ V.(5.6)

a(u0, v) + j(u0, v) ≥ (f(0), v)V ∀v ∈ V.(5.7)

Keeping in mind (5.4), it results that for all η ∈ V , j(η, ·) : V → V is a
convex functional. Therefore, there exists the directional derivative j′2 given
by

(5.8) j′2(η, u; v) = lim
λ→0+

1
λ

[
j(η, u + λv) − j(η, u)

]
∀η, u, v ∈ V.

We consider now the following additional assumptions on the functional
j.

(5.9)


For every sequence {un} ⊂ V with |un|V →∞,
every sequence {tn} ⊂ [0, 1] and each u ∈ V one has

lim inf
n→∞

[ 1
|un|2V

j′2(tnun, un − u;−un)
]
< m.

(5.10)


For every sequence {un} ⊂ V with |un|V →∞,
every bounded sequence {ηn} ⊂ V and each u ∈ V one has

lim inf
n→∞

[ 1
|un|2V

j′2(ηn, un − u;−un)
]
< m.
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(5.11)


For all sequences {un} ⊂ V and {ηn} ⊂ V such that
un ⇀ u ∈ V, ηn ⇀ η ∈ V and for every v ∈ V, the inequality
below holds lim sup

n→∞
[j(ηn, v)− j(ηn, un)] ≤ j(η, v)− j(η, u).

(5.12)

{
There exists c0 ∈ (0,m) such that
j(u, v − u)− j(v, v − u) ≤ c0|u− v|2V ∀u, v ∈ V.

(5.13)


There exist two functions a1 : V → R and a2 : V → R,
which map bounded sets in V into bounded sets in R
such that |j(η, u)| ≤ a1(η)|u|2V + a2(η) ∀η, u ∈ V,
and a1(0V ) < m− c0.

(5.14)


For every sequence {ηn} ⊂ V with ηn ⇀ η ∈ V,
and every bounded sequence {un} ⊂ V one has
lim
n→∞

[j(ηn, un)− j(η, un)] = 0.

(5.15)



For every s ∈ (0, T ] and every functions u, v ∈W 1,∞(0, T ;V )
with u(0) = v(0), u(s) 6= v(s), the inequality below holds∫ s

0
[j(u(t),

:
v(t))− j(u(t),

:
u(t)) + j(v(t),

:
u(t))− j(v(t),

:
v(t))] dt

<
m

2
|u(s)− v(s)|2V .

(5.16)



There exists α ∈ (0,m/2) such that for every s ∈ (0, T ] and
every functions u, v ∈W 1,∞(0, T ;V ) with u(s) 6= v(s),
the inequality below holds∫ s

0
[j(u(t),

:
v(t))− j(u(t),

:
u(t)) + j(v(t),

:
u(t))− j(v(t),

:
v(t))] dt

< α|u(s)− v(s)|2V .

In the study of the evolutionary problem (5.1)–(5.2), we recall the follow-
ing result.

Theorem 5.1. Let (5.3)–(5.7) hold.
(i) If the assumptions (5.9)–(5.14) are satisfied then there exists at least

a solution u ∈W 1,∞(0, T ;V ) to the problem (5.1)–(5.2).
(ii) If the assumptions (5.9)–(5.15) are satisfied then there exists a unique

solution u ∈W 1,∞(0, T ;V ) to the problem (5.1)–(5.2).
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(iii) If the assumptions (5.9)–(5.14) and (5.16) are satisfied then there ex-
ists a unique solution u = u(f, u0) ∈ W 1,∞(0, T ;V ) to the problem
(5.1)–(5.2) and the mapping (f, u0) 7−→ u is Lipschitz continuous from
W 1,∞(0, T ;V )× V to L∞(0, T ;V ).

The proof, which can be found in [10], is obtained in several steps and
it is based on arguments of elliptic quasivaritional inequalities and a time
discretization method.

6. Proofs

In this section we present the proofs of our main results, Theorems 4.2–
4.4. We start with the proof of the Theorem 4.2, which will be carried out
in several steps. We assume in the sequel that (4.5), (4.6) and (4.9) hold
and, under these assumptions, we start by investigating the properties of
the functional j given by (4.11). We remark that j satisfies condition (5.4).
Moreover, we have the following results.

Lemma 6.1. The functional j satisfies the assumptions (5.9) and (5.10).

Proof. Let η, u, u ∈ V and let λ ∈ ]0, 1]. Using (4.11), it results that

j(η,u− u− λu)− j(η,u− u) ≤ λ
∫

Γ3

µ(|ητ |)|S| |uτ | da.

Therefore, by (5.8) we obtain

(6.1) j′2(η,u − u;−u) ≤
∫

Γ3

µ(|ητ |)|S| |uτ | da ∀η, u, u ∈ V.

Let now consider the sequences {un} ⊂ V , {tn} ⊂ ]0, 1] and u ∈ V . Using
(4.4), (4.6), (4.9), and (6.1) we find

j′2(tnun,un − u;−un) ≤
∫

Γ3

(Lµ|unτ |+ |µ(0)|)|S| |uτ | da

≤ C0|S|L∞(Γ3)(C0Lµ|un|V + |µ(0)|L2(Γ3))|u|V .

It follows from the previous inequality that if |un|V →∞ then

lim inf
n→∞

[ 1
|un|2V

j′2(tnun,un − u;−un)
]
≤ 0,

and we conclude that j satisfies assumption (5.9).
Let now consider the sequences {un} ⊂ V , {ηn} ⊂ V such that

|un|V →∞,(6.2)

|ηn|V ≤ C ∀n ∈ N,(6.3)
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where C > 0. Let u ∈ V . Using (4.4), (4.6) and (6.1) we obtain

(6.4)
j′2(ηn,un − u;−un)

≤ C0|S|L∞(Γ3)

(
C0Lµ|ηn|V + |µ(0)|L2(Γ3)

)
|u|V ∀n ∈ N.

Thus, from (6.2)–(6.4), we deduce that j satisfies assumption (5.10).

Lemma 6.2. The functional j satisfies the assumptions (5.11) and (5.14).

Proof. Let {un} ⊂ V , {ηn} ⊂ V be two sequences such that un ⇀ u ∈ V
and ηn ⇀ η ∈ V . Using the compactness property of the trace map and
the assumption (4.6), it follows that

µ(|ηnτ |)→ µ(|ητ |) in L2(Γ3),(6.5)

un → u in L2(Γ3)d.(6.6)

Therefore, we deduce from (6.5) and (6.6) that

j(ηn,v)→ j(η,v) ∀v ∈ V, j(ηn,un)→ j(η,u),

which show that the functional j satisfies condition (5.11).
Now, let {un} be a bounded sequence of V , i.e.

|un| ≤ C ∀n ∈ N,(6.7)

where C > 0. We have

|j(ηn,un)− j(η,un)| ≤
∫

Γ3

|S|
(
µ(|ηnτ |)− µ(|ητ |)|unτ |

)
da

and, using (4.4) and (4.9), we deduce that

|j(ηn,un)− j(η,un)|
≤ C0|S|L∞(Γ3)

∣∣µ(|ηnτ |)− µ(|ητ |)
∣∣
L2(Γ3)|un|V .

(6.8)

It follows now from (6.5), (6.7) and (6.8) that j satisfies condition (5.14).

Lemma 6.3. The functional j satisfies assumption (5.13) for all
c0 ∈ (0,m). Moreover,

(6.9) j(u,v − u)− j(v,v − u) ≤ LµC2
0 |S|L∞(Γ3)|u− v|2V ∀u,v ∈ V.

Proof. Let η,u ∈ V . Using (4.6), (4.9) and (4.11) it follows that

|j(η,u)| ≤
∫

Γ3

|S|µ(|ητ |)|uτ | da,

≤ |S|L∞(Γ3)

(
Lµ|ητ |L2(Γ3)d + |µ(0)|L2(Γ3)

)
|uτ |L2(Γ3)d ,
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and, keeping in mind (4.4), we find

|j(η,u)| ≤ C0|S|L∞(Γ3)

(
LµC0|η|V + |µ(0)|L2(Γ3)

)
|u|V ,

which implies condition (5.13), for all c0 ∈ (0,m).
Let now u,v ∈ V . Using again (4.6), (4.9) and (4.11) it follows that

j(u,v − u)− j(v,v − u) =
∫

Γ3

|S|
(
µ(|uτ |)− µ(|vτ |)

)
|uτ − vτ | da

≤ Lµ|S|L∞(Γ3)

∫
Γ3

|u− v|2V da.

Using now (4.4) in the previous inequality, we deduce (6.9).

We have now all the ingredients to prove the theorems.

Proof of Theorem 4.2.
(i) Using the conditions (4.2) and (4.5), we see that the bilinear form a
defined by (4.10) is symmetric and coercive, i.e.

a(v,v) ≥ m|v|2V ∀v ∈ V.(6.10)

Let L0 = m/C2
0 . Clearly, L0 depends only on Ω, Γ1, Γ3 and E . Let now

assume that
Lµ|S|L∞(Γ3) < L0.

Then, there exits c0 ∈ R such that

LµC
2
0 |S|L∞(Γ3) < c0 < m.

Using (6.9), we obtain

j(u,v − u)− j(v,v − u) ≤ c0|u− v|2 ∀u,v ∈ V

and we conclude that the functional j satisfies condition (5.12). Using now
Lemmas 6.1–6.3, (4.13)–(4.15) and Theorem 5.1 (i), we deduce that problem
P1 has at least a solution u ∈W 1,∞(0, T ;V ).

(ii) Let (4.7) holds. We note that in this case the functional j is given by

j(η,v) =
∫

Γ3

µ|S| |vτ | da,

and therefore it does not depend on the first argument. It is obvious to see
that in this case assumptions (5.15) and (5.16) hold. The conclusion follows
now from Theorem 5.1 (ii) and (iii).
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Proof of Theorem 4.3.
(i) Let u ∈W 1,∞(0, T ;V ) be a solution of problem P1 and σ ∈W 1,∞(0, T ;H)
be the function defined by

σ(t) = Eε(u(t)) ∀t ∈ [0, T ].(6.11)

Using (4.18), (4.19), (6.11), we have

σ(t) ∈ D(A) and Aσ(t) = u(t) ∀t ∈ [0, T ],(6.12)

and, keeping in mind (4.20), (4.30), we find

σ(0) = σ0.(6.13)

Choosing v = 2
:
u and v = 0V in (4.29), by (4.10) and (6.11) we obtain

(σ, ε(
:
u))H + j(u,

:
u) = (f ,u)V a.e. on (0, T ).(6.14)

Using again (4.29), (6.14) and (4.16), we deduce that

σ(t) ∈ Σ(t,u(t)) a.e. on (0, T ),

and, keeping in mind (4.16), (6.12) and the time regularity of σ and f , we
obtain

σ(t) ∈ Σ(t, Aσ(t)) ∀t ∈ [0, T ].(6.15)

It follows now from (4.16), (6.12) and (6.14) that

(6.16) (τ − σ(t), ε(
:
u(t)))H ≥ 0 ∀τ ∈ Σ(t, Aσ(t)) a.e. on (0, T ).

We conclude by (6.11)–(6.13), (6.15) and (6.16) that σ is a solution of
problem P2.

(ii) Conversely, let σ ∈ W 1,∞(0, T ;H) be a solution of problem P2 and
consider u : [0, T ] −→ V the function defined by

u(t) = Aσ(t) ∀t ∈ [0, T ].(6.17)

It follows from (4.19) that (6.11) hold and, moreover, u ∈ W 1,∞(0, T ;V ).
Next, from (4.32), (4.20), (4.5) and Korn’s inequality (4.1), we obtain

u(0) = u0.(6.18)

Using (4.2) and the subdifferentiability of the seminorm j(u, ·) : V −→ R+
in

:
u, we deduce that there exists τ̃ : [0, T ] −→ H such that

(τ̃ , ε(v)−ε( :u))H+j(u,v)−j(u, :u) ≥ (f ,v− :
u)V

∀v ∈ V, a.e. on (0, T ).
(6.19)

We replace v = 2
:
u and v = 0V , both in V , in (6.19) to deduce

(τ̃ , ε(
:
u))H + j(u,

:
u) = (f ,

:
u)V a.e. on (0, T ).(6.20)

Using now (6.17), (6.19) and (6.20), it follows that

τ̃ (t) ∈ Σ(t, Aσ(t)) a.e. on (0, T ).
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Therefore, taking τ = τ̃ in (4.31) and using again (6.11) yields

(τ̃ , ε(
:
u))H ≥ (σ, ε(

:
u))H a.e. on (0, T ),

and, keeping in mind (6.20), we obtain

(f ,
:
u)V ≥ (σ, ε(

:
u))H + j(u,

:
u) a.e. on (0, T ).

The converse inequality follows from (4.16) and (6.17), since
σ(t) ∈ Σ(t, Aσ(t)) for all t ∈ [0, T ]. Thus, we conclude that

(σ, ε(
:
u))H + j(u,

:
u) = (f ,

:
u)V a.e. on (0, T ).(6.21)

Using again (4.16) and (6.21) we deduce

(σ, ε(v)− ε( :u))H + j(u,v)− j(u, :u) ≥ (f ,
:
u)V

∀v ∈ V, a.e. on (0, T ).
(6.22)

It follows now from (4.10), (6.11), (6.18) and (6.22) that u is a solution to
problem P1.

Proof of Theorem 4.4.
(i) Let u0 = Aσ0. Using (4.21) and (4.16) we obtain

(σ0, ε(v))H + j(u0,v) ≥ (f(0),v)V ∀v ∈ V,

and, by (4.10) and (4.19), it follows that u0 satisfies conditions (4.14) and
(4.15). We now apply Theorem 4.2 (i) and find that there exists L0 > 0
such that if Lµ|S|L∞(Γ3) < L0 then problem P1 has at least a solution
u ∈ W 1,∞(0, T ;V ). It follows now from Theorem 4.3 (i) that σ = Eε(u)
is a solution of problem P2 which satisfies σ ∈W 1,∞(0, T ;H).

(ii) Let (4.7) hold. The existence and uniqueness of the solution to prob-
lem P2 follows from arguments similar to those used in (i), using The-
orem 4.2 (ii) and Theorem 4.3. Moreover, Theorem 4.2 (ii) shows that
the mapping (f ,u0) 7−→ u is Lipschitz continuous from W 1,∞(0, T ;V ) ×
V to L∞(0, T ;V ), and since σ = Eε(u), using (4.2), (4.5) and (4.20),
we deduce that the mapping (f ,σ0) 7−→ σ is Lipschitz continuous from
W 1,∞(0, T ;H)×H to L∞(0, T ;H).

7. Conclusion

Our main results in this paper concern the existence and the uniqueness
of the weak solution in the study of a quasistatic frictional contact problem
involving linear elastic materials. The contact is modeled with a version of
Coulomb’s law of dry friction in which the normal stress is prescribed on
the contact surface and the coefficient of friction depends on the slip, that
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is µ = µ(|uτ |). The existence of the solution is obtained under the assump-
tion Lµ|S|L∞(Γ3) < L0 and its uniqueness is proved in the case when the
coefficient of friction µ does not depend on the slip |uτ |. Here L0 is a scalar
parameter which depends on the elasticity operator and on the geometry
of the problem, Lµ is the Lipschitz constant of the function µ = µ(|uτ |),
and therefore it measures the slip weakening, and, finally, S represents the
given normal stress. From mathematical point of view, these restrictions
are dicted from the structure of conditions (5.12) and (5.15) in Theorem
5.1 we use in order to prove the solvability and the unique solvability of
the problem. The static version of the model was already studied in [6].
There, the existence of the solution was proved without imposing smallness
assumptions on the problem data and the uniqueness was derived in the case
when µ = µ(|uτ |), under a smallness assumption involving the coefficient
of friction and the given normal stress on the contact surface. We conclude
that our results in the study of the quasistatic process hold under more
restrictive assumptions in comparison with those used in [6]. The reason
is that, owing to inherent complicate nature, quasistatic frictional contact
process are modeled by nonstandard variational inequalities which involve
considerable difficulties in their mathematical analysis. An important ex-
tension of the results of this paper would remove the restrictions above and
would allow for results on the qualitative behavior of the solution in the
case when µ = µ(|uτ |), similar to those obtained in [6] in the study of the
static process.
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des Systèmes des Systèmes
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