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Abstract. We apply the Kurzweil-Henstock integral setting to prove
a Fredholm Alternative-type result for the integral equation

x (t)− K

Z

[a,b]
α (t, s)x (s) ds = f (t) , t ∈ [a, b] ,

where x and f are Kurzweil integrable functions (possibly highly oscil-
lating) defined on a compact interval [a, b] of the real line with values
on Banach spaces. An application is given.

1. Introduction

The Kurzweil-Henstock integral setting has been shown to be useful not
only in giving simple treatment to sophisticated matters (e.g.: [26], [27]),
but also in sharpenning many classical results (e.g.: [3], [4]). Its utility can
also be verified in different approaches to Integral Equations (e.g.: [9], [30],
[31]).
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When we consider real-valued functions, the integrals defined by Kurzweil
([21]) and independently by Henstock ([13]) coincide. The Kurzweil-
Henstock integral generalizes the integrals of Riemann, Lebesgue and New-
ton and has good convergence properties (e.g.: [12], [14], [22], [23], [25],
[28]).

However, in a general Banach space-valued context, it may happen that
the space of Henstock integrable functions is properly contained in the space
of Kurzweil integrable ones. In this context, one can find an abstract Rie-
mann integral which is not Henstock integrable ([9], Example 1.1). More-
over, while the abstract Fundamental Theorem of Calculus holds for the
Henstock integral ([6]), it may not be valid for the Kurzweil integral be-
cause if the Kurzweil integral of a function is zero, then it is not necessarily
true that the function itself is zero almost everywhere in Lebesgue’s sense
([9], Example 1.1). On the other hand, we can establish abstract Monotone
Convergence Theorems for the Kurzweil integral but not for the integral of
Henstock ([8], Example 17).

In this paper, we deal with Banach space-valued functions. Although
our results concern only the Kurzweil integral, we present both the abstract
integrals of Kurzweil and of Henstock in view of their differences and uses
in the proofs. It is worth mentioning however that the main results also
hold if we replace the Kurzweil integral by that of Henstock.

Despite being non-complete, the associated spaces of all equivalence classes
of either Kurzweil or Henstock integrable functions, equipped with the Alex-
iewicz norm, have good functional analytic properties ([1], [18], [11]). Be-
cause of these non-completeness, usual Fixed Point Theorems can not be
applied in order to obtain results on existence or uniqueness of a solution
of the linear Fredholm integral equation

x (t)− K

∫
[a,b]

α (t, s)x (s) ds = f (t) , t ∈ [a, b] , (1)

and, in particular, of the linear Volterra integral equation

x (t)− K

∫
[a,t]

α (t, s)x (s) ds = f (t) , t ∈ [a, b] , (2)

where x and f are Kurzweil or Henstock integrable functions, [a, b] is a
compact interval of the real line R.

On the other hand, the ideas due to C. S. Hönig ([19]; see also [10]) of

• transforming equations (1) and (2) into integral equations with respect
to the Riemann-Stieltjes integral and of
• using isometries to obtain results on existence or uniqueness of a solu-

tion of such Stieltjes equations,
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put aside the problem of non-completeness. Suppose α fulfills certain prop-
erties. Hönig’s result for equation (2) establishes the existence and unique-
ness of a solution:
(A) given a Kurzweil integrable function f : [a, b]→ X, X a Banach space,

equation (2) admits one and only one Kurzweil integrable solution xf
with resolvent given by the Neumann series (see [19] or [10], Corollary
28).

Hönig’s result for equation (1) gives an explicit solution provided it is known
beforehand that there exists a solution and it is unique:
(B) if f : [a, b]→ X, X a Banach space, is a Kurzweil integrable function

such that there is one and only one Kurzweil integrable solution xf of
(1), then f 7→ xf is bicontinuous and the resolvent of (1) has similar
integral representation, that is

xf (t) = f (t)− K

∫
[a,b]

φ (t, s) f (s) ds, t ∈ [a, b] ,

where φ satisfies similar conditions required for α.
In the present notes, we give conditions for the existence of a solution of

(1). In order to do this, we answer affirmatively to a conjecture of Hönig
which goes back to 1978. This will imply a Fredholm Alternative-type result
for a Volterra-Stieltjes integral equation. Finally, assuming that α satisfies
adequate conditions, we apply Hönig’s ideas mentioned above to obtain a
Fredholm Alternative-type result for equation (1):
(C) given a Kurzweil integrable function f : [a, b]→ X, X a Banach space,

either equation (1) has one and only one solution with resolvent hav-
ing similar integral representation, or the corresponding homogeneous
equation

u (t)− K

∫
[a,b]

α (t, s)u (s) ds = 0, t ∈ [a, b] , (3)

has non-trivial solutions. In this case, further conditions are assumed
so that (1) admits a solution.

This paper is organized as follows. Section 2 is devoted to definitions and
basic properties of the abstract Riemann-Stieltjes integrals and the presen-
tation of a Fredholm Alternative-type result for Riemann-Stieltjes integral
equations. In Section 3, we present the abstract integrals of Kurzweil and of
Henstock. Also in Section 3 we give some auxiliary results and we present
the Fredholm Alternative-type result for linear integral equations with re-
spect to the Kurzweil integral. An application to boundary value problems
can be found in Section 4.
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2. The Riemann-Stieltjes integrals

2.1. Definitions and terminology.

A bilinear triple (we write BT ) is a set of three vector spaces E, F and
G, where F and G are Banach spaces with a bilinear mapping B : E×F →
G. For x ∈ E and y ∈ F , we write xy = B (x, y) and we denote the BT
by (E,F,G)B or simply by (E,F,G). A topological BT is a BT (E,F,G)
where E is also a normed space and B is continuous. We suppose that
‖B‖ ≤ 1.

If E and F are normed spaces, then we denote by L (E,F ) the space of
all linear continuous functions from E to F . We write E′ = L (E,R ) and
L (E) = L (E,E), where R denotes the real line.

Throughout this paper, X, Y and Z always denote Banach spaces.

Example 2.1. As an example of a BT we can consider E = L (X,Y ),
F = L (Z,X), G = L (Z, Y ) and B (v, u) = v ◦ u. In particular, when
Z =R, we have E = L (X,Y ), F = X, G = Y and B (u, x) = u (x); when
X =R, we have E = Y , F = Y ′, G =R and B (y, y′) = 〈y, y′〉; when
X = Z =R, we have E = G = Y , F =R and B (y, λ) = λy.

Let [a, b] be a compact interval of R. Any finite set of closed non-
overlapping subintervals [ti−1, ti] of [a, b] such that the union of all inter-
vals [ti−1, ti] equals [a, b] is called a division of [a, b]. In this case we write
d = (ti) ∈ D[a,b], where D[a,b] denotes the set of all divisions of [a, b]. By
|d| we mean the number of subintervals in which [a, b] is divided through a
given d ∈ D[a,b].

A tagged division of [a, b] is any set of pairs (ξi, ti) such that (ti) ∈ D[a,b]
and ξi ∈ [ti−1, ti] for every i. In this case we write d = (ξi, ti) ∈ TD[a,b],
where TD[a,b] denotes the set of all tagged divisions of [a, b]. Any subset of
a tagged division of [a, b] is a tagged partial division of [a, b] and, in this
case, we write d ∈ TPD[a,b].

A gauge of a set E ⊂ [a, b] is any function δ : E → ]0,∞[. Given a
gauge δ of [a, b], we say that d = (ξi, ti) ∈ TPD[a,b] is δ-fine, if [ti−1, ti] ⊂
{t ∈ [a, b] ; |t− ξi| < δ (ξi)} for every i.

We now will define the Riemann-Stieltjes integrals by means of tagged
divisions d = (ξi, ti) of [a, b] and constant gauges δ (i.e., there is a δ0 > 0
such that δ (ξ) = δ0 for every ξ ∈ [a, b]).

Let (E,F,G) be a BT . Any function α : [a, b]→ E is said to be Riemann
integrable with respect to a function f : [a, b]→ F if there exists an I ∈ G
such that for every ε > 0, there is a constant gauge δ of [a, b] such that for
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every δ-fine d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥
|d|∑
i=1

[α (ti)− α (ti−1)] f (ξi)− I

∥∥∥∥∥∥ < ε.

We write I =
∫

[a,b] dα (t) f (t) in this case. By Rf ([a, b] , E) we mean the
space of all functions α : [a, b] → E which are Riemann integrable with
respect to f : [a, b]→ F .

Analogously we define the Riemann integral of f : [a, b]→ F with respect
to α : [a, b] → E when it exists. We say that f : [a, b] → F is Riemann
integrable with respect to α : [a, b] → E if there exists an I ∈ G such that
for every ε > 0, there is a constant gauge δ of [a, b] such that for every δ-fine
d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥

|d|∑
i=1

α (ξi) [f (ti)− f (ti−1)]− I

∥∥∥∥∥∥ < ε.

Then Rα ([a, b] , F ) denotes the space of all functions f : [a, b] → F which
are Riemann integrable with respect to a given α : [a, b]→ E with integral
I =

∫
[a,b] α (t) df (t).

The integrals
∫

[a,b] dα (t) f (t) and
∫

[a,b] α (t) df (t) defined above are known
as Riemann-Stieltjes integrals.

Given Banach spaces X and Y and u ∈ L (X,Y ), we denote by u∗ ∈
L (Y ′, X ′) the transposed operator defined by 〈x, u∗ (y′)〉 = 〈u (x) , y′〉, where
x ∈ X and y′ ∈ Y ′. Then, for y′ ∈ Y ′ and u ∈ L (X,Y ), we have

y′ ◦ u = u∗y′,

since (y′ ◦ u) (x) = 〈y′, ux〉 = 〈u∗y′, x〉 for every x ∈ X. Thus, when we
consider the BT (E,F,G) with E = Y ′ = L (Y,R), F = L (X,Y ), G =
X ′ = L (X,R) and B (y′, u) = y′ ◦ u, y′ ∈ Y ′ and u ∈ L (X,Y ), we use the
identification ∫

[c,d]
dy (t) ◦K (t, s) =

∫
[c,d]

K (t, s)∗ dy (t) ,

where y : [a, b] → Y ′, K : [c, d] × [a, b] → L (X,Y ) and K (t, s)∗ is the
transposed operator of K (t, s) ∈ L (X,Y ).
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2.2. Functions of bounded B-variation, of bounded semi-variation
and of bounded variation.

Given a BT (E,F,G)B and α : [a, b] → E, for every division d = (ti) ∈
D[a,b] we define

SBd (α)=SB[a,b],d (α)=sup


∥∥∥∥∥∥
|d|∑
i=1

[α (ti)−α (ti−1)] yi

∥∥∥∥∥∥ ; yi∈F, ‖yi‖≤1


and

SB (α) = SB[a,b] (α) = sup
{
SBd (α) ; d ∈ D[a,b]

}
.

Then SB (α) is the B-variation of α on [a, b]. We say that α is a function
of bounded B-variation whenever SB (α) < ∞. When this is the case,
we write α ∈ SB ([a, b] , E).

The following properties are not difficult to prove:
• SB ([a, b] , E) is a vector space and

α ∈ SB ([a, b] , E) 7→ SB (α) ∈ R+

is a seminorm;
• for α ∈ SB ([a, b] , E), the function

t ∈ [a, b] 7→ SB[a,t] (α) ∈ R+

is monotonically increasing;
• for α ∈ SB ([a, b] , E), we have

SB[a,b] (α) ≤ SB[a,c] (α) + SB[c,b] (α)

for every c ∈ ]a, b[.
We define

SBc ([a, b] , E) = {α ∈ SB ([a, b] , E) ; α (c) = 0} , c ∈ [a, b] .

Example 2.2. Given Banach spaces X and Y , consider the BT
(
L (X,Y ) ,

X, Y
)
. Then we write SV (α) instead of SB (α) and SV ([a, b] , L (X,Y ))

instead of SB ([a, b] , L (X,Y )). The elements of SV ([a, b] , L (X,Y )) are
called functions of bounded semi-variation.

Given a function f : [a, b]→ E, E a normed space, and d = (ti) ∈ D[a,b],
we define

Vd (f) = Vd,[a,b] (f) =
|d|∑
i=1

‖f (ti)− f (ti−1)‖

and the variation of f is given by

V (f) = V[a,b] (f) = sup
{
Vd (f) ; d ∈ D[a,b]

}
.
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If V (f) < ∞, then f is called a function of bounded variation. In this
case, we write f ∈ BV ([a, b] , E).

When we consider the BT (Y, Y ′,R), we write BV (α) and BV ([a, b] , Y ′)
instead of SB (α) and SB ([a, b] , Y ′) respectively ([16, p. 22]). The inclusion
BV

(
[a, b] , L (E,F )

)
⊂ SV

(
[a, b] , L (E,F )

)
holds. Moreover, SV

(
[a, b] ,

L (E,R)
)

= BV
(

[a, b] , E′
)
.

Let X and Y be Banach spaces. Given c ∈ [a, b], we define the spaces

BVc ([a, b] , X) = {f ∈ BV ([a, b] , X) ; f (c) = 0} ,
BV +

c ([a, b] , X) = {f ∈ BVc ([a, b] , X) ; f is right continuous} ,
SVc ([a, b] , L (X,Y )) = {α ∈ SV ([a, b] , L (X,Y )) ; α (c) = 0}

all of which are complete when endowed with the norm given by the variation
V (f) (in the first two cases) and the semi-variation SV (α) (in the last case).

The reader may want to consult [16] for more details and properties of
all these spaces.

2.3. Preliminary results.

Let E be a normed space. By C ([a, b] , E) we mean the space of all
continuous functions from [a, b] to E endowed with the usual supremum
norm ‖·‖∞. We define

Ca ([a, b] , E) = {f ∈ C ([a, b] , E) ; f (a) = 0} .
The next result is well-known. It gives the Integration by Parts Formula

for the Riemann-Stieltjes integrals. For a proof of it, see [16].

Theorem 2.1. Let (E,F,G) be a BT . If either α ∈ SB ([a, b] , E) and
f ∈ C ([a, b] , F ), or α ∈ C ([a, b] , E) and f ∈ BV ([a, b] , F ), then α ∈
Rf ([a, b], E), f ∈ Rα([a, b], F ) and the Integration by Parts Formula∫

[a,b]
dα (t) f (t) = α (b) f (b)− α (a) f (a)−

∫
[a,b]

α (t) df (t)

holds.

The next result is the Riemann-Stieltjes integral version of the well-known
Saks-Henstock Lemma (Lemma 3.2 in the sequence). Its proof follows the
standard steps (see for instance [29, Proposition 16]).

Lemma 2.1 (Saks-Henstock Lemma). If ε > 0 and δ is a constant gauge
of [a, b] such that for every δ-fine d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥

∫
[a,b]

α (t) df (t)−
|d|∑
i=1

α (ξi) [f (ti)− f (ti−1)]

∥∥∥∥∥∥ < ε,
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then for every δ-fine d = (ζj , sj) ∈ TPD[a,b],∥∥∥∥∥∥
|d|∑
j=1

{∫
[sj−1,sj ]

α (t) df (t)− α (ζj) [f (sj)− f (sj−1)]

}∥∥∥∥∥∥ < ε.

Remark 2.1. An analogous result holds for
∫

[a,b] dα (t) f (t) as well.

A proof of the next result can be carried out by following the ideas of [7],
Corollary 8 using Theorem 2.1 and Lemma 2.1.

Theorem 2.2. Suppose α ∈ SV ([a, b] , L (X,Y )), f ∈ C ([a, b] , Z), β ∈
Rf ([a, b] , L (Z,X)) and γ (t) =

∫
[a,t] β (s) df (s), for every t ∈ [a, b]. Then

α (·)β (·) ∈ Rf ([a, b] , L (Z, Y )) and∫
[a,b]

α (t)β (t) df (t) =
∫

[a,b]
α (t) dγ (t) .

A function α : [a, b] → L (X,Y ) is said to be weakly continuous (we
write α ∈ Cσ ([a, b] , L (X,Y ))) if for every x ∈ X the function

α (·)x : t ∈ [a, b] 7→ α (t)x ∈ Y
is continuous.

Given a function K : (t, s) ∈ [c, d]× [a, b] 7→ K (t, s) ∈ L (X,Y ), we write
Kt (s) = Ks (t) = K (t, s). Suppose K is weakly continuous as a function of
the first variable and uniformly of bounded semi-variation as a function of
the second variable, that is,
• given s ∈ [a, b], Ks is weakly continuous (i.e., the function Ks (·)x :
t ∈ [a, b] 7→ Ks (t)x ∈ Y is continuous for every x ∈ X) and
• given t ∈ [c, d], Kt is uniformly of bounded semi-variation (i.e., Kt

belongs to SV ([a, b] , L (X,Y )) and SV u (K) = sup
{
SV

(
Kt
)

;
t ∈ [c, d]

}
<∞).

Then we write K ∈ Cσ × (SV )u ([c, d]× [a, b] , L (X,Y )). If in addition
Kt (a) = 0 for every t ∈ [c, d], thenK ∈ Cσ×(SVa)

u ([c, d]× [a, b] , L (X,Y )).
When functions of bounded variation are considered instead of functions of
bounded semi-variation, we replace Cσ × (SV )u ([c, d]× [a, b] , L (X,Y )) by
Cσ×(BV )u ([c, d]× [a, b] , L (X,Y )) and Cσ×(SVa)

u ([c, d]× [a, b] , L (X,Y ))
by Cσ × (BVa)

u ([c, d]× [a, b] , L (X,Y )).
We use the notation

∫
[a,b] dsK (t, s) f (s) for the Riemann-Stieltjes integral

approximated by sums of the form
∑

i [K (t, si)−K (t, si−1)] f (ξi), where
(ξi, si) ∈ TD[a,b] is appropriate and t ∈ [c, d] is given.

A proof of the next result can be found in [2] or in [16, Theorem II.1.1].
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Theorem 2.3 (Bray). Suppose α ∈ SV ([c, d] , L (Y, Z)), f ∈ C ([a, b] , X)
and K ∈ Cσ × (SV )u ([c, d]× [a, b] , L (X,Y )) and define

(FαK) (s) =
∫

[c,d]
dα (t) ◦K (t, s) , s ∈ [a, b] ,

(FKf) (t) =
∫

[a,b]
dsK (t, s) f (s) , t ∈ [c, d] .

Then FαK ∈ SV ([a, b] , L (X,Z)) and FKf ∈ C ([c, d] , Y ).

2.4. The Fredholm Alternative and the Riemann-Stieltjes inte-
grals.

We now prove the conjecture of Hönig (see [17], the Remark after Theo-
rem 9c).

Conjecture 2.1. Suppose K ∈ Cσ×(SVa)
u ([c, d]× [a, b] , L (X,Y )) is such

that given t ∈ [c, d],

K (t, s0)∗ y′ = lim
s↓s0

K (t, s)∗ y′

for every s0 ∈ ]a, b[ and every y′ ∈ Y ′. Let

(FK (f)) (t) =
∫

[a,b]
dsK (t, s) f (s) , t ∈ [c, d] ,

where f ∈ C ([a, b] , X). Then FK ∈ L (C ([a, b] , X) , C ([c, d] , Y )) and the
transposed operator (FK)∗ ∈ L (BV +

c ([c, d] , Y ′) , BV +
a ([a, b] , X ′)) is given

by

((FK)∗ (y)) (s) =
∫

[c,d]
K (t, s)∗ dy (t) ,

for every s ∈ [a, b] and every y ∈ BV +
c ([c, d] , Y ′).

Proof. It follows by straight application of Theorem 2.3 and the Saks-
Henstock Lemma (Lemma 2.1). Let y ∈ BV +

c ([c, d] , Y ′) and(
F̃K∗ (y)

)
(s) =

∫
[c,d]

K (t, s)∗ dy (t) , s ∈ [a, b] .

Since ∫
[c,d]

K (t, s)∗ dy (t) =
∫

[c,d]
dy (t) ◦K (t, s) ,

then
(
F̃K∗ (y)

)
(s) = (Fy (K)) (s) and Theorem 2.3 implies F̃K∗y ∈ SV

(
[a, b] ,

L (X,R)
)

= BV ([a, b] , X ′). Therefore,

F̃K∗ ∈ L
(
BV +

c

(
[c, d] , Y ′

)
, BVa

(
[a, b] , X ′

))
.
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It remains to prove that for every y ∈ BV +
c ([c, d] , Y ′) and every sufficiently

small subinterval [t0, t0 + ρ], ρ > 0, of [c, d],

lim
s↓s0

∫
[t0,t0+ρ]

K (t, s)∗ dy (t) =
∫

[t0,t0+ρ]
K (t, s0)∗ dy (t) ,

where s0 ∈ ]a, b[ and s > s0.
Let s0 ∈ ]a, b[ and s ∈ ]s0, b]. Given ε > 0, let δ be a constant gauge of

[c, d] such that for every δ-fine d = (ξi, ti) ∈ TD[c,d],∥∥∥∥∥∥
|d|∑
i=1

∫
[c,d]

[K (t, s)∗ −K (t, s0)∗] dy (t)

−
|d|∑
i=1

[K (ξi, s)
∗ −K (ξi, s0)∗] [y (ti)− y (ti−1)]

∥∥∥∥∥∥ < ε,

which means that [K (·, s)∗ −K (·, s0)∗] ∈ Ry ([c, d] , L (X,Y )). Let t0 ∈
[c, d] and 0 < ρ < δ/2. Then the pair (t0, [t0, t0 + ρ]) is a tagged partial
division of [c, d] which is δ-fine and, therefore,∥∥∥∥∥

∫
[t0,t0+ρ]

K (t, s)∗ dy (t)−
∫

[t0,t0+ρ]
K (t, s0)∗ dy (t)

∥∥∥∥∥
≤
∥∥∥∥ ∫

[t0,t0+ρ]
[K (t, s)∗ −K (t, s0)∗] dy (t)

− [K (t0, s)
∗ −K (t0, s0)∗] [y (t0 + ρ)− y (t0)]

∥∥∥∥
+ ‖[K (t0, s)

∗ −K (t0, s0)∗] [y (t0 + ρ)− y (t0)]‖ ,

where the first summand is smaller than ε by the Saks-Henstock Lemma
(Lemma 2.1) and the second summand tends to zero as s → s0 by the
left continuity of the function K (t0, ·)∗ [y (t0 + ρ)− y (t0)] . The proof is
complete.

We denote by K (X,Y ) the subspace of L (X,Y ) of the compact linear
operators and we write K (X) = K (X,X). In accordance to the Remark
after Theorem 15 in [17] and because Conjecture 2.1 is true, we have the
following three theorems. For a proof of them consult [17].

Theorem 2.4. Suppose K ∈ Cσ × (SVa)
u ([a, b]× [a, b] , L (X)). Given t ∈

[a, b], let
K (t, s0)∗ x′ = lim

s↓s0
K (t, s)∗ x′
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for every s0 ∈ ]a, b[ and every x′ ∈ X ′. Suppose the function

K� : t ∈ [a, b] 7→ K� (t) = Kt ∈ SVa ([a, b] , L (X))

belongs to C ([a, b] , SVa ([a, b] ,K (X))). Given λ ∈R, λ 6= 0, consider the
integral equations

λx (t)−
∫

[a,b]
dsK (t, s)x (s) = f (t) , t ∈ [a, b] , (4)

λu (t)−
∫

[a,b]
dsK (t, s)u (s) = 0, t ∈ [a, b] , (5)

λy (s)−
∫

[a,b]
K (t, s)∗ dy (t) = g (s) , s ∈ [a, b] , (6)

λz (s)−
∫

[a,b]
K (t, s)∗ dz (t) = 0, s ∈ [a, b] . (7)

Then the Fredholm Alternative holds for these equations:

(a) either for every f ∈ C ([a, b] , X), equation (4) has one and only one
solution and the same applies to equation (6),

(b) or equation (5) has non-trivial solutions and the same applies to equa-
tion (7).

Theorem 2.5. Under the conditions of Theorem 2.4, if (b) holds, then
equations (4) admits a solution if and only if

∫
[a,b] f (t) dz (t) = 0 for ev-

ery solution z of equation (7). Similarly, equation (6) admits a solution if
and only if

∫
[a,b] u (t) dg (t) = 0 for every solution u of equation (5).

Let X be a Banach space. By IX or I we mean the identical isomorphism
of X.

Theorem 2.6. Under the conditions of Theorem 2.4, if (b) holds, then the
dimension of the vector space of all solutions of equation (5) is finite and
equals the dimension of the vector space of all solutions of equation (7) which
is also equal to the codimension of (λI − FK)C ([a, b] , X) in C ([a, b] , X)
and the codimension of (λI − (FK)∗)BV +

b ([a, b] , X ′) in BV +
b ([a, b] , X ′).
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3. The integrals of Kurzweil and of Henstock

3.1. Definitions and terminology.

Any function f : [a, b] → X is said to be Kurzweil integrable if there
exists I ∈ X (we write I = K

∫
[a,b] f (t) dt) such that given ε > 0, there is a

gauge δ of [a, b] such that for every δ-fine d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥
|d|∑
i=1

f (ξi) (ti − ti−1)− I

∥∥∥∥∥∥ < ε.

In this case, we write f ∈ K ([a, b] , X). We use “∼” to indicate the indefinite
integral of a function f ∈ K ([a, b] , X), that is,

f̃ (t) = K

∫
[a,t]

f (s) ds, t ∈ [a, b] .

If we consider only constant gauges in the definition of f ∈ K ([a, b] , X),
then we obtain the Riemann integral

∫
[a,b] f (t) dt and, when this is the case,

we write f ∈ R ([a, b] , X). Clearly R ([a, b] , X) ⊂ K ([a, b] , X).
Any function f : [a, b]→ X is said to be Henstock integrable (we write

f ∈ H ([a, b] , X)) if there exists a function F : [a, b] → X such that given
ε > 0, there is a gauge δ of [a, b] such that for every δ-fine d = (ξi, ti) ∈
TD[a,b],

|d|∑
i=1

‖f (ξi) (ti − ti−1)− [F (ti)− F (ti−1)]‖ < ε.

In this case, we set H
∫

[a,t] f (s) ds = F (t)− F (a), for every t ∈ [a, b].
It is immediate that the inclusion H ([a, b] , X) ⊂ K ([a, b] , X) holds and

if f ∈ H ([a, b] , X), then F (t) − F (a) = f̃ (t) = K
∫

[a,t] f (s) ds, for every
t ∈ [a, b]. When X =R, then H ([a, b] , X) = K ([a, b] , X) (see for instance
[25]).

We use the notation K
∫

and
∫

to clearly distinguish between the integrals
of Kurzweil and of Riemann (or Riemann-Stieltjes) respectively.

Let f ∈ H ([a, b] , X) and g : [a, b] → X be such that f = g almost
everywhere in Lebesgue’s sense. Then g ∈ H ([a, b] , X) and g̃ (t) = f̃ (t),
for every t ∈ [a, b] (see for instance [6]). An analogous result holds for
K ([a, b] , X) instead of H ([a, b] , X).

Two functions f, g ∈ K ([a, b] , X) are said to be equivalent if and only if
f̃ = g̃. We denote by K ([a,b] ,X) (respectively by H ([a,b] ,X) the space
of all equivalence classes of functions of K ([a, b] , X) (resp. of H ([a, b] , X))
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equipped with the Alexiewicz norm

‖f‖A =
∥∥∥f̃∥∥∥

∞
= sup

{∥∥∥∥∥K
∫

[a,t]
f (s) ds

∥∥∥∥∥ ; t ∈ [a, b]

}
.

The spaces K ([a,b] ,X) and H ([a,b] ,X) are non-complete ([1], [18]), but
they are ultrabornological ([11], Theorem 3.1 and Corollary 3.2).

As it should be expected, the integrals of Kurzweil and of Henstock are
linear, additive over non-overlapping intervals and invariant over sets of
Lebesgue measure zero. The indefinite integral of a Kurzweil (and hence of
a Henstock) integrable function is continuous. See [12], [14], [22], [23], [25],
[28]

For a proof of the next two results see [13] or [29].

Lemma 3.1 (Cousin Lemma). Given a gauge δ of [a, b], there exists a δ-
fine d = (ξi, ti) ∈ TD[a,b].

Lemma 3.2 (Saks-Henstock Lemma). If ε > 0 and δ is a gauge of [a, b]
such that for every δ-fine d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥K

∫
[a,b]

f (t) dt−
|d|∑
i=1

f (ξi) (ti − ti−1)

∥∥∥∥∥∥ < ε,

then for every δ-fine d = (ζj , sj) ∈ TPD[a,b],∥∥∥∥∥∥
|d|∑
j=1

{
K

∫
[sj−1,sj ]

f (t) dt− f (ζj) (sj − sj−1)

}∥∥∥∥∥∥ < ε.

The result that follows is due to Hönig and can be found in [18] or in [7,
Theorem 6].

Theorem 3.1. Consider α ∈ SV ([a, b] , L (X,Y )) and f ∈ K ([a, b] , X).
Then α (·) f (·) ∈ K ([a, b] , Y ) with

K

∫
[a,b]

α (t) f (t) dt =
∫

[a,b]
α (t) df̃ (t) and∥∥∥∥∥K

∫
[a,b]

α (t) f (t) dt

∥∥∥∥∥ ≤ [V (α) + ‖α (a)‖] ‖f‖A .

In an analogous way, it can be proved that
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Theorem 3.2. If α ∈ K ([a, b] , L (X,Y )) and f ∈ BV ([a, b] , X), then we
have α (·) f (·) ∈ K ([a, b] , Y ) with

K

∫
[a,b]

α (t) f (t) dt =
∫

[a,b]
dα̃ (t) f (t) and∥∥∥∥∥K

∫
[a,b]

α (t) f (t) dt

∥∥∥∥∥ ≤ ‖α‖A [V (f) + ‖f (a)‖] .

A proof of Theorem 3.2 can be found in [7, Theorem 9].
Any function F : [a, b]→ X, is said to be differentiable at ξ ∈ ]a, b[ with

derivative DF (t), whenever for every ε > 0, there is an open neighborhood
V ⊂ [a, b] of t such that

‖F (v)− F (u)− f (t) (v − u)‖ < ε (v − u)

for every subinterval [u, v] ⊂ [a, b] with t ∈ [u, v] ⊂ V . Then F is differen-
tiable almost everywhere (in Lebesgue’s sense) if F is differentiable at t for
almost every t ∈ ]a, b[.

We say that a function α : [a, b] → L (X,Y ) is weakly differentiable
almost everywhere if for every x ∈ X, the function

α (·)x : t ∈ ]a, b[ 7→ α (t)x ∈ Y
is differentiable almost everywhere. We denote by Dσ (αx) (t) the deriva-
tive of α (·)x at t.

For a proof of the next two theorems, see [6].

Theorem 3.3. If f ∈ H ([a, b] , X), then its indefinite integral is differen-
tiable almost everywhere and Df̃ (t) = f (t) for almost every t ∈ [a, b].

Theorem 3.4. If α : [a, b] → L (X,Y ) is differentiable almost everywhere
and f ∈ H ([a, b] , X), then the function gα,f (t) = Dσ (αf (t)) (t) belongs to
H ([a, b] , Y ) and

K

∫
[a,b]

gα,f (t) dt = K

∫
[a,b]

dα (t) f (t) .

3.2. Auxiliary results.

Suppose α ∈ SV ([a, b] , L (X,Y )) and f ∈ C ([a, b] , X). Then the
Riemann-Stieltjes integral

∫
[a,b] dα (t) f (t) exists (Theorem 2.1). Further-

more, if we define

Fα (f) =
∫

[a,b]
dα (t) f (t) ,

then Fα ∈ L (C ([a, b] , X) , Y ) and ‖Fα‖ ≤ SV (α) (see [16, Theorem I.4.6]).
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If α ∈ SV ([a, b] , L (X,Y )), then for every t ∈ [a, b[ there is one and
only one element α

(
t
:
+
)
∈ L (X,Y ′′) such that for every x ∈ X and every

y′ ∈ Y ′,
lim
ρ↓0

〈
α (t+ ρ)x, y′

〉
=
〈
α
(
t
:
+
)
x, y′

〉
where ρ > 0 ([15, Corollary after I.3.6]). Thus given α ∈ SV ([a, b] , L (X,Y )),
we define α+ (t) = α

(
t
:
+
)

, a < t < b, and α+ (a) = α (a). Then the func-

tion α+ is of bounded semi-variation and, when α
(
a
:
+
)

= α (a), we write

α+ ∈ SV + ([a, b] , L (X,Y ′′)). If in addition α+ (b) = 0, then we write
α+ ∈ SV +

b ([a, b] , L (X,Y ′′)). Moreover for every f ∈ C ([a, b] , X),∫
[a,b]

dα+ (t) f (t) =
∫

[a,b]
dα (t) f (t)

and ‖Fα‖ = SV (α+) ([15, Corollary 3.9]).
Given a function α : (t, s) ∈ [c, d]× [a, b] 7→ α (t, s) ∈ L (X,Y ′′), we write

αt (s) = αs (t) = α (t, s). Suppose that
• given s ∈ [a, b], the function

hα,x,s : t ∈ [c, d] 7→ hα,x,s (t) =
∫

[a,s]
α (t, ρ)x dρ

is continuous for every x ∈ X, and
• given t ∈ [c, d], αt ∈ SV +

b ([a, b] , L (X,Y ′′)) and

SV u (α) = sup
{
SV

(
αt
)

; t ∈ [a, b]
}
<∞.

In this case, we write α ∈ C̃σ ×
(
SV +

b

)u ([c, d]× [a, b] , L (X,Y ′′)). When
we consider functions of bounded variation instead of functions of bounded
semi-variation, we write α ∈ C̃σ ×

(
BV +

b

)u ([c, d]× [a, b] , L (X,Y ′′)).
Suppose now that α ∈ C̃σ ×

(
BV +

b

)u ([c, d]× [a, b] , L (X,Y ′′))
with

∫
[c,t] α (t, ρ)xdρ ∈ Y for all t ∈ [c, d] and x ∈ X. Under these cir-

cumstances we have

Theorem 3.5. If K : [c, d]× [a, b]→ L (X,Y ) is such that for every x ∈ X,

K (t, s)x =
∫

[c,t]
α (t, ρ)xdρ,

then K ∈ Cσ×(SVa)
u ([c, d]× [a, b] , L (X,Y )) and for every t ∈ [c, d], every

s0 ∈ ]a, b[ and every y′ ∈ Y ′,

K (t, s0)∗ y′ = lim
s→s0

K (t, s)∗ y′.
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Proof. By the hypothesis with respect to the first variable of α = α (t, s),
for every s ∈ [a, b] and every x ∈ X,

hα,x,s : t ∈ [c, d] 7→ hα,x,s (t) =
∫

[a,s]
α (t, ρ)x dρ

is a continuous function. Hence Ks : [c, d]→ L (X,Y ) is weakly continuous
for every s ∈ [a, b]. Let d = (si) ∈ D[a,b]. Then for every t ∈ [c, d] and every
xi ∈ X with ‖xi‖ ≤ 1, i = 1, 2, . . . , |d|,∥∥∥∥∥∥

|d|∑
i=1

[K (t, si)−K (t, si−1)]xi

∥∥∥∥∥∥ =

∥∥∥∥∥∥
|d|∑
i=1

∫
[si−1,si]

α (t, ρ)xi dρ

∥∥∥∥∥∥
≤
|d|∑
i=1

∥∥αt∥∥∞ ‖xi‖ (si − si−1) ≤
∥∥αt∥∥∞ (b− a) ≤ V

(
αt
)

(b− a)

which implies Kt ∈ SVa ([a, b] , L (X,Y )). Hence K ∈ Cσ × (SVa)
u ( [c, d]×

[a, b] , L (X,Y )
)
. By the continuity of the indefinite integral, the function

Kt (·)x : s ∈ [a, b] 7→ K (t, s)x =
∫

[c,t] α (t, ρ)xdρ is continuous for every

t ∈ [c, d] and every x ∈ X. Hence, given t ∈ [c, d] and y′ ∈ Y ′,
(
Kt (·)

)∗
y′

is also a continuous function on [a, b].

Theorem 3.6. Under the conditions of Theorem 3.5,∫
[a,b]

dsK (t, s) y (s) =
∫

[a,b]
α (t, s) y (s) ds (8)

for every y ∈ C ([a, b] , X) and every t ∈ [c, d].

Proof. Let y ∈ C ([a, b] , X), t ∈ [c, d] and g = ỹ, that is, g (s) =
∫

[a,s] y (r) dr
for every s ∈ [a, b]. By Theorem 2.2, αt (·) y (·) is Riemann integrable and∫

[a,b]
αt (s) y (s) ds =

∫
[a,b]

αt (s) dg (s) = −
∫

[a,b]
ds
(
αt (s)

)
β (s) ,

(9)

where we applied Theorem 2.1 to obtain the last equality. Also by Theorem
2.1, the Riemann-Stieltjes integral

∫
[a,b] dsK (t, s) y (s) exists for every t ∈

[c, d], since Kt ∈ SV ([a, b] , L (X,Y )) and y ∈ C ([a, b] , X).
Because αt (·)x∈H ([a, b]Y ) (Theorem 3.1) andK (t, s)x=

∫
[a,s] α

t (ρ)xdρ
for all x ∈ X, t ∈ [c, d] and s ∈ [a, b], the Fundamental Theorem of Calculus
(Theorem 3.3) implies that given t ∈ [c, d] and x ∈ X, the derivative (with
respect to s) of the indefinite integral of αt (·)x exists and

Dσ
s (K (t, s)x) = Dσ

s

∫
[a,s]

αt (ρ)xdρ = αt (s)x
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for almost every s ∈ [a, b]. But by Theorem 3.4,∫
[a,b]

Dσ
s (K (t, s)x) ds =

∫
[a,b]

dsK (t, s) x.

Hence, ∫
[a,b]

dsK (t, s) x =
∫

[a,b]
αt (s)xds,

for every x ∈ X and every t ∈ [c, d]. It follows then that∫
[a,b]

dsK (t, s) g (s) =
∫

[a,b]
α (t, s) g (s) ds, (10)

for every step function g : [a, b]→ X.
Let ε > 0. Consider g : [a, b]→ X a step function such that ‖g − y‖∞ <

ε/N , where N = max
{
SV

(
Kt
)
, V
(
αt
)}

, t ∈ [c, d] fixed. Let δ1 and δ2 be
constant gauges of [a, b] from the definitions of the integrals∫

[a,b]
dsK (t, s) [y (s)− g (s)] and

∫
[a,b]

α (t, s) [y (s)− g (s)] ds

respectively. Define δ = min {δi; i = 1, 2} and let d = (ξi, si) ∈ TD[a,b] be
δ-fine. Hence, ∥∥∥∥∥

∫
[a,b]

dsK (t, s) y (s)−
∫

[a,b]
α (t, s) y (s) ds

∥∥∥∥∥
≤

∥∥∥∥∥
∫

[a,b]
dsK (t, s) [y (s)− g (s)]

∥∥∥∥∥
+

∥∥∥∥∥
∫

[a,b]
dsK (t, s) g (s)−

∫
[a,b]

α (t, s) g (s) ds

∥∥∥∥∥
+

∥∥∥∥∥
∫

[a,b]
α (t, s) [y (s)− g (s)] ds

∥∥∥∥∥ ,
where the second summand is equal to zero by (10), the first summand is
smaller than∥∥∥∥∥∥
∫

[a,b]
dsK (t, s) [y (s)− g (s)]−

|d|∑
i=1

[K (t, si)−K (t, si−1)] [y (ξi)− g (ξi)]

∥∥∥∥∥∥
+

∥∥∥∥∥∥
|d|∑
i=1

[K (t, si)−K (t, si−1)] [y (ξi)− g (ξi)]

∥∥∥∥∥∥
< ε+ SV

(
Kt
)
‖y − g‖∞ < 2ε,
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and the third summand is smaller than V
(
αt
)
‖y − g‖∞ < ε. The result

follows.

Let X be a Banach space. By G ([a, b] , X) we mean the space of all
regulated functions f : [a, b]→ X, that is, there exist

f (t+) = lim
ρ↓0

f (t+ ρ) , for every t ∈ [a, b[ ,

and
f (t−) = lim

ρ↓0
f (t− ρ) , for every t ∈ ]a, b] ,

where ρ > 0. When equipped with the usual supremum norm, G ([a, b] , X)
is complete ([15], [16]).

Given a function f : [a, b]→ X and a division d = (ti) ∈ D[a,b], we define

ω◦i (f) = sup {‖f (t)− f (s)‖ ; t, s ∈ ]ti−1ti[} ,

for each i = 1, 2, . . . , |d|, and

ω◦d (f) = sup
i
{ω◦i (f)} .

Then a subset E ⊂ G ([a, b] , X) is called equiregulated if given ε > 0,
there exists d = (ti) ∈ D[a,b] such that for every function f ∈ E, ω◦d (f) < ε.

Remark 3.1. It is not difficult to verify that
(i) C ([a, b] , X) ⊂ G ([a, b] , X);
(ii) E ⊂ C ([a, b] , X) is equiregulated if and only if E is equicontinuous.

We call any subset A ⊂ X relatively compact if the closure of A in X
is compact.

Lemma 3.3. Suppose α ∈ SV ([a, b] , L (X,Y )), f ∈ C ([a, b] , X) and

Fα (f) =
∫

[a,b]
dα (t) f (t) .

Then Fα maps bounded and equiregulated subsets of C ([a, b] , X) to relatively
compact subsets of Y if and only if α (t) ∈ K (X,Y ), for every t ∈ [a, b].

For a proof of Lemma 3.3, see [17, Theorem 4d]. As a direct consequence
of Lemma 3.3 we have

Lemma 3.4. Suppose K∈Cσ×(SVa)
u ([c, d]× [a, b] , L (X,Y )), f ∈C

(
[a, b] ,

X
)

and

(FKf) (t) =
∫

[a,b]
dsK (t, s) f (s) , t ∈ [c, d] .
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If for every bounded and equiregulated subset E of C ([a, b] , X), the sub-
set {(FKf) (t) ; f ∈ E} of Y is relatively compact for every t ∈ [c, d], then
K (t, s) ∈ K (X,Y ) for every (t, s) ∈ [c, d]× [a, b].

Theorem 3.7. Suppose the hypotheses of Theorem 3.5 are fulfilled. If for
every t ∈ [c, d] and every s ∈ [a, b], αt (s) ∈ K (X,Y ), then the function

K� : t ∈ [a, b] 7→ K� (t) = Kt ∈ SVa ([a, b] , L (X,Y ))

belongs to C ([a, b] , SVa ([a, b] ,K (X,Y ))).

Proof. At first we will show that K� ∈ C ([a, b] , SVa ([a, b] , L (X,Y ))).
Let t0 ∈ [c, d] and d = (si) ∈ D[a,b]. By the hypothesis for hα,x,s (t) =∫

[a,s] α (t, ρ)x dρ, given ε > 0, there exists δi > 0 such that 0 < |t− t0| < δi
implies ∥∥∥∥∥

∫
[si−1,si]

[α (t, ρ)− α (t0, ρ)]xidρ

∥∥∥∥∥ < ε

2i
,

where xi ∈ X, i = 1, 2, . . . , |d|. Then, for ‖xi‖ ≤ 1, i = 1, 2, . . . , |d|,∥∥∥∥∥∥
|d|∑
i=1

[(
Kt −Kt0

)
(si)−

(
Kt −Kt0

)
(si−1)

]
xi

∥∥∥∥∥∥
≤
|d|∑
i=1

∥∥∥∥∥
∫

[si−1,si]
[α (t, ρ)− α (t0, ρ)]xidρ

∥∥∥∥∥ = ε.

Therefore∥∥Kt −Kt0
∥∥ = SV

(
Kt −Kt0

)
=sup

d
sup


∥∥∥∥∥∥
|d|∑
i=1

[(
Kt−Kt0

)
(si)−

(
Kt−Kt0

)
(si−1)

]
xi

∥∥∥∥∥∥ ; xi∈Y, ‖xi‖≤1


which tends to zero as t→ t0.

It remains to prove that K (t, s) ∈ K (X,Y ) for every (t, s) ∈ [c, d]× [a, b].
Given y ∈ C ([a, b] , X), define

(FK (y)) (t) =
∫

[a,b]
dsK (t, s) y (s) , t ∈ [c, d] ,

and
Fαt (y) =

∫
[a,b]

ds
(
αt (s)

)
ỹ (s) .

Let E ⊂ C ([a, b] , X) be equiregulated and bounded and let M > 0 be such
that ‖y‖∞ < M for every y ∈ E. Let A = {ỹ; y ∈ E}, that is, A is the
subset of all indefinite integrals of elements of E. We will prove that A is
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equiregulated. By Remark 3.1, it is enough to show that A is equicontinuous
which is true: let s ∈ [a, b], ε > 0 and δ = ε/M , then for every ỹ ∈ A and
every r ∈ [s, b] with 0 < r − s < δ,

‖ỹ (s)− ỹ (r)‖ ≤
∫

[s,r]
‖y (ρ)‖ dρ < M (r − s) < ε

and a similar inequality holds for r ∈ [a, s] with 0 < s − r < δ. Now,
according to equations (9) and (8) (see Theorem 3.6 and its proof),∫

[a,b]
dsK (t, s) y (s) = −

∫
[a,b]

ds
(
αt (s)

)
ỹ (s)

and then

(FK (E)) (t) = {(FK (y)) (t) ; y ∈ E} = {−Fαt (ỹ) ; y ∈ E} ,

for every t ∈ [c, d]. Thus, (FK (E)) (t) = −Fαt (A) is relatively compact by
Lemma 3.3. Finally, by Lemma 3.4, K (t, s) ∈ K (X,Y ) for every (t, s) ∈
[c, d]× [a, b] and the proof is finished.

3.3. The Fredholm Alternative and the Kurzweil integral.

As defined earlier, K ([a,b] ,X) is the space of all equivalence classes of
functions of K ([a, b] , X) endowed with the Alexiewicz norm. The result
that follows is due to Hönig. For a proof of it consult [19, Theorem 2.6] or,
alternatively, [10, Theorem 3.5]).

Suppose α ∈ C̃σ×
(
SV +

b

)u ([c, d]× [a, b] , L (X,Y ′′)) with
∫

[c,t] α (t, ρ)xdρ ∈
Y and

(Hα (f)) (t) = K

∫
[a,b]

α (t, s) f (s) ds

for all t ∈ [c, d] and x ∈ X. Under these conditions we have

Theorem 3.8. The mapping

α 7→ Hα ∈ L (K ([a,b] ,X) ,C ([c,d] ,Y)) ,

is an isometry (i.e., ‖Hα‖ = SV u (α)) onto. Furthermore for every t ∈
[c, d], every s ∈ [a, b] and every x ∈ X,∫

[a,s]
α (t, ρ)xdρ =

(
Hα

(
χ[a,s]x

))
(t) .

The next theorem is Hönig’s result for the linear integral equation con-
cerning the integral of Kurzweil mentioned as result (B) in the introduction.
It can be found in [19, Theorem 3.2].
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Theorem 3.9. Given H ∈ L (K ([a,b] ,X) ,C ([a,b] ,X)), let α : [a, b] ×
[a, b] → L (X,X ′′) be the corresponding kernel by Theorem 3.8 (i.e., H =
Hα). Suppose H is such that for every f ∈ K ([a,b] ,X), the linear Fredholm-
Kurzweil integral equation

x (t)− K

∫
[a,b]

α (t, s)x (s) ds = f (t) , t ∈ [a, b] . (11)

(i.e., the equation x−H (x) = f) admits a unique solution xf ∈ K ([a,b] ,X).
Then there is a unique kernel φ ∈ C̃σ ×

(
SV +

b

)u ([a, b]× [a, b] , L (X,X ′′))
with

∫
[a,t] φ (t, ρ)xdρ ∈ X for every t ∈ [a, b] and every x ∈ X, and such

that given f ∈ K ([a,b] ,X),

xf (t) = f (t)− K

∫
[a,b]

φ (t, s) f (s) ds, t ∈ [a, b] .

The following observations are borrowed from [19].

Remark 3.2. Suppose E is a dense subspace of K ([a,b] ,X) that contains
C ([a, b] , X) and H ∈ L (E,C ([a, b] , X)) is such that for every f ∈ E,
the equation x − H (x) = f has one and only one solution xf ∈ E, then
Theorem 3.9 still holds if we replace K ([a,b] ,X) by E. As an example we
can mention R2 ([a, b] , X), the space of all functions from [a, b] to X which
are improper Riemann integrable with a finite number of points of improper
integration. This space is also ultrabornological ([11, Corollary 3.2]).

Now we are able to present the main result on the Fredholm Alternative
for equation (11). Assume α ∈ C̃σ ×

(
BV +

b

)u ([a, b]× [a, b] , L (X,X ′′)) is
such that for every t ∈ [a, b], every s ∈ [a, b] and every x ∈ X, αt (s) ∈ K (X)
and

∫
[a,t] α (t, ρ)xdρ ∈ X. Under these conditions we have

Theorem 3.10. Suppose f ∈ K ([a,b] ,X) and consider the linear Fredholm-
Kurzweil integral equation

x (t)− K

∫
[a,b]

α (t, s)x (s) ds = f (t) , t ∈ [a, b] , (12)

and its corresponding homogeneous equation

u (t)− K

∫
[a,b]

α (t, s)u (s) ds = 0, t ∈ [a, b] . (13)

Consider also the integral equations

y (s)−
∫

[a,s]

[∫
[a,b]

α (t, s)∗ dy (t)

]
ds = g (s) , s ∈ [a, b] ,

(14)
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and

z (s)−
∫

[a,s]

[∫
[a,b]

α (t, s)∗ dz (t)

]
ds = 0, s ∈ [a, b] , (15)

where y, z ∈ C ([a, b] , X ′). Then
(a) either for every f ∈ K ([a,b] ,X), equation (12) has a unique solution

xf ∈ K ([a,b] ,X) and, for every g ∈ C ([a, b] , X ′), equation (14) has
a unique solution yg ∈ C ([a, b] , X ′);

(b) or equations (13) and (15) admit non-trivial solutions respectively in
K ([a,b] ,X) and in C ([a, b] , X ′). In this case, equation (12) admits a
solution if and only if for every solution z ∈ C ([a, b] , X ′) of equation
(15) we have∫

[a,b]

[
K

∫
[a,b]

α (t, s) f (s) ds

]
dz (t) = 0. (16)

Proof. Let v = x− f and h (t) = K
∫

[a,b] α (t, s) f (s) ds, t ∈ [a, b]. Then

v (t) = K

∫
[a,b]

α (t, s)x (s) ds, t ∈ [a, b] .

By Theorem 3.8, the functions h and v belong to C ([a, b] , X), because for
every f, x ∈ K ([a,b] ,X) and every t ∈ [a, b], we have h (t) = (Hα (f)) (t),
v (t) = (Hα (x)) (t), and Hα ∈ L (K ([a,b] ,X) ,C ([a,b] ,X)). Thus equa-
tion (12) is equivalent to the integral equation

v (t)− K

∫
[a,b]

α (t, s) v (s) ds = h (t) , t ∈ [a, b] . (17)

But according to Theorem 2.2, equation (17) is in fact

v (t)−
∫

[a,b]
α (t, s) v (s) ds = h (t) , t ∈ [a, b] , (18)

where the integral is that of Riemann. Let K : [a, b] × [a, b] → L (X) be
such that for every (t, s) ∈ [a, b] × [a, b] and every x ∈ X, K (t, s)x =∫

[a,s] α (t, ρ)xdρ. By Theorem 3.5,∫
[a,b]

dsK (t, s) v (s) =
∫

[a,b]
α (t, s) v (s) ds

and therefore equation (18) is equivalent to the next Riemann-Stieltjes in-
tegral equation

v (t)−
∫

[a,b]
dsK (t, s) v (s) = h (t) , t ∈ [a, b] . (19)
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Also by Theorem 3.5, K ∈ Cσ × (SVa)
u ([a, b]× [a, b] , L (X)) and, for every

t ∈ [a, b], every s0 ∈ ]a, b[ and every x′ ∈ X ′,
K (t, s0)∗ x′ = lim

s→s0
K (t, s)∗ x′.

Moreover, K� ∈ C ([a, b] , SVa ([a, b] ,K (X))) where K� (t) = Kt (see The-
orem 3.7). Hence by Theorems 2.4 and 2.5 it follows that
(a0) either for every h ∈ Ca ([a, b] , X), equation (19) has one and only

one solution vh ∈ Ca ([a, b] , X) and, for every g ∈ Ca ([a, b] , X ′), the
equation

y (s)−
∫

[a,b]
K (t, s)∗ dy (t) = g (s) , s ∈ [a, b] , (20)

has one and only one solution yg ∈ Ca ([a, b] , X ′);
(b0) or equations

r (t)−
∫

[a,b]
dsK (t, s) r (s) = 0, t ∈ [a, b] , (21)

and

z (s)−
∫

[a,b]
K (t, s)∗ dz (t) = 0, s ∈ [a, b] , (22)

admit non-trivial solutions. In this case, equation (19) has a solution
if and only if ∫

[a,b]
h (t) dz (t) = 0 (23)

for every solution z ∈ Ca ([a, b] , X ′) of (22).
Now, by the definition ofK it follows thatK (t, s)∗ x′ =

∫
[a,b] α (t, ρ)∗ x′dρ,

for every (t, s) ∈ [a, b] × [a, b] and every x′ ∈ X ′, by taking approximated
Riemann sums. Also by approximated Riemann sums we prove that∫

[a,b]
K (t, s)∗ dy (t) =

∫
[a,s]

[∫
[a,b]

α (t, s)∗ dy (t)

]
ds, s ∈ [a, b] ,

for every y ∈ C ([a, b] , X ′). Let s ∈ [a, b]. Given ε > 0, let δ be a constant
gauge of [a, b] such that for every d = (ξi, ti) ∈ TD[a,b],∥∥∥∥∥∥

∫
[a,b]

K (t, s)∗ dy (t)−
|d|∑
i=1

K (ξi, s)
∗ [y (ti)− y (ti−1)]

∥∥∥∥∥∥ < ε

and ∥∥∥∥∥∥
∫

[a,b]
α (t, s)∗ dy (t)−

|d|∑
i=1

α (ξi, s)
∗ [y (ti)− y (ti−1)]

∥∥∥∥∥∥ < ε.
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Then∥∥∥∥∥
∫

[a,b]
K (t, s)∗ dy (t)−

∫
[a,s]

[∫
[a,b]

α (t, s)∗ dy (t)

]
ds

∥∥∥∥∥
≤

∥∥∥∥∥∥
∫

[a,b]
K (t, s)∗ dy (t)−

|d|∑
i=1

K (ξi, s)
∗ [y (ti)− y (ti−1)]

∥∥∥∥∥∥
+

∥∥∥∥∥∥
|d|∑
i=1

K (ξi, s)
∗ [y (ti)−y (ti−1)]−

∫
[a,s]

 |d|∑
i=1

α (ξi, s)
∗ [y (ti)−y (ti−1)]

ds
∥∥∥∥∥∥

+

∥∥∥∥∥∥
∫

[a,s]

 |d|∑
i=1

α (ξi, s)
∗ [y (ti)−y (ti−1)]

ds−∫
[a,s]

[∫
[a,b]

α (t, s)∗ dy (t)

]
ds

∥∥∥∥∥∥
where the first summand is smaller than ε, the third summand is smaller
than ε (s− a), and the second summand is equal to∥∥∥∥∥∥
|d|∑
i=1

K (ξi, s)
∗ [y (ti)− y (ti−1)]−

|d|∑
i=1

∫
[a,s]

α (ξi, s)
∗ [y (ti)− y (ti−1)] ds

∥∥∥∥∥∥ = 0.

Therefore equations (20) and (14) are equivalent and the same applies to
equations (22) and (15). By (23) and the definition of h, we have (16) and
the result follows.

The next result is a consequence of Theorem 3.9.

Theorem 3.11. Under the conditions required for Theorem 3.10, if (a)
holds, then there is a unique kernel φ ∈ C̃σ×

(
SV +

b

)u ([a, b]× [a, b] , L (X,X ′′))
with

∫
[a,t] φ (t, ρ)xdρ ∈ X for every t ∈ [a, b] and every x ∈ X, and such

that given f ∈ K ([a,b] ,X), the solution of equation (12) is given by

xf (t) = f (t)− K

∫
[a,b]

φ (t, s) f (s) ds, t ∈ [a, b] .

Remark 3.3. By Remark 3.2, Theorems 3.10 and 3.11 hold if we replace
K ([a,b] ,X) by R2 ([a, b] , X). These theorems also hold for the Henstock
integral with H ([a,b] ,X) instead of K ([a,b] ,X) as well as for the Bochner-
Lebesgue integral replacing K ([a,b] ,X) by L1 ([a, b] , X), where L1

(
[a, b] ,

X
)

is the space of all equivalence classes of functions f : [a, b] → X which
are Bochner-Lebesgue integrable with finite integral equipped with the norm
‖f‖1 = L

∫
[a,b] ‖f (t)‖ dt.
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3.4. An application.

Many hypothesis imposed on problems described by integral or differen-
tial equations can be weakened by the application of the Kurzweil-Henstock
integral setting in solving them. In what follows, we make some comments
on the possibility of enlarging the conditions of the functions involved in a
certain differential equation.

It is known that the boundary value problem
d2x

dt2
+A (t)

dx

dt
+B (t)x = g (t)

x (a) = c1

x (b) = c2,

(24)

where the functions involved are continuously differentiable, can be repre-
sented by the linear Fredholm integral equation

x (t)−
∫

[a,b]
α (t, s)x (s) ds = f (t) , t ∈ [a, b] , (25)

where

f (t) = c1 +
∫

[a,t]
(t− s) g (s) ds+

t− a
b− a

[
c2 − c1 −

∫
[a,b]

(b− s) g (s) ds

]
,

and

α (t, s) =
t− b
b− a

{
A (s)− (a− s)

[
A′ (s)−B (s)

]}
, t > s,

α (t, s) =
t− a
b− a

{
A (s)− (b− s)

[
A′ (s)−B (s)

]}
, t < s.

See [20].
Suppose g is Kurzweil integrable (with, say, g highly oscillating as for

instance g = dG/dt where G (t) = t2 sin t−2, 0 < t ≤ 1, and G (0) = 0). We
will prove that f is continuous. Take arbitrary t ∈ [a, b] and let h (s) = t−s,
s ∈ [a, b]. Then h is continuous and of bounded variation on [a, t] and
Theorem 3.2 implies that h (·) g (·) is Kurzweil integrable with

K

∫
[a,t]

h (s) g (s) ds =
∫

[a,t]
dh̃ (s) g (s) ,

where h̃ is the indefinite integral of h and hence continuous. The function
g̃h̃ defined by

g̃h̃ (t) =
∫

[a,t]
dh̃ (s) g (s) , t ∈ [a, b] ,

is also continuous (for a proof of this fact, see [9, Theorem 1.2]). Thus f is
continuous and therefore Riemann integrable.



108 M. FEDERSON and R. BIANCONI

We now identify the isomorphic spaces L (R,R) and R (see [24, pp.
269-270]) and we write C̃σ ×

(
BV +

b

)u ([a, b]× [a, b] ,R) instead of C̃σ ×(
BV +

b

)u ([a, b]× [a, b] , L (R,R′′)).
If A, A′ and B belong to BV +

b ([a, b] ,R), then α ∈ C̃σ×
(
BV +

b

)u ( [a, b]×
[a, b] ,R). By the analogue of Theorem 3.10 for R2 ([a, b] ,R) (see Re-
marks 3.2 and 3.3), it follows that given g ∈ K ([a, b] ,R) and functions
A,A′, B ∈ BV +

b ([a, b] ,R), then either (25) has a unique solution xf = xg ∈
R2 ([a, b] ,R) given by

xf (t) = f (t)−
∫

[a,b]
φ (t, s) f (s) ds, t ∈ [a, b] ,

with unique kernel φ ∈ C̃σ×
(
BV +

b

)u ([a, b]× [a, b] ,R), or the corresponding
homogeneous equation has non-trivial solutions. In this case, (25) has a
solution (not necessarily unique) if and only if∫

[a,b]

[∫
[a,b]

α (t, s) f (s) ds

]
dz (t) = 0,

for every solution z ∈ Ca ([a, b] ,R) of the equation

z (s)−
∫

[a,s]

[∫
[a,b]

α (t, s)∗ dz (t)

]
ds = 0, s ∈ [a, b] .

All proofs presented here are borrowed from [5].
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