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ON THE STATIONARY FLOW OF
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Abstract. We consider the stationary flow of a heat conducting Power
Law shear thinning fluid in a bounded domain in R2. We present an
elementary proof of existence of at least one weak solution.

1. Introduction

Various mathematical aspects of the flow of a heat conducting incom-
pressible nonNewtonian fluid was studied recently by many author ([2], [3],
[4], [5]). A considerable attention was paid to the flow of a very important
class of nonNewtonian fluids called Power Law fluids.

The general governing system of equations for the flow of heat conducting
incompressible fluids consists of the following equations:

div u = 0, (1.1)

ρ
∂ui
∂t

= −ρuj
∂ui
∂xj

+ fiρ+ div Ti i = 1, 2, . . . , d, (1.2)

ρ
∂θ

∂t
= −ρuj

∂θ

∂xj
+
∂ui
∂xj

Tij − div (−K∇θ). (1.3)
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Here u = (u1, u2, . . . , ud) is the velocity of the fluid, θ is the temperature,
Ti is the i-th column of the stress tensor T , f = (f1, f2, . . . , fd) represents
external forces, K is the thermal conductivity and d is the space dimension.
In special case of the Power Law fluids the stress tensor is of the form

Tij = k(θ)|e(u)|r−2eij(u)− δijp, (1.4)

where k(θ) is a function of temperature, δ is the Kronecker’s symbol and
e(u) is a matrix defined by

eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

The parameter r is a real number bigger than 1. If 1 < r < 2 then the fluid
is shear thinning. If r = 2 the fluid is Newtonian and if r > 2 we have the
case of the shear thickening fluid.

In this paper we consider the stationary flow of incompressible Power Law
shear thinning fluid in a 2-dimensional bounded domain Ω. For simplicity
we set ρ = K = 1. Then the system (1.1)–(1.3) takes the form:

div u = 0 in Ω, (1.5)

− ∂

∂xj

(
k(θ)|e(u)|r−2eij(u)

)
− ∂p

∂xi
+ uj

∂ui
∂xj

= fi (i = 1, 2)

in Ω, (1.6)

−4θ + uj
∂θ

∂xj
=
∂ui
∂xj

(k(θ)|e(u)|r−2eij(u)− δijp) in Ω, (1.7)

u|∂Ω = u0 θ|∂Ω = θ0. (1.8)

The existence of solutions for this system with nonhomogeneous Dirichlet
boundary conditions was proved in [4]. In a special case of this system
for 1 < r < 2 and with homogeneous boundary conditions we prove the
existence of solutions in a more elementary way. We also get slightly better
regularity of temperature since our solution belongs not only to each of the
Sobolev spaces W 1,s(Ω), 1 ≤ s < 2, but also to Sobolev space H1(Ω).

The uniqueness of solutions for the system (1.5)–(1.8) remains an open
problem. Only for the system without a convection term in dynamical
equation the uniqueness of solutions was proved in [2].

2. Notation

In this paper we use the following notation:
Ω – an open bounded set of a class C2, Ω ⊂ R2

Lq – the usual Lebesgue’s space Lq(Ω), with the standard norm denoted
by | · |q
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W 1,r
0 – closure of the set of smooth functions with compact support in Ω

(denoted by C∞0 (Ω)) in the norm

||u||r =
(∫

Ω

|u|r + |∇u|rdx
)1/r

Ṽ = {u ∈ C∞0 (Ω)2 : u = (u1, u2), div u = 0 in Ω}
V 1,r = closure of Ṽ in W 1,r

0 .

3. Setting of the problem

In this section we define a weak form of the system (1.5)–(1.7) with the
homogeneous boundary conditions. Multiplying the i-th equation of (1.6)
by smooth function φi ∈ C∞0 , i = 1, 2, div (φ1, φ2) = 0 in Ω we obtain after
adding equations and integration by parts:∫

Ω

k(θ)|e(u)|r−2eij(u)eij(φ)−
∫
Ω

∂p

∂xi
φi +

∫
Ω

uj
∂ui
∂xj

φi =
∫
Ω

fi · φi

i = 1, 2. (3.1)

Similarly, for (1.7) and ξ ∈ C∞0 (Ω) we obtain:∫
Ω

∇θ · ∇ξ +
∫

Ω
uj

∂θ

∂xj
ξ =

∫
Ω

∂ui
∂xj

k(θ)|e(u)|r−2eij(u)ξ

−
∫
Ω

∂ui
∂xj

δijpξ. (3.2)

Since the first term on the right is equal to
∫

Ω k(θ)|e(u)|rξ and the second
term vanishes we have:∫

Ω

∇θ · ∇ξ +
∫
Ω

uj
∂θ

∂xj
ξ =

∫
Ω

k(θ)|e(u)|rξ. (3.3)

The term k(θ)|e(u)|r naturally belongs to L1, when k is a bounded function
and u belongs to Sobolev space W 1,r. However, using again the equation
of dynamics, we get more convenient expression for this term. Multiplying
the i-th equation of (1.6) by ui · ξ, adding equations and integrating over Ω
we get: ∫

Ω

k(θ)|e(u)|rξ =
∫
Ω

(f · u)ξ −
∫
Ω

uj
∂ui
∂xj

uiξ −
∫
Ω

pu · ∇ξ

−
∫
Ω

k(θ)|e(u)|r−2eij(u) · ∂ξ
∂xj

ui. (3.4)
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Finally, the weak form of (1.7), which we shall use is (cf. [5]):∫
Ω

∇θ · ∇ξ +
∫
Ω

uj
∂θ

∂xj
ξ =

∫
Ω

(f · u)ξ −
∫
Ω

uj
∂ui
∂xj

uiξ −
∫
Ω

pu · ∇ξ

−
∫
Ω

k(θ)|e(u)|r−2eij(u) · ∂ξ
∂xj

ui. (3.5)

Definition 3.1. We call a pair of functions (u, θ) ∈ V 1,r × H1
0 a weak

solution of (1.5)–(1.8) with u0 = θ0 = 0 if (3.1) holds for all φ ∈ V 1,r and
(3.5) holds for all ξ ∈ H1

0 .

The aim of this paper is to prove

Theorem 3.1. Let Ω ⊂ R2 be a bounded set of class C2. If r ∈ (3/2, 2),
the function k(θ) is positive, bounded and separated from 0:

k(x) ≥ k1 > 0 ∀x ∈ R (3.6)

and
f ∈ L2r/(3r−2)+ε

for some ε > 0, then there exists a weak solution of the system (1.5)–(1.7)
with homogenous boundary condition in the sense of Definition 3.1.

4. Auxiliary results

Below we state some lemmas which we will need in the proof of the main
theorem.

Lemma 4.1 ([8]). For u,w, s ∈ V and

b(u,w, s) =
∫
Ω

uj
∂wi
∂xj

si

we have: b(u,w, s) = −b(u, s, w).

Lemma 4.2 ([7]). For x, y ∈ Rn the following inequality holds:

(|x|r−2x− |y|r−2y) · (x− y) ≥ |x− y|2

(|x|+ |y|)2−r for 1 < r < 2.
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Lemma 4.3. The expression

||u||∗ = (
∫
Ω

|e(u)|r)1/r

is a norm in V 1,r equivalent to the standard norm in V 1,r, introduced above.

Lemma 4.4. For r > 3/2 we have compact imbedding W 1,r in L2r/(r−1)+ε

for some ε > 0.

5. The proof of existence

We start with the definition of an operator K : V 1,r ×H1
0 → V 1,r ×H1

0 .

Definition 5.1. For the operator K : V 1,r ×H1
0 → V 1,r ×H1

0 we have

K(u, θ) = (u∗, θ∗)

if and only if the following equalities hold:∫
Ω

k(θ)|e(u∗)|r−2eij(u∗)eij(φi) +
∫
Ω

uj
∂u∗i
∂xj

φi =
∫
Ω

fi · φi

i = 1, 2 (5.1)

for all φ in V 1,r and∫
Ω

∇θ∗ · ∇ξ +
∫
Ω

u∗j
∂θ∗

∂xj
ξ =

∫
Ω

f · u∗ξ −
∫
Ω

u∗j
∂u∗i
∂xj

u∗i ξ −
∫
Ω

pu∗ · ∇ξ

−
∫
Ω

k(θ)|e(u∗)|r−2eij(u∗) ·
∂ξ

∂xj
u∗i (5.2)

for all ξ ∈ H1
0 , where p is the pressure associated with equation (5.1).

Remark 5.1. In the equation (5.2) we need to know the corresponding
pressure function p. This function is a unique (up to a constant) solution
of (1.6) on Ω. Moreover, p ∈ Lr/(r−1) and the norm |p|r/(r−1) is bounded by
the norm of

− ∂

∂xj

(
k(θ)|e(u)|r−2eij(u)

)
+ uj

∂ui
∂xj
− fi

in the dual space (V 1,r)∗. (For more details see [8] and [4].)

Lemma 5.1. The operator K defined above is well defined.



146 W. SADOWSKI

Proof. The existence of a unique solution u∗ to the equation (5.1) follows
from Browder-Minty theorem. Indeed, the operator A defined by

(A(u∗), φ) =
∫
Ω

k(θ)|e(u∗)|r−2eij(u∗)eij(φ) +
∫
Ω

uj
∂u∗i
∂xj

φ,

where u is given, is bounded, strictly monotonous, coercive and hemicon-
tinuous. (For more details see [6].)

Now, we need to prove existence of a unique solution to the equation
(5.2). We will use Lax-Milgram lemma. It is easy to see that for given u∗

the left hand side of (5.2) defines the form

C(θ, ξ) =
∫
Ω

∇θ · ∇ξ +
∫
Ω

u∗ · ∇θξ,

which is coercive, bilinear and continuous on H1
0 ×H1

0 . All we need to prove
is that the linear operator

F (ξ) =
∫
Ω

(f ·u∗)ξ−
∫
Ω

u∗j
∂u∗i
∂xj

u∗i ξ−
∫
Ω

pu∗·∇ξ−
∫
Ω

k(θ)|e(u∗)|r−2eij(u∗)·
∂ξ

∂xj
u∗i

is continuous on H1
0 . Using Lemmas 4.3, 4.4, Hölder’s inequality and the

Sobolev imbedding theorem (cf. [1]) we obtain the following estimates (here
we use the assumption on Ω being two dimensional):∫

Ω

(f · u∗)ξ ≤ |f |α · |u∗|2r/(2−r) · |ξ|q ≤ C||u∗||r · |f |α · ||ξ||2,

where α = 2r/(3r − 2) + δ, δ > 0 and q satisfies 1/q+ 1/α+ (2− r)/2r = 1,∫
Ω

u∗j
∂u∗i
∂xj

u∗i ξ ≤ |u∗|2β · |∇u∗|r|ξ|γ ≤ C||u∗||3r · ||ξ||2,

where β = 2r/(r − 1) + ε, ε > 0 and γ satisfies 1/β + 1/γ + 1/r = 1,∫
Ω

p · u∗ · ∇ξ ≤ |p|r/(r−1) · |u∗|2r/(r−1) · |∇ξ|2 ≤ C|p|r/(r−1) · ||u∗||r · ||ξ||2,∫
Ω

k(θ)|e(u∗)|r−2eij(u∗) ·
∂ξ

∂xj
u∗i ≤ C0|e(u∗)|r−1

r · |u∗|2r/(r−1) · |∇ξ|2

≤ C||u∗||rr||ξ||2.
Then we have:

|F (ξ)| ≤ C(||u∗||r, |p|r/(r−1),Ω, |f |α) · ||ξ||2. (5.3)

This finishes the proof.



ON THE STATIONARY FLOW OF THE POWER LAW FLUID IN 2D 147

Lemma 5.2. There exists a closed ball B = B(0, R) centered at zero and
of radius R in V 1,r ×H1

0 such that operator K maps B into itself.

Proof. Setting φ = u∗ in (5.1) we obtain:∫
Ω

k(θ)|e(u∗)|r +
∫
Ω

uj
∂u∗i
∂xj

u∗i =
∫
Ω

fi · u∗i .

According to lemma 4.1 the second term in equation above vanishes. More-
over, using lemma 4.3 and assumption that k(·) is separated from zero we
obtain:

k1C||u∗||rr ≤ |f |∗||u∗||r
where |f |∗ is the norm of function f in the dual space (V 1,r)∗.

Then we have:
||u∗||r ≤ C1

where C1 is a constant depending only on Ω, the norm |f |∗ and the constant
k1 which separates function k from zero. Now setting ξ = θ∗ in (5.2) we
easily obtain:

||θ∗||22 ≤ |F (θ∗)|

and according to (5.3) we have:

||θ∗||2 ≤ C2,

where C2 depends on the norms of ||u∗||r, p and f and on Ω. From this,
the bound for ||u∗||r and the Remark 5.1 we obtain that the solutions θ∗ of
(5.2) are also bounded by some constant C(Ω, |f |∗, k1).

Lemma 5.3. The operator K is weakly continuous in V 1,r ×H1
0 .

Proof. Let um ⇀ u weakly in V 1,r and θm ⇀ θ weakly in H1
0 . We need

to show that u∗m ⇀ u∗ weakly in V 1,r and θ∗m ⇀ θ∗ weakly in H1
0 , where

K(um, θm) = (u∗m, θ
∗
m) and K(u, θ) = (u∗, θ∗). Observe that since u∗m is

bounded in V 1,r it contains a subsequence weakly convergent to some u∗+ ∈
V 1,r. We will show that u∗+ = u∗ following the idea presented in [5]. First,
we set φ = u∗m − u∗+ in (5.1) with u∗ replaced by u∗m and then we subtract∫

Ω k(θm)|e(u∗+)|r−2eij(u∗+)eij(u∗m − u∗+) from both sides to obtain∫
Ω

k(θm)(|e(u∗m)|r−2eij(u∗m)− |e(u∗+)|r−2eij(u∗+))eij(u∗m − u∗+)
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= −
∫
Ω

(um)j
∂(u∗m)i
∂xj

((u∗m)i − (u∗+)i) +
∫
Ω

f · (u∗m − u∗+)

−
∫
Ω

k(θm)|e(u∗+)|r−2eij(u∗+)eij(u∗m − u∗+). (5.4)

Due to Lemma 4.2 and (3.6) the left hand side of (5.4) is not less than
k1 C1 ||u∗m − u∗+||r (for more details see [3]). We will show that the right
hand side of (5.4) tends to zero as m → ∞. We have, eventually for a
subsequence, ∫

Ω

(um)j
∂(u∗m)i
∂xj

((u∗m)i − (u∗+)i)

≤ |um|2r/(r−1) · ||u∗m||r · |u∗m − u∗+|2r/(r−1) → 0 (5.5)

since ||u∗m||r is bounded (Lemma 5.2) and ||um||r is bounded too (because
of weak convergence of um) and, taking into account that Ω is a set on the
plane and 3/2 < r < 2, it follows from the Rellich-Kondrachov theorem that
we can choose a subsequence strongly convergent in L2r/(r−1). Moreover,
from the weak convergence of u∗m ⇀ u∗+ we get∫

Ω

f · (u∗m − u∗+)→ 0. (5.6)

To show that also the third term on the right hand side of (5.4) tends to
zero, we split it into three terms below and we show that:∫

Ω

[k(θm)− k(θ)]|e(u∗+)|r−2eij(u∗+)eij(u∗m)→ 0, (5.7)

∫
Ω

k(θ)|e(u∗+)|r−2eij(u∗+)eij(u∗m − u∗+)→ 0, (5.8)

∫
Ω

[k(θ)− k(θm)]|e(u∗+)|r → 0. (5.9)

To obtain the convergence (5.7) we observe that θm → θ almost everywhere
for a subsequence. Indeed, the functions θm are bounded in H1

0 and it
follows from the Rellich-Kondrachov theorem that there exist a subsequence
strongly convergent in L2 and, eventually for another subsequence, we have
convergence a.e. Since k is continuous we have k(θm)→ k(θ) a.e. Now, using
Lebesgue’s dominated convergence theorem, we get that k(θm)|e(u∗)|r−1

is, eventually for a subsequence, strongly convergent in Lr/(r−1) and (5.7)
follows from Hölder’s inequality. The convergence in (5.8) is due to the weak
convergence of u∗m. Finally, (5.9) follows from a.e. convergence of k(θm) and
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Lebesgue’s dominated convergence theorem. We showed that the right hand
side of (5.4) tends to zero as m tends to infinity. Since the left hand side is
not less than k1 C1 ||u∗m − u∗+||r we obtain that for a subsequence:

u∗m → u∗+ strongly in V 1,r. (5.10)

The strong convergence (5.10) and the weak convergence of um allow us
to pass to the limit in (5.1) with u∗ replaced by u∗m and conclude that u∗+
satisfies the equation∫

Ω

k(θ)|e(u∗+)|r−2eij(u∗+)eij(φi) +
∫
Ω

uj
∂(u∗+)i
∂xj

φi =
∫
Ω

fi · φi

i = 1, 2. (5.11)

Since this solution is unique, we get u∗ = u∗+.
Now we will show that θ∗m ⇀ θ∗ in H1

0 . Since θ∗m is bounded, there exists
a subsequence for which θ∗m ⇀ θ∗+, weakly for some θ∗+ ∈ H1

0 . We need to
show that θ∗+ = θ∗, where θ∗ is a solution to (5.2). For fixed ξ ∈ H1

0 we
have, due to the strong convergence of u∗m in V 1,r

∫
Ω

(f · u∗m)ξ →
∫
Ω

(f · u∗)ξ, (5.12)

∫
Ω

(u∗m)j
∂(um)∗i
∂xj

(u∗m)iξ →
∫
Ω

(u∗)j
∂u∗i
∂xj

(u∗)iξ. (5.13)

Moreover, from the strong convergence of u∗m in V 1,r and the weak conver-
gence of pm in Lr/(r−1)(Ω) (see Remark 5.1) it follows that∫

Ω

pmu
∗
m · ∇ξ →

∫
pu∗∇ξ. (5.14)

Finally, due to Lebesgue’s dominated convergence theorem and almost ev-
erywhere convergence for a subsequence of u∗m and k(θm) we have∫

Ω

k(θm)|e(u∗m)|r−2eij(u∗m) · ∂ξ
∂xj

(u∗m)i

→
∫
Ω

k(θ)|e(u∗)|r−2eij(u∗) ·
∂ξ

∂xj
u∗i (5.15)
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From (5.12)–(5.15), the strong convergence of u∗m in V 1,r and the weak
convergence of θ∗m in H1

0 follows that we can pass to the limit in the equation∫
Ω

∇θ∗m · ∇ξ +
∫
Ω

(um)∗j
∂θ∗m
∂xj

ξ =
∫
Ω

f · u∗mξ −
∫
Ω

(um)∗j
∂(um)∗i
∂xj

(um)∗i ξ

−
∫
Ω

pmu
∗
m · ∇ξ −

∫
Ω

k(θm)|e(u∗m)|r−2eij(u∗m) · ∂ξ
∂xj

(um)∗i

and conclude that θ∗+ is a solution of the equation (5.2). Since this solution
is unique we get θ∗+ = θ∗.

Summarizing the results of last three lemmas we obtain — due to Schauder-
Tichonov theorem — the Theorem 3.1.
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