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Abstract. In this paper we consider an oceanic domain in R3, in which
there exists, at initial time, a current U0, a pressure p0 and a density
ρ0. The perturbation U , p and ρ of the velocity, the pressure and the
density are induced by a perturbation of the mean windstress. The
equations are of Navier-Stokes type for the velocity and pressure, of
transport-diffusion type for the density. They are linearized around a
given mean circulation and modified by the physical assumptions includ-
ing the Boussinesq approximation and the Hydrostatic approximation
with vertical viscosity. The existence and uniqueness of the solution for
the variational problem are studied for the three-dimensional problem,
and for the two-dimensional cyclic problem derived by assuming a si-
nusoidal x-dependence for the perturbation of mean flow. The latter
corresponds to a modelization of tropical instability waves which are
illustrated by El Nino phenomenon.
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. We want to choose the value of the surface pressure P as the observa-
tion of the method of control. To define that quantity, we have proved
the H2-regularity of the perturbation (u, ρ) and then the L2-regularity
of the surface pressure P . This result is valid in a domain with corners.
It is proved by means of an extension method, with even-odd reflection,
provided the perturbation of the wind-stress is sufficiently regular and
satisfies compatibility relations. We then develop a method of control
in order to calculate the current corresponding to the observed sea level
in a fluid domain and during a time T. The variability of the surface
pressure P , deduced from altimetric measurements, constitues the ob-
servation. The control is the variability of wind-stress f , which acts as
to forcing of the perturbation. The cost function measures the distance
between the observed and computed surface pressure. We prove the
existence and uniqueness of the optimal control, which is characterized
by a set of equations including the direct problem and the adjoint prob-
lem. These results are valid for the three-dimensional problem and the
two-dimensional cyclic problem.

1. Introduction

The oceanic phenomenon that we want to modelize occurs in the tropical
Atlantic and Pacific oceans. The oceanic circulation there is characterized
by steady zonal currents and by long waves propagating westward along
the equator, driven by the variability of the wind-stress and superimposed
to the mean currents. The equatorial waves can be connected with strong
vertical velocities and then induce “upwellings” or “downwellings”. These
phenomena modify the properties of the sea water near the surface: tem-
perature, plankton etc., and are therefore of great importance for climate,
fishing activities etc. These equatorial waves have been evidenced from in
situ observations, and more recently from altimetric measurements [3], [5],
[6], [7], [8], [10]. Numerical simulations have also carried out in order to an-
alyze the process of wave generation. Such numerical models are described
in [3], [4], [11], [12].

In this paper, we are going to study the mathematical properties of the
problem related to the modelization of equatorial waves. The whole current
can be considered as the sum of two terms: the mean current which is
known for each tropical season, and a perturbation term corresponding to
the waves.

We consider an oceanic domain Ω extending on both sides of the equator
(100S − 100N), and of constant depth H. The curvature of the earth is
neglected. The vertical extension of Ω (−H ≤ z ≤ 0) corresponds to a
part of the physical domain. We assume that for depths greater than H,
the variability is negligible. The perturbation of the current is made of
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zonal propagating waves. So, we can choose the zonal extension of Ω as
the greatest wavelength, and impose periodic conditions on the eastern and
western boundaries.

The equations of motion in an oceanic domain are derived from Navier-
Stokes system but take into account oceanographical assumptions such as
Hydrostatic approximation with vertical viscosity, i.e. (1.2) and Boussinesq
approximation, i.e. the density variations are neglected except in the terms
of gravity acceleration. Equations and boundary conditions are written in
order to fit with physical features and then differ from the classical Navier-
Stokes case.

The equations satisfied by total velocity U = (u, w) = (u, v, w), density
ρ and pressure p are:

∂U

∂t
+ (U.∇3)U + F ∧ U − div3(ν1 ∇3U) +

1
ρ
∇3p = G,

∂ρ

∂t
+ (U.∇3)ρ− div3(ν2 ∇3ρ) = 0, (1.1)

div3(U) = 0.

(x,y,z) are the cartesian coordinates: x, y are measured in the horizontal
plane of the undisturbed sea-surface (x towards the east, y towards the
north) and z is vertically ascendant. F = (0, 0, 2ω sinφ) is the Coriolis
force, ω the rotation rate of earth, φ the latitude. G = (0, 0,−g) is the

gravity force. ∇3 = (
∂

∂x
,
∂

∂y
,
∂

∂z
), div3 U = ∇3.U .

Turbulence is modelized by the dissipative terms. Observation of turbu-
lent flows leads distinguish between horizontal and vertical mixing: ν1h and
ν2h (resp. ν1v and ν2v) denote the coefficients of horizontal (resp. vertical)
eddy viscosity and diffusivity. According to the parametrization described
in [23], [24] ν1v and ν2v are variable, positive and bounded functions. They
are deduced from the given mean circulation. ν1h and ν2h are constant and
positive.

We are now going to simplify equations (1.1). It is known that the dif-
ferences of the density of the sea water are significant only in the term of
buoyancy and in the equation of state. Density ρ appearing in the right
hand term has to satisfy the second part of equation (1.1). On the other
hand, density will be assumed to be constant and equal to a mean value
ρmoy in the equations describing the horizontal motion. This assumption is
known as Boussinesq approximation. The horizontal scale is much bigger
than the vertical one. Moreover the viscosity will play an important role in
the dynamics of the ocean. Therefore, we can replace the equation describ-
ing the vertical motion by the following equations called by the Hydrostatic
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approximation with vertical viscosity [20]:

− ν1h∆w − ∂

∂z
(ν1v

∂w

∂z
) +

1
ρmoy

∂p

∂z
+

ρ

ρmoy
g = 0. (1.2)

Applying these physical assumptions to (1.1), we obtain the following equa-
tions:
∂u
∂t

+ (u.∇)u + w
∂u
∂z

+ F ∧2 u− ν1h∆u− ∂

∂z
(ν1v

∂u
∂z

) +
1

ρmoy
∇p = 0,

− ν1h∆w − ∂

∂z
(ν1v

∂w

∂z
) +

1
ρmoy

∂p

∂z
+

ρ

ρmoy
g = 0,

∂ρ

∂t
+ (u.∇)ρ+ w

∂ρ

∂z
− ν2h∆ρ− ∂

∂z
(ν2v

∂ρ

∂z
) = 0,

div(u) +
∂w

∂z
= 0,

(1.3)

with F ∧2 u = F ∧ (u, 0).
We now split up the circulation (u, w, ρ, p) into a given mean value

(u0, w0, ρ0, p0) and a variability (u′, w′, ρ′, p′) that will be computed by the
model. This expansion is justified in tropical oceans: the steady mean cir-
culation (u0, w0, ρ0, p0) is known for each tropical season; the variability
(u′, w′, ρ′, p′) is made of westward propagating waves. (u0, w0, ρ0, p0) has to
satisfy steady state equations (1.3).

The equations satisfied by the variability (u′, w′, ρ′, p′) can be deduced
from (1.3). They can be written:

∂u′

∂t
+ (u′.∇)u′ + w′

∂u′

∂z
+ (u0.∇)u′ + w0

∂u′

∂z
+ (u′.∇)u0 + w′

∂u0

∂z

+ F ∧2 u′ − ν1h∆u′ − ∂

∂z
(ν1v

∂u′

∂z
) +

1
ρmoy

∇p′ = 0,

− ν1h∆w′ − ∂

∂z
(ν1v

∂w′

∂z
) +

1
ρmoy

∂p′

∂z
+

ρ′

ρmoy
g = 0,

∂ρ′

∂t
+ (u′.∇)ρ′ + w′

∂ρ′

∂z
+ (u′.∇)ρ0 + w′

∂ρ0

∂z
+ (u0.∇)ρ′

+ w0
∂ρ′

∂z
− ν2h∆ρ′ − ∂

∂z
(ν2v

∂ρ′

∂z
) = 0,

div(u′) +
∂w′

∂z
= 0.

(1.4)

Nota bene: notation “ ′ ” used for the perturbation of the mean flow will
now be omitted.

The oceanic domain Ω can be defined as Ω = ]0, Lx[×]−Ly, Ly[×]−H, 0[ .
Γ denotes its boundary: Γ = Γ0 ∪ Γ5 ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 where Γ0 denotes
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the surface (z = 0), Γ5 the bottom (z = −H), Γ1 and Γ2 the eastern and
western boundaries, Γ3 and Γ4 the northern and southern boundaries.

We note that the vertical extension −H ≤ z ≤ 0 of the domain Ω does not
correspond to the physical ocean but only to the layer where the variability
is computed. We assume that for depths greater than H the perturbation
of the mean flow is negligible. The perturbation is not computed in the
thin surface layer 0 ≤ z ≤ ξ, where z = ξ is the free sea surface. To take
into account the phenomena we want to describe we set mixed boundary
conditions:

• the flow is periodic in the x−direction :
u |Γ1= u |Γ2 , w |Γ1= w |Γ2 and ρ |Γ1= ρ |Γ2 ,
• on the northern and southern boundaries we impose a sliding
condition for the flow and an homogeneous Dirichlet condition
for the perturbation of the density :

v = ρ = 0,
∂u

∂y
= 0 and

∂w

∂y
= 0 on Γ3 and Γ4,

• the perturbation vanishes at z = −H :
u = 0, w = 0 and ρ = 0 on Γ5,
• the perturbation is driven by the perturbation of the wind−stress f

w = 0,
∂u

∂z
=

f1

ν1v
,
∂v

∂z
=

f2

ν1v
and

∂ρ

∂z
= 0 on Γ0,

(1.5)

with f = (f1, f2), u = (u, v).
We assume that, at initial time t = 0, the mean circulation is not dis-

turbed. Therefore the initial condition is:

u(t = 0) = 0, ρ(t = 0) = 0. (1.6)

The equations (1.4) are not of a Cauchy-Kovalevsky type with respect to all
variables because of the continuity equation and of the Hydrostatic equation
with vertical viscosity (1.2). The method proposed by Lions-Temam-Wang
in [19], [20] is the integration of these two diagnostic equations with respect
to the vertical variable, and then we obtain another formulation of the prim-
itive equations, which is an three dimensional evolution system. Therefore
we can used Faedo-Galerkin method to solve the weak formulations. By in-
tegrating the continuity equation with respect to z and taking the boundary
conditions for w into account, we obtain

w(x, y, z; t) = W (u)(x, y, z; t) = −div(
∫ z

−H
u(z′)dz′),

− div(
∫ 0

−H
u(z′)dz′) = 0 (1.7)
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By integrating the Hydrostatic equation with vertical viscosity in (1.4), we
obtain:

p

ρmoy
=

P

ρmoy
+

g

ρmoy

∫ 0

z
ρ(z′)dz′ +

∫ 0

z
L(u)(z′)dz′ (1.8)

where

L(u) = −ν1h∆W (u)− ∂

∂z
(ν1v

∂W (u)
∂z

)

and P is the pressure of the sea water on the surface of the ocean. Then by
using (1.7), (1.8) and after linearization around the steady mean solution
we obtain the following reformulation of equations (1.4):

∂u
∂t

+ (u0.∇)u + w0
∂u
∂z

+ (u.∇)u0 +W (u)
∂u0

∂z
+ F ∧2 u

− ν1h∆u− ∂

∂z
(ν1v

∂u
∂z

) +
1

ρmoy
∇P +

g

ρmoy
∇R(ρ) +∇L(u) = 0,

∂ρ

∂t
+ (u.∇)ρ0 +W (u)

∂ρ0

∂z
+ (u0.∇)ρ+ w0

∂ρ

∂z

− ν2h∆ρ− ∂

∂z
(ν2v

∂ρ

∂z
) = 0,

div(
∫ 0

−H
u(z′)dz′) = 0

(1.9)

where R(ρ) =
∫ 0
z ρ(z′)dz′ and L(u) =

∫ 0
z L(u)(z′)dz′.

Remark 1.1. The above system is three dimensional, but the unknown
function P is only a function of x, y and time t.

The problem obtained is studied and we prove the existence and the
uniqueness of the perturbation of the mean circulation. The surface-pressure
associated with that solution is not sufficiently regular to use that as the
observation of the method of the control. We therefore prove a regularity
result for the perturbation. This result is valid in a domain Ω with corners.
The presence of corners, prevents us from applying a standard theorem of
regularity. Next we develop a control method in order to compute the vari-
ability of the circulation in an oceanic domain from satellite measurements
which are obviously surface observations. Altimetric measurements give the
distance between the satellite and the sea surface. It is now possible to ex-
tract from these data the sea level variability with a precision in order of
centimeters. The observation for the control method is the variability of the
pressure, which is the level of the undisturbed sea surface. This data can
be deduce from the variability of free sea surface, given by altimetric mea-
surements (the free sea surface is unknown, only its perturbation is given
by altimetry). In order to obtain the relationship between pressure and
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free sea surface, we have to integrate the equation of hydrostatic pressure,
with respect to z, between the undisturbed sea surface and to neglect the
variability of the atmospheric pressure at the sea surface.

The perturbation being made of zonally propagating waves, we construct
a cyclic model by assuming the following x-dependence: for each pertur-
bated real-function (vector or scalar) C, we denote by C̃ the complex-
function independant of x such that:

C(x, y, z; t) = eimxC̃(y, z; t).

The wavelength λ = 2π/m will be fixed for each numerical run. We thus
obtain a process model focusing on “instability waves” which are charac-
terized by eddies of a time-space scale of 30 days-1000 kms propagating
westward along the equator. The model doesn’t include the reflection on
coasts which gives rise to eastward propagating waves of less importance
in the energetic balance of tropical oceans. According to physical features,
we neglect the x-dependence of (u0, w0, ρ0): the mean circulation is given
so that u0 = u0(y, z), w0 = w0(y, z), ρ0 = ρ0(y, z). Since ν1v and ν2v are
depending on the given mean (u0, w0, ρ0), ν1v and ν2v are then supposed
to vary with respect to y and z. The periodic method reduces the initial
three-dimensional problem to a two-dimensional one.

According to these assumptions, the equations satisfied by the perturba-
tion are the following (for each fixed value of the wave number m):

∂ũ
∂t

+ (u0.∇m)ũ + w0
∂ũ
∂z

+ (ũ.∇0)u0 +Wm(ũ)
∂u0

∂z
+ F ∧2 ũ− ν1h∆mũ

− ∂

∂z
(ν1v

∂ũ
∂z

) +
1

ρmoy
∇mP̃ +

g

ρmoy
∇mR(ρ̃) +∇mLm(ũ) = 0,

∂ρ̃

∂t
+ (ũ.∇0)ρ0 +Wm(ũ)

∂ρ0

∂z
+ (u0.∇m)ρ̃+ w0

∂ρ̃

∂z
− ν2h∆mρ̃

− ∂

∂z
(ν2v

∂ρ̃

∂z
) = 0,

divm(
∫ 0

−H
ũ(z′)dz′) = 0,

(1.10)

where

Wm(ũ) = −
∫ z

−H
divm(ũ)dz′,

Lm(ũ) =
∫ 0

z
Lm(ũ)(z′)dz′,

Lm(ũ) = −ν1h∆mWm(ũ)− ∂

∂z
(ν1v

∂Wm(ũ)
∂z

),
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∇m = (im,
∂

∂y
), divm ũ = ∇m.ũ = imũ+

∂ṽ

∂y
, ∆m = −m2 +

∂2

∂y2 ,

∇0 = (0,
∂

∂y
).

Nota bene: notation “ ˜ ” used for the perturbation of the mean flow
will now be omitted. The cyclic model uses complex variables: u ∈ C2,
ρ ∈ C, P ∈ C. The physically significant perturbation corresponding to
each complex function is given by its real part.

Problem (1.10) is posed in ω×]0, T [ with ω =]− Ly, Ly[×]−H, 0[⊂ R2.
Set γ = γ0∪γ5∪γ3∪γ4 the boundary of ω, γ0 denotes the surface (z = 0),

γ5 the bottom (z = −H), γ3 and γ4 the northern and southern boundaries.
The boundary conditions deduced from (1.5) are the following:

• v = ρ = 0,
∂u

∂y
= 0 and

∂Wm(u)
∂y

= 0 on γ3 and γ4,

• u = 0, Wm(u) = 0 and ρ = 0 on γ5,

• Wm(u) = 0,
∂u

∂z
=

f1

ν1v
,
∂v

∂z
=

f2

ν1v
and

∂ρ

∂z
= 0 on γ0,

(1.11)

The variability of the pressure on Γ0 (resp. γ0), deduced from altimet-
ric data, constitues the observation. The variability of the windstress f
acts as the forcing of the perturbation and is unknown. We take f as the
control, (u(f), ρ(f), P (f)) are the velocity, the density and the surface pres-
sure corresponding to any control f and satisfying problem (1.9), (1.5), (1.6)
(resp. (1.10), (1.11), (1.6)). The optimal control is defined as the windstress
minimizing a given cost function which measures the distance between the
observed pressure and the surface pressure P (f). The pressure observed on
Γ0 (resp. γ0) is the trace of a circulation (urc, ρrc, prc) driven by a wind
frc. The solution (u(f), ρ(f), P (f)) induced by the optimal control f has to
approach the real circulation. The control method then makes it possible
to compute the circulation in all the domain Ω by means of data on a part
of the boundary.

In order to solve the problem of optimal control, we have to consider the
adjoint equations associated to (1.9), (1.5), (1.6) (resp. (1.10), (1.11), (1.6)).
We then apply the control theory introduced by Lions [17]. More recently,
G. I. Marchuk developed the method of adjoint equations in mathemati-
cal physics and performed variational data assimilation in environmental
problems [21], [22]. The classical control problem arising in meteorology or
oceanography is the adjustment of the initial condition in order to veloc-
ity and temperature fields which agree with observation in situ obtain. Our
purpose is quite different since we control by the variability of the windstress
in order to restitute the observed surface pressure deduced from Geosat alti-
metric measurements. So, the control acts as Neumann condition on a part



MATHEMATICAL ANALYSIS AND OPTIMAL CONTROL PROBLEMS 161

of the boundary, the surface pressure is the observed quantity and requires
the use a mixed velocity-pressure formulation. Controls and observations
are thus defined on a part of the boundary. Moreover the nature of the
equations and especially the non-local contraint the third part of (1.9) add
difficulties.

This paper is organized as follows:
Section 2 is devoted to the study of the three dimensional problem (1.9),

(1.5), (1.6), linearized around the mean circulation. We prove the existence
and uniqueness of a perturbation (u, ρ, P ). According to the hydrostatic
approximation with vertical viscosity, this problem is not of classical Navier-
Stokes type. The horizontal velocity is given by a pronostic equation while
the vertical velocity verifies a diagnostatic equation. This type of problem
has been studied by Lions,Temam and Wang [19], [20] but in this paper
the formulation is quite different by advection terms related to the mean
circulation, and by specific boundary conditions. We prove a regularity re-
sult for perturbation (u, ρ, P ). The shape of the oceanic domain Ω, and
especially the presence of corners, prevents us from applying a standard
theorem of regularity. We assume some regularity, in space and time, on
the perturbation of the wind-stress and on the mean flow, and we impose
the compatibility conditions. The regularity result is obtained by means
of an extension method by even-odd reflection introduced in [9]. The reg-
ularity result of this type of problem, in stationnary case with constant
viscosity and diffusivity and a “cylindric-type” domain, has been studied
by Ziane in [26] by using the results obtained by Dauge in [14], [15] and
Grisvard in [16]. Our purpose is different. Firstly we study the perturba-
tion of time-dependant primitive equations in a “cubic-type” domain around
the mean flow (U0, ρ0, p0). The turbulence is modelized by the dissipative
terms. Observation of turbulent flows leads distinguish between horizontal
and vertical mixing. According to the parametrization described in [24], the
vertical viscosity and diffusivity are variables, positives and bounded func-
tions. Consequently different operators and then difficulties are appearing.
Secondly, we impose other boundary conditions (1.5). These mixed bound-
ary conditions are not too restrictive: they are applied not to the total
circulation, but only to its perturbation. Moreover the nature of these con-
ditions permits to use the extension method by even-odd reflexion to obtain
the regularity results. Next we study the problem of control. We prove the
existence and uniqueness of the solution. The optimal control is given as a
function of (u∗, ρ∗, P ∗), the solution of the adjoint problem associated with
the direct problem (1.9), (1.5), (1.6). We thus obtain a set of equations
characterizing the optimal control.

Section 3 is devoted to the study of the two dimensional problem (1.10),
(1.11), (1.6). The plan is the same as in Section 2: we study the properties
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of operators appearing in the weak formulation and then prove the existence
and uniqueness of a solution. As in Section 2 we give sufficient conditions
on the perturbation of the windstress f for to prove the regularity result.
Finally, we study the optimal control problem. In this section operators
are modified by the cyclic asumption: they depend on the wavenumber m
and the functions are complex valued. The main difference between the
present problem and problem studied in [6] is that the equations in [6] are
of Cauchy-Kovalevsky type with respect to all variables.

2. The three dimensional problem

2.1. Variational formulation.

In order to study problem (1.9), we introduce the following functional
spaces:

V0 = {(v, w) ∈ (H1(Ω))3∣∣ div(v) +
∂w

∂z
= 0, (v, w).n = 0 on Γ},

H1 = {v ∈ (L2(Ω))2, (v, 0).n = 0

on Γ0 ∪ Γ3 ∪ Γ4 ∪ Γ5, (v, 0).n
∣∣
Γ1

= −(v, 0).n
∣∣
Γ2
},

W1 = {v ∈ (H1(Ω))2∣∣ W (v) = −
∫ z

−H
div(v)dz′ ∈ H1(Ω),

v = 0 on Γ5, (v, 0).n = 0 on Γ0 ∪ Γ3 ∪ Γ4,v
∣∣
Γ1

= v
∣∣
Γ2
},

V1 = {v ∈ W1
∣∣ ∫ 0

−H
div(v)dz = 0},

H2 = L2(Ω),

V2 = {φ ∈ H1(Ω)
∣∣ φ = 0 on Γ3 ∪ Γ4 ∪ Γ5, φ

∣∣
Γ1

= φ
∣∣
Γ2
},

where, n is the unit outward vector normal to Γ.

Remark 2.1.
1) The semi-norm | . |1,Ω and the norm ‖ . ‖1,Ω defined on H1(Ω) are

equivalent in W1 (resp. V1) and V2. We set ‖ v ‖=| v |1,Ω, ‖ φ ‖=
| φ |1,Ω where | v | and | φ | denotes the norm in L2(Ω); | f |Γ0 and
(f ,v)Γ0 denote the norm and the scalar product in L2(Γ0).

2) W1 (resp. V1) is equipped with the following norm:

‖ u ‖2W=‖ u ‖2 + ‖
∫ z

−H
div(u)dz′ ‖2, ∀u ∈ W1 (resp. ∈ V1),

and V2 is equipped with the norm ‖ φ ‖, ∀φ ∈ V2.
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Lemma 2.1.

(∇L(u),v) = ν1h(∇(
∫ z

−H
div(u)dz′),∇(

∫ z

−H
div(v)dz′))

+ (ν1v div(u), div(v))− (ν1vγ0(div(u)),
∫ 0

−H
div(v)dz),

∀(u,v) ∈ (W1 ∩H2(Ω))2.

Proof.

(∇L(u),v) =
∫

Ω
∇(
∫ 0

z
L(u)dz′).vdΩ.

By using Green’s formula we obtain

(∇L(u),v) = −
∫

Ω
(
∫ 0

z
L(u)dz′) div(v)dΩ +

∫
Γ
(
∫ 0

z
L(u)dz′)(v, 0).ndΓ.

As v is any element in W1, we obtain:

(∇L(u),v) = −
∫

Γ0

(
∫ 0

−H
(div(v)

∫ 0

z
L(u)dz′)dz)dΓ0.

By integrating by part with respect to z, we have

(∇L(u),v) =
∫

Ω
(L(u)

∫ z

−H
div(v)dz′)dΩ.

Since

L(u) = −ν1h∆W (u)− ∂

∂z
(ν1v

∂W (u)
∂z

),

by applying Green’s formula, we obtain

(∇L(u),v) =ν1h(∇(
∫ z

−H
div(u)dz′),∇(

∫ z

−H
div(v)dz′))

+ (ν1v div(u), div(v))− (ν1vγ0(div(u)),
∫ 0

−H
div(v)dz′)Γ0 .

Remark 2.2. If v ∈ V1 we have

(∇L(u),v) =ν1h(∇(
∫ z

−H
div(u)dz′),∇(

∫ z

−H
div(v)dz′))

+ (ν1v div(u), div(v)).
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We now define:

a11(u,v) = ν1h(∇u,∇v) + (ν1v
∂u
∂z
,
∂v
∂z

),

a12(u,v) = ν1h(∇W (u),∇W (v)) + (ν1v div(u), div(v)),

a1(u,v) = a11(u,v) + a12(u,v),

a2(ρ, φ) = ν2h(∇ρ,∇φ) + (ν2v
∂ρ

∂z
,
∂φ

∂z
),

d(u,v) = (F ∧2 u,v),

b1(u,v,w) = ((u.∇)v,w) + (W (u)
∂v
∂z
,w),

b2(u, ρ, φ) = ((u.∇)ρ, φ) + (W (u)
∂ρ

∂z
, φ),

l1(u,v) = b1(u,u0,v) + b1(u0,u,v),

l2(u, ρ, φ) = b2(u, ρ0, φ) + b2(u0, ρ, φ).

Lemma 2.2. Suppose that f ∈ L2(0, T, L2(Γ0)) and that (u, ρ, P ) is a suf-
ficiently regular. Then:

(i) −ν1h(∆u,v)− (
∂

∂z
(ν1v

∂u
∂z

),v) = a11(u,v)− (f , γ0v), ∀v ∈ W1,

(ii) −ν2h(∆ρ, φ)− (
∂

∂z
(ν1v

∂ρ

∂z
), φ) = a2(ρ, φ), ∀φ ∈ V2,

(iii) (∇P,v) = −(P,
∫ 0

−H
div(v)dz)Γ0 , ∀v ∈ W1,

(iv) (∇P,v) = 0, ∀v ∈ V1,

(v) (∇(
∫ 0

z
ρdz′),v) = −(

∫ 0

z
ρdz′, div(v)) = (ρ,

∫ z

−H
div(v)dz′), ∀v ∈ W1

where γ0v denotes the trace of v on Γ0 and (f , γ0v)Γ0 denotes the scalar
product in L2(Γ0), which makes sense if v ∈ W1.

Proof. Results (i) and (ii) are deduced from the definition of the spaces
W1,V1 and V2, and from the boundary conditions satisfied by (u, ρ) on Γ.

(iii) According to Green’s formula and boundary conditions verified by v ∈
W1, we then obtain: (∇P,v) = −(P, div(v)). P is only a function of x and
y we can deduce that:

(∇P,v) = −(P,
∫ 0

−H
div(v)dz′)Γ0 .

(iv) If v ∈ V1, we have
∫ 0
−H div(v)dz′ = 0 and therefore, (∇P,v) = 0.
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(v) According to Green’s formula and boundary conditions verified by v ∈
W1, we then have

(∇(
∫ 0

z
ρdz′),v) = −(

∫ 0

z
ρdz′, div(v)).

By integrating by part with respect to z gives

(∇(
∫ 0

z
ρdz′),v) = (ρ,

∫ z

−H
div(v)dz′).

The initial problem (1.9), (1.5), (1.6) satisfied by the perturbation (u, ρ, P )
of the mean flow admits two weak formulations:

Find (u, ρ) ∈ L2(0, T,V1)× L2(0, T,V2) such that

(
∂u
∂t
,v) + a1(u,v) + l1(u,v) + d(u,v) +

g

ρmoy
(ρ,
∫ z

−H
div(v)dz′)

= (f , γ0v)Γ0 , ∀v ∈ V1,

(
∂ρ

∂t
, φ) + a2(ρ, φ) + l2(u, ρ, φ) = 0, ∀φ ∈ V2,

u(0) = 0, ρ(0) = 0

(2.1)

and

Find (u, ρ, P ) ∈ L2(0, T,W1 ∩H2)× L2(0, T,V2 ∩H2)× L2(0, T, L2(Γ0))
such that

(
∂u
∂t
,v) + a1(u,v) + l1(u,v) + d(u,v) +

g

ρmoy
(ρ,
∫ z

−H
div(v)dz′)

− (ν1vγ0(div(u)),
∫ 0

−H
div(v)dz′)Γ0 −

1
ρmoy

(P,
∫ 0

−H
div(v)dz′)Γ0

= (f , γ0v)Γ0 , ∀v ∈ W1,

(
∂ρ

∂t
, φ) + a2(ρ, φ) + l2(u, ρ, φ) = 0, ∀φ ∈ V2,

(
∫ 0

−H
div(u)dz′, Q)Γ0 = 0, ∀Q ∈ L2(Γ0),

u(0) = 0, ρ(0) = 0.

(2.2)

In the two following propositions we are dealing with some properties of
operators a1, a2, d, l1 and l2.

Proposition 2.1. (i) a1 (resp. a2) is a bilinear continuous and coercive
form on W2

1 (resp. on V2
2 ),

(ii) d is a bilinear continuous form on W2
1 ,
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(iii) ‖W (u) ‖L2(Ω)≤ c ‖ u ‖.

(iv) | g

ρmoy
(ρ,
∫ z

−H
div(v)dz′) |≤ c ‖ ρ ‖L2(Ω)‖ v ‖,

≤ c ‖ v ‖L2(Ω)‖ ρ ‖, ∀(v, ρ) ∈ W1 × V2.

Proof. (i) ν1h and ν2h are constant coefficients, ν1v and ν2v are bounded
functions, therefore the continuity and the coercivity of a1 and a2 are easily
obtained. The constant of coercivity of α1 (resp. α2) is then given by
α1 = min(ν1h,min(ν1v)) (resp. α2 = min(ν2h,min(ν2v))).

(ii) d(u,v) = (F ∧2 u,v), with F = (0, 0, 2ω sin(φ)), then

| d(u,v) |≤ 2ω | u | | v |≤ C ‖ u ‖ ‖ v ‖ .

(iii) Since W (u) = −
∫ z
−H div(u)dz′, we have

‖W (u) ‖2L2(Ω)≤
∫

Ω
(
∫ 0

−H
| div(u) | dz′)2dΩ.

Applying Hölder’s inequality, we obtain

(
∫ 0

−H
| div(u) | dz′)2 ≤ H

∫ 0

−H
| div(u) |2 dz′.

Since Ω = Ω0×]−H, 0[, this implies

‖W (u) ‖2L2(Ω)≤ H
∫

Ω
(
∫ 0

−H
| div(u) |2 dz′)dΩ = H2

∫
Ω
| div(u) |2 dΩ,

and then ‖W (u) ‖L2(Ω)≤ c ‖ u ‖.
(iv) We have

| g

ρmoy
(ρ,
∫ z

−H
div(v)dz′) | ≤ g

ρmoy
‖ ρ ‖L2(Ω) ‖

∫ z

−H
div(v)dz′ ‖L2(Ω)

=
g

ρmoy
‖ ρ ‖L2(Ω)‖W (v) ‖2L2(Ω).

By using (iii) we then obtain

| g

ρmoy
(ρ,
∫ z

−H
div(v)dz′) |≤ c ‖ ρ ‖L2(Ω) ‖ v ‖ .

According to Lemma 2.2, we have

g

ρmoy
(ρ,
∫ z

−H
div(v)dz′) =

g

ρmoy
(∇(

∫ 0

z
ρdz′),v).
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So,

| g

ρmoy
(ρ,
∫ z

−H
div(v)dz′) |≤ g

ρmoy
‖ (∇(

∫ 0

z
ρdz′) ‖L2(Ω) ‖ v ‖L2(Ω),

≤ g

ρmoy
H ‖ ∇ρ ‖L2(Ω) ‖ v ‖L2(Ω),≤ c ‖ ρ ‖ ‖ v ‖L2(Ω) .

Proposition 2.2. If the mean circulation (u0, w0, ρ0) is given such that:

u0, w0, ρ0, ∇u0,
∂u0

∂z
, ∇ρ0 and

∂ρ0

∂z
∈ L∞(Ω), then there exists a positive

constant c0 such that

| b1(u0,u,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω), ∀(u,v) ∈ W2
1 ,

| b2(u0, ρ, φ) |≤ c0 ‖ ρ ‖ ‖ φ ‖L2(Ω), ∀(ρ, φ) ∈ V2
2 ,

| b1(u,u0,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω), ∀(u,v) ∈ W2
1 ,

| b2(u, ρ0, φ) |≤ c0 ‖ u ‖ ‖ φ ‖L2(Ω), ∀(u, φ) ∈ W1 × V2,

| l1(u,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω), ∀(u,v) ∈ W2
1 ,

| l2(u, ρ, φ) |≤ c0(‖ u ‖ + ‖ ρ ‖) ‖ φ ‖L2(Ω), ∀(u, ρ, φ) ∈ W1 × V2
2 .

Proof. We have

b1(u0,u,v) = ((u0∇)u,v) + (w0
∂u
∂z
,v).

| ((u0∇)u,v) |≤
2∑

i,j=1

∫
Ω
| u0i | | ∂iuj | | vj | dΩ.

If u0 ∈ L∞(Ω), there exists a positive constant c0 such that

| ((u0∇)u,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

Since w0 ∈ L∞(Ω), we have:

| (w0
∂u
∂z
,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

We then obtain

| b1(u0,u,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

The same proof is valid for the majoration of | b2(u0, ρ, φ) |.

b1(u,u0,v) = ((u∇)u0,v) + (W (u)
∂u0

∂z
,v).

| ((u0∇)u,v) |≤
2∑

i,j=1

∫
Ω
| ui | | ∂iu0j || vj | dΩ.
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Since ∇u0 ∈ L∞(Ω), we have the majoration:

| ((u∇)u0,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

Since
∂u0

∂z
∈ L∞(Ω), we have

| (W (u)
∂u0

∂z
,v) |≤ c0 ‖W (u) ‖L2(Ω) ‖ v ‖L2(Ω) .

By applying Proposition 2.1, we obtain

| (W (u)
∂u0

∂z
,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

We can now conclude that

| b1(u,u0,v) |≤ c0 ‖ u ‖ ‖ v ‖L2(Ω) .

The same proof is valid for the majoration of | b2(u, ρ0, φ) |. Since l1(u,v) =
b1(u0,u,v)+b1(u,u0,v) and l2(u, ρ, φ) = b2(u0, ρ, φ)+b2(u, ρ0, φ), by using
the majorations of b1 and b2 we obtain the majorations of | l1(u,v) | and
| l2(u, ρ, φ) |.

We are now going to prove the existence and uniqueness of a solution.

2.2. Existence and uniqueness of the solution.

Theorem 2.1. For f ,u0, w0 and ρ0 given such that: f ∈ L2(0, T, L2(Γ0)),

u0, w0, ρ0,∇u0,
∂u0

∂z
,∇ρ0 and

∂ρ0

∂z
∈ L∞(Ω), there exists a unique solution

(u, ρ) of problem (2.1) verifying:

u ∈ L2(0, T,V1) ∩ C0([0, T ],H1),
∂u
∂t
∈ L2(0, T,V ′1),

ρ ∈ L2(0, T,V2) ∩ C0([0, T ],H2),
∂ρ

∂t
∈ L2(0, T,V ′2).

Proof. To prove the existence of a solution we use the Faedo-Galerkin
method (see [25], for example). Set (v1, ...,vl, ...) a total and free sequence
in V1 and (φ1, ..., φl, ...) a total and free sequence in V2 (see [25, p. 255]). Set
(ul, ρl) =

∑l
i=1 gil(t)(vi, φi) (the function gil are scalar functions defined on

[0, T ]) an approximation solution of problem (2.1), verifying the following
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problem:

(
∂ul
∂t

,vk) + a1(ul,vk) + l1(ul,vk)

+ d(ul,vk) +
g

ρmoy
(ρl,

∫ z

−H
div(vk)dz′) = (f , γ0vk)Γ0 ,

(
∂ρl
∂t
, φk) + a2(ρl, φk) + l2(ul, ρl, φk) = 0, ∀k = 1, ..., l,

ul(t = 0) = 0, ρl(t = 0) = 0.

(2.3)

The existence and uniqueness of the approached solution (ul, ρl) are easily
obtained. In order to extract a converging subsequence from (ul, ρl), we
have to prove that the sequence (ul, ρl) is bounded in L∞(0, T,H1 ×H2) ∩
L2(0, T,V1 × V2).

By applying the coercivity of a1 and a2, the result of Propositions 2.1
and 2.2 we obtain the estimations:
d

dt
| ul |2 +2α1 ‖ ul ‖2W≤ c1 | ul | ‖ ul ‖ +c2 | ρl | ‖ ul ‖ +c3 | f |Γ0 ‖ ul ‖,

d

dt
| ρl |2 +2α2 ‖ ρl ‖2≤ c4 | ρl | ‖ ul ‖ +c5 | ρl | ‖ ρl ‖, (2.4)

where (ci)i=1,... ,5 are positive constants.
By applying Hölder’s inequality, we deduce from (2.4) that there exists a

positive constants (εi)i=1,... ,3 as small as wanted such that:
d

dt
| ul |2 +(2α1 − ε1) ‖ ul ‖2W≤ c6 | ul |2 +c7 | ρl |2 +c8 | f |2Γ0

,

d

dt
| ρl |2 +(2α2 − ε2) ‖ ρl ‖2≤ c9 | ρl |2 +ε3 ‖ u ‖2W . (2.5)

We choose (εi)i=1,... ,3 in order to have 2α1 − ε1 − ε3 > 0 and 2α2 − ε2 > 0.
By setting K = min(2α1−ε1−ε3, 2α2−ε2), and Xl = (ul, ρl), we so obtain

d

dt
| Xl |2 +K ‖ Xl ‖2W≤ c10 | Xl |2 +c11 | f |2Γ0

, (2.6)

where, | Xl |2=| ul |2 + | ρl |2, and ‖ Xl ‖2W=‖ ul ‖2W + ‖ ρl ‖2.
Applying the Gronwall lemma, we easily deduce from (2.6) that the se-

quence Xl is bounded in L∞(0, T,H1 ×H2)∩L2(0, T,V1 ×V2). This result
makes it possible to extract from Xl a subsequence converging towards (u, ρ)
weakly star in L∞(0, T,H1 ×H2), weakly in L2(0, T,V1 × V2).

It is then easy to prove that (u, ρ) is the unique solution of (2.1) and
verifies the regularity:

(u, ρ) in L2(0, T,V1 × V2), where (
∂u
∂t
,
∂ρ

∂t
) ∈ L2(0, T,V ′1 × V ′2).

By Lions [18] we conclude that (u, ρ) ∈ C0([0, T ],H1 ×H2).



170 A. BELMILOUDI

Proposition 2.3. If (u, ρ) is the solution of problem (2.1), then there is a
unique distribution P (up to a constant) such that (u, ρ, P ) is solution of
problem (1.9), in the distribution sense.

Proof. Using the result proved by Lions-Temam-Wang [20, Lemma 2.2, p.
1025] and Lions-Temam-Wang [19, pp. 266–267] we have the existence of
surface pressure P such that (u, ρ, P ) is a solution of problem (1.9), in the
distribution sense.

Remark 2.3. (u0, w0, ρ0) is given and has to represent the mean circula-
tion in a tropical area. For any physically significant circulation u0,∇u0, ρ0,
∂w0

∂z
,∇ρ0 and

∂ρ0

∂z
are bounded in Ω. Therefore the conditions imposed to

(u0, w0, ρ0) are not restrictive.

2.3. A result of regularity.

The regularity of the solution (u, ρ, P ) depends on the regularity of the
wind-stress f . We are going to give sufficient conditions about the wind-
stress f in order to define this quantity even near the corners of the open
set Ω.

From now on we assume the following regularity of the wind-stress:

f ∈ L2(0, T,H1(Γ0)),
∂f
∂t
∈ L2(0, T, L2(Γ0)). (2.7)

Remark 2.4. (2.7) implies that f ∈ C0([0, T ], L2(Γ0)) a.e on [0, T ].

f must be consistent with the initial and boundary conditions (1.5), (1.6)
imposed to the velocity u. We then have to impose the following compati-
bility conditions:

f(0) = 0 on Γ0,

f2 = 0 and
∂f1

∂y
= 0 on γ3 ∪ γ4, (2.8)

f∣∣γ1
= f∣∣γ2

.

Notation: f is defined on the open set Γ0 =]0, Lx[×]−Ly, Ly[, γ denotes
the boundary of Γ0; γ =

⋃
i=1,... ,4 γi, where γ1 and γ2 are the western and

eastern boundaries, γ3 and γ4 the southern and northern boundaries.
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Lemma 2.3. If the wind-stress f satisfies the conditions (2.7), (2.8), then
(u, ρ), solution of problem (2.1), is such that:

(u, ρ) ∈ C0([0, T ],V1 × V2),

(
∂u
∂t
,
∂ρ

∂t
) ∈ L2(0, T,V1 × V2) ∩ C0([0, T ],H1 ×H2).

Proof. Introduce the following problem:

Find (w,Ψ) such that :

(
∂w
∂t
,v) + a1(w,v) + l1(w,v) + d(w,v) +

g

ρmoy
(Ψ,

∫ z

−H
div(v)dz′)

= (
∂f
∂t
, γ0v)Γ0 , ∀v ∈ V1,

(
∂Ψ
∂t
, φ) + a2(Ψ, φ) + l2(w,Ψ, φ) = 0, ∀φ ∈ V2,

w(0) = 0, Ψ(0) = 0.

(2.9)

According to Theorem 2.1, problem (2.9) admits one unique solution (w,Ψ),
such that:

(w,Ψ) ∈ L2(0, T,V1 × V2) ∩ C0([0, T ],H1 ×H2),

(
∂w
∂t
,
∂Ψ
∂t

) ∈ L2(0, T,V ′1 × V ′2).

Set

ω(t) =
∫ t

0
w(s)ds and ψ(t) =

∫ t

0
Ψ(s)ds, ∀t ∈ [0, T ]

where (ω, ψ) ∈ C1([0, T ],H1 ×H2) since (w,Ψ) ∈ C0([0, T ],H1 ×H2).
According to (2.8),

f(t) =
∫ t

0

∂f
∂t

(s)ds.

Integrating equations (2.9) with respect to time gives:

(
∂ω

∂t
,v) + a1(ω,v) + l1(ω,v) + d(ω,v) +

g

ρmoy
(ψ,
∫ z

−H
div(v)dz′)

= (f , γ0v)Γ0 , ∀v ∈ V1,

(
∂ψ

∂t
, φ) + a2(ψ, φ) + l2(ω, ψ, φ) = 0, ∀φ ∈ V2,

ω(0) = 0, ψ(0) = 0.

We have proved that (ω, ψ) is a solution of problem (2.1). We then have

(u, ρ) = (ω, ψ), (u, ρ) ∈ L2(0, T,V1 × V2) ∩ C0([0, T ],H1 ×H2).



172 A. BELMILOUDI

On the other hand,

(
∂u
∂t
,
∂ρ

∂t
) = (

∂ω

∂t
,
∂ψ

∂t
) = (w,Ψ).

Therefore,

(
∂u
∂t
,
∂ρ

∂t
) ∈ L2(0, T,V1 × V2) ∩ C0([0, T ],H1 ×H2).

Since

(u, ρ) ∈ L2(0, T,V1 × V2) and (
∂u
∂t
,
∂ρ

∂t
) ∈ L2(0, T,V1 × V2),

we conclude ([18]) that (u, ρ) ∈ C0([0, T ],V1 × V2).

Theorem 2.2. If the wind-stress f satisfies the regularity (2.7), and the
initial and boundary conditions (2.8), then the solution (u, ρ, P ) of prob-
lem (2.1) is such that:

u ∈ L2(0, T,H2(Ω)), W (u) ∈ L2(0, T,H2(Ω)),

ρ ∈ L2(0, T,H2(Ω)), P ∈ L2(0, T, L2(Γ0)).

Proof. According to Section 2.2, the solution (u, ρ, P ) of the weak problem
satisfies the equations (1.9), which can also be written:

− ν1h∆u− ∂

∂z
(ν1v

∂u
∂z

) +
1

ρmoy
∇P +∇L(u)

= −(
∂u
∂t

+ (u0.∇)u + w0
∂u
∂z

+ (u.∇)u0 +W (u)
∂u0

∂z
+ F ∧2 u

+
g

ρmoy
∇R(ρ)),

− ν2h∆ρ− ∂

∂z
(ν2v

∂ρ

∂z
) = −(

∂ρ

∂t
+ (u.∇)ρ0 +W (u)

∂ρ0

∂z
+ (u0.∇)ρ+ w0

∂ρ

∂z
),

div(
∫ 0

−H
u(z′)dz′) = 0.

Set

D = −(
∂u
∂t

+ (u0.∇)u + w0
∂u
∂z

+ (u.∇)u0 +W (u)
∂u0

∂z
+ F ∧2 u),

d =
g

ρmoy
ρ,

and

Ψ = −(
∂ρ

∂t
+ (u.∇)ρ0 +W (u)

∂ρ0

∂z
+ (u0.∇)ρ+ w0

∂ρ

∂z
).
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We define
p

ρmoy
=

P

ρmoy
+

g

ρmoy

∫ 0

z
ρdz′ +

∫ 0

z
L(u)dz′,

we can then obtain that:

− ν1h∆u− ∂

∂z
(ν1v

∂u
∂z

) +
1

ρmoy
∇p = D,

− ν1h∆W (u)− ∂

∂z
(ν1v

∂W (u)
∂z

) +
1

ρmoy

∂p

∂z
= d,

− ν2h∆ρ− ∂

∂z
(ν2v

∂ρ

∂z
) = Ψ,

div(u) +
∂W (u)
∂z

= 0,

(2.10)

If u0, w0 and ρ0 are sufficiently regular, by the result of Lemma 2.3 we
have: (D, d,Ψ) ∈ C0([0, T ], L2(Ω)). At each time t ∈ [0, T ], the initial
problem (2.1) can then be written:

Given (D, d,Ψ) ∈ L2(Ω), find (u, ρ, p) such that :

− ν1h∆u− ∂

∂z
(ν1v

∂u
∂z

) +
1

ρmoy
∇p = D, in Ω

− ν1h∆W (u)− ∂

∂z
(ν1v

∂W (u)
∂z

) +
1

ρmoy

∂p

∂z
= d, in Ω

− ν2h∆ρ− ∂

∂z
(ν2v

∂ρ

∂z
) = Ψ, in Ω

div(u) +
∂W (u)
∂z

= 0, in Ω

(2.11)

and satisfying the boundary conditions (1.5).
At each time t ∈ [0, T ], we then have the regularity result: (u,W (u)) ∈

H2(Ω), ρ ∈ H2(Ω), p ∈ H1(Ω), except near the corners of the open set Ω
([2]). The problem is now to prove the regularity of (u,W (u), ρ, p) in the
corners.

The solution (u, ρ, p) is periodic in the x-direction. So, the open set Ω
can be extended from x = −Lx to x = 2Lx, and the regularity near the
western and eastern boundaries Γ1,Γ2 is automatically obtained.

The open set Ω can be defined as: ]0, Lx[×]0, 1[×]−H, 0[ by a change of
the variable y.

To prove the regularity of (u,W (u), ρ, p) in the corners (1) and (2), we
define (ũ, ρ̃, p̃), extension of (u, ρ, p) in Ω̃ =]0, Lx[×]− 1, 1[×]−H, 0[.

Set ũ = u, ρ̃ = ρ, p̃ = p, ũ0 = u0, w̃0 = w0 and ρ̃0 = ρ0, in Ω. ũi (resp.
ui) denotes the components of ũ (resp. u) and (ũ0, ṽ0) (resp. (u0, v0)) de-
notes the components of ũ0 (resp. u0).
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Ω1 Ω Ω2

Γ3 Γ4

Γ5

Γ0

Figure 1. Extension of the open set Ω

Let M(x, y, z) be a point in Ω. M1(x,−y, z) denotes its symmetrical
about Γ3. ũ, ρ̃, p̃, ũ0, w̃0 and ρ̃0 are defined in Ω1 by:

ũ1(M1) = u1(M), ũ2(M1) = −u2(M), W (ũ)(M1) = W (u)(M),

ũ0(M1) = u0(M), ṽ0(M1) = −v0(M), w̃0(M1) = w0(M),

ρ̃(M1) = ρ(M), ρ̃0(M1) = ρ0(M), p̃(M1) = p(M).

(D̃, d̃), extension of (D, d), is defined by:

D̃ = D, d̃ = d in Ω,

D̃1(M1) = D1(M), D̃2(M1) = −D2(M), d̃(M1) = d(M).

Ψ̃, extension of Ψ, is defined by:

Ψ̃ = Ψ in Ω,

Ψ̃(M1) = Ψ(M).

f̃ denotes the extension of the wind-stress on the surface ]0, Lx[×] − 1, 1[,
and is defined by:

f̃ = f in Γ0,

f̃1(m1) = f1(m), f̃2(m1) = −f2(m),

where m(x, y) is a point in Γ0, and m1(x,−y) its symmetrical about γ3.
The eddy viscosity and diffusivity coefficients are defined in Ω1 by

˜ν1h = ν1h, ˜ν2h = ν2h, ν̃1v(M1) = ν1v(M), ν̃2v(M1) = ν2v(M).
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If (u, ρ, p) is solution of problem (2.11), it is easy to prove that (ũ, ρ̃, p̃)
satisfies the equations:

− ν1h∆ũ− ∂

∂z
(ν1v

∂ũ
∂z

) +
1

ρmoy
∇p̃ = D̃, in Ω̃

− ν1h∆W (ũ)− ∂

∂z
(ν1v

∂W (ũ)
∂z

) +
1

ρmoy

∂p̃

∂z
= d̃, in Ω̃

− ν2h∆ρ̃− ∂

∂z
(ν2v

∂ρ̃

∂z
) = Ψ̃, in Ω̃

div(ũ) +
∂W (ũ)
∂z

= 0, in Ω̃

and boundary conditions similar to conditions (1.5).
(D̃, d̃, Ψ̃) is given in L2(Ω̃), and we can apply the regularity result: ũ ∈

H2(Ω̃), W (ũ) ∈ H2(Ω̃), ρ̃ ∈ H2(Ω̃), p̃ ∈ H1(Ω̃), except near the corners of
Ω̃. This implies the regularity of (u, ρ, p) near the corners (1) and (2). To
obtain the regularity near the corners (3) and (4), we have to extend the
solution (u,W (u), ρ, p) in Ω2.

This extension method also allows us to apply the estimate proved in [2],
and valid in a sufficiently regular open set. We thus obtain

‖ u ‖H2(Ω) + ‖W (u) ‖H2(Ω) + ‖ p ‖H1(Ω)

≤ C(‖ f ‖H1(Γ0) + ‖ D ‖L2(Ω) + ‖ d ‖L2(Ω)),

‖ ρ ‖H2(Ω)≤ C ‖ Ψ ‖L2(Ω), a.e. on [0, T ],
(2.12)

where C is a positive constant, independent of time.
We deduce from (2.12) that

(u,W (u)) ∈ L2(0, T,H2(Ω)), ρ ∈ L2(0, T,H2(Ω)) and

P ∈ L2(0, T, L2(Γ0)).

Proposition 2.4. If the wind-stress f satisfies the conditions (2.7), (2.8)

and u0, w0, ∇u0,
∂u0

∂z
, ρ0, ∇ρ0 and

∂ρ0

∂z
∈ L∞(Ω), then the solution

(u, ρ, P ) of problem (2.1) satisfies the following estimates:
(i) ‖ u ‖L2(0,T,H2(Ω))≤ C ‖ f ‖U ,
(ii) ‖ ρ ‖L2(0,T,H2(Ω))≤ C ‖ f ‖U ,
(iii) ‖ P ‖L2(0,T,L2(Γ0))≤ C ‖ f ‖U ,

where

U = {f
∣∣ f ∈ L2(0, T,H1(Γ0)),

∂f
∂t
∈ L2(0, T, L2(Γ0))},

‖ f ‖2U=‖ f ‖2L2(0,T,H1(Γ0)) + ‖ ∂f
∂t
‖2L2(0,T,L2(Γ0)) .
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Proof. According to the Theorem 2.2 we have:

‖ u ‖2L2(0,T,H2(Ω))≤C(‖ u ‖2L2(0,T,V1) + ‖ ∂u
∂t
‖2L2(0,T,H1)

+ ‖ ρ ‖2L2(0,T,H2) + ‖ f ‖2L2(0,T,H1(Γ0))),

‖ ρ ‖L2(0,T,H2(Ω))≤C(‖ ρ ‖2L2(0,T,V2) + ‖ ∂ρ
∂t
‖2L2(0,T,H2)

+ ‖ u ‖2L2(0,T,H1)),

‖ P ‖L2(0,T,L2(Γ0))≤C(‖ u ‖2L2(0,T,V1) + ‖ ∂u
∂t
‖2L2(0,T,H1)

+ ‖ ρ ‖2L2(0,T,H2) + ‖ f ‖2L2(0,T,H1(Γ0))),

(2.13)

Setting v = u and φ = ρ in (2.1) gives:

d

dt
| u |2 +2a1(u,u) + l1(u,u) + 2d(u,u) +

2g
ρmoy

(ρ,
∫ z

−H
div(u)dz′)

= 2(f , γ0u)Γ0 ,

d

dt
| ρ |2 +2a2(ρ, ρ) + l2(u, ρ, ρ) = 0.

According to the coercivity of a1 and a2, the result of Proposition 2.1, and by
applying Hölder’s inequality, we deduce that there exists positive constants
(εi)i=1,... ,3 as small as wanted such that:

d

dt
| u |2 +(2α1 − ε1) ‖ u ‖2W≤ c1 | u |2 +c2 | ρ |2 +c3 | f |2Γ0

d

dt
| ρ |2 +(2α2 − ε2) ‖ ρ ‖2≤ c4 | ρ |2 +ε3 ‖ u ‖2W .

We choose (εi)i=1,... ,3 in order to have 2α1−ε1−ε3 > 0 and 2α2−ε2 > 0.
By setting K = min(2α1 − ε1 − ε3, 2α2 − ε2) and X = (u, ρ), we so obtain:

d

dt
| X |2 +K ‖ X ‖2W≤ c5 | X |2 +c6 | f |2Γ0

, (2.14)

where, | X |2=| u |2 + | ρ |2 and ‖ X ‖2W=‖ u ‖2W + ‖ ρ ‖2.
The Gronwall lemma now gives

| X | (t)2 ≤ C ‖ f ‖2L2(0,T,L2(Γ0)), ∀t ∈ [0, T ]. (2.15)

We deduce from (2.14), (2.15) that

‖ X ‖2L2(0,T,H1×H2)≤ C ‖ f ‖2L2(0,T,L2(Γ0)),

‖ X ‖2L2(0,T,V1×V2)≤ C ‖ f ‖2L2(0,T,L2(Γ0)) .
(2.16)
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Setting (v, φ) = (
∂u
∂t
,
∂ρ

∂t
) = (u′, φ′) in (2.1) we obtain

| u′ |2 +a1(u,u′) + l1(u,u′) + d(u,u′) +
g

ρmoy
(ρ,
∫ z

−H
div(u′)dz′)

= (f , γ0u′)Γ0 ,

| ρ′ |2 +a2(ρ, ρ′) + l2(u, ρ, ρ′) = 0,

and after integration with respect to time

2
∫ t

0
| u′ |2 (s)ds+ a1(u(t),u(t)) = −2

∫ t

0
l1(u,u′)(s)ds

−
∫ t

0

2g
ρmoy

(ρ,
∫ z

−H
div(u)dz′)(s)ds− 2

∫ t

0
d(u,u)(s)ds+ 2(f(t), γ0u(t))Γ0

− 2
∫ t

0
(f ′(s), γ0u(s))Γ0ds,

2
∫ t

0
| ρ′ |2 (s)ds+ a2(ρ(t), ρ(t)) = −2

∫ t

0
l2(u, ρ, ρ′)(s)ds, ∀t ∈ [0, T ].

Since

l1(u,u′) = b1(u,u0,u′) + b1(u0,u,u′),

l2(u, ρ, ρ′) = b2(u, ρ0, ρ
′) + b2(u0, ρ, ρ

′),

which yields, according to the result of Proposition 2.1,

l1(u,u′) + d(u,u′) +
g

ρmoy
(ρ,
∫ z

−H
div(u′)dz′) ≤ C1(‖ u ‖ + | ρ |) | u′ |

and
l2(u, ρ, ρ′) ≤ C2(‖ ρ ‖ + | u |) | ρ′ | .

Applying the coercivity of a1 and a2 yields

2
∫ t

0
| u′ |2 (s)ds+ α1 ‖ u ‖2

≤ C1

∫ t

0
(‖ u ‖ + | ρ |) | u′ | ds+ C3

∫ t

0
‖ u ‖ (| f ′ |Γ0 + | f |Γ0)ds,

2
∫ t

0
| ρ′ |2 (s)ds+ α2 ‖ ρ ‖2≤ C2

∫ t

0
(‖ ρ ‖ + | u |) | ρ′ | ds.

Since f(t) =
∫ t

0 f ′(s)ds, we have

| f |2Γ0
(t) ≤ C ‖ f ′ ‖2L2(0,T,L2(Γ0)), ∀t ∈ [0, T ],
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and according to (2.16) we obtain

‖ u′ ‖2L2(0,T,H1)≤ C ‖ f ‖2U ,

‖ ρ′ ‖2L2(0,T,H2)≤ C ‖ f ‖2U .
(2.17)

We deduce from (2.13), (2.16) and (2.17) the estimates (i)–(iii).

2.4. The optimal control problem.

The problem is controlled by the variability of the wind-stress f . The
observation is the surface pressure, deduced from altimetric measurements.
Controls and observations are thus defined on Γ0. Thereby

U = {f
∣∣ f ∈ L2(0, T,H1(Γ0)),

∂f
∂t
∈ L2(0, T, L2(Γ0))}

will be the control space; B = L2(0, T, L2(Γ0)) will be the observation space.
For each control f , (u(f), ρ(f), P (f)) is the solution of the weak problem
(2.2), and the cost function J is defined by

J (f) =
1
2
‖ P (f)− Pobs ‖2B +

α

2
‖ f ‖2U , (2.18)

Pobs ∈ B is the observation. α is a given positive constant (α 6= 0). The
optimal control problem then is as follows:

Find f ∈ U such that
J (f) = inf

g∈U
J (g). (2.19)

Remark 2.5. P is defined regardless of any time-dependant function. We
now determine this function by setting the condition∫

Γ0

PdΓ =
∫

Γ0

PobsdΓ.

Proposition 2.5. Problem (2.19) admits one unique solution f ∈ U .

Proof. For (f ,g) ∈ U2, we set

D(f ,g) = (P (f), P (g))B + α(f ,g)U

and
S(f) = (P (f), Pobs)B.

We have then,

J (f) =
1
2
D(f , f)− S(f) +

1
2
‖ Pobs ‖2B .
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By using the Proposition 2.4, we prove easily that J is continuous, coercive
and strictly convex on U . Therefore, according to [13], [17] we deduce the
existence and uniqueness of the solution of problem (2.19).

f ∈ U is solution of problem (2.19) if and only if J ′(f) = 0. In or-
der to characterize the optimal control f we introduce the adjoint problem
associated with problem (2.2).

For a wind-stress f ∈ U , (u(f), ρ(f), P (f)) is the solution of (2.2). We note
(u∗(f), ρ∗(f), P ∗(f)) the adjoint state which is the solution of the adjoint
problem:

(−∂u∗(f)
∂t

,v) + a1(u∗(f),v) + l1(v,u∗(f)) + (ρ∗(f)∇ρ0,v)

− (ρ∗(f)
∂ρ0

∂z
,

∫ z

−H
div(v)dz′) +

1
ρmoy

(P ∗(f),
∫ 0

−H
div(v)dz′)Γ0

− (ν1v

∫ 0

−H
div(u∗(f))dz′, γ0 div(v))Γ0 − d(u∗(f),v) = 0,

(−∂ρ
∗(f)
∂t

, φ) + a2(ρ∗(f), φ) + b2(u0, φ, ρ
∗(f))

− g

ρmoy
(
∫ z

−H
div(u∗(f))dz′, φ) = 0,

1
ρmoy

(
∫ 0

−H
div(u∗(f))dz′, Q)Γ0 = (P (f)− Pobs, Q)Γ0 ,

∀(v, φ,Q) ∈ ((W1 × V2) ∩H2)× L2(Γ0),

u∗(f)(T ) = 0, ρ∗(f)(T ) = 0,∫
Γ0

(P (f)− Pobs)dΓ0 = 0.

(2.20)

Proposition 2.6. The adjoint problem (2.20) admits one unique solution
such that:

(u∗(f), ρ∗(f), P ∗(f)) ∈ L2(0, T,W1 × V2 × L2(Γ0)).

Proof. The compatibility condition
∫

Γ0
(P (f) − Pobs)dΓ0 = 0 is satisfied.

So, almost everywhere in ]0, T [, there exists u1 ∈ W1 such that:

1
ρmoy

(
∫ 0

−H
div(u1)dz′, Q)Γ0 = (P (f)− Pobs, Q)Γ0 , ∀Q ∈ L2(Γ0).
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Set ũ(f) = u∗(f)− u1, equations (2.20) can be written:

(−∂ũ(f)
∂t

,v) + a1(ũ(f),v) + l1(v, ũ(f)) + (ρ∗(f)∇ρ0,v)

− (ρ∗(f)
∂ρ0

∂z
,

∫ z

−H
div(v)dz′) +

1
ρmoy

(P ∗(f),
∫ 0

−H
div(v)dz′)Γ0

− d(ũ(f),v) = (G,v),

(−∂ρ
∗(f)
∂t

, φ) + a2(ρ∗(f), φ) + b2(u0, φ, ρ
∗(f))

− g

ρmoy
(
∫ z

−H
div(ũ(f)dz′, φ) = (Ψ, φ),

(−
∫ 0

−H
div(ũ(f)dz′, Q)Γ0 = 0, ∀(v, φ,Q) ∈ W1 × V2 × L2(Γ0),

ũ(f)(T ) = 0, ρ∗(f)(T ) = 0,∫
Γ0

(P (f)− Pobs)dΓ0 = 0.

(2.21)

Problem (2.21), being similar to problem 2.2, admits one unique solution
such that

(ũ(f), ρ∗(f), P ∗(f)) ∈ L2(0, T,V1 × V2 × L2(Γ0)).

We can deduce that there exists

(u∗(f), ρ∗(f), P ∗(f)) ∈ L2(0, T,W1 × V2 × L2(Γ0))

and verifies (2.20). The existence of a solution being proved, demonstrating
the uniqueness is fairly simple.

Proposition 2.7. J ′(f) = 0 if and only if αf − Λ−1γ0u∗(f) = 0 in U . Λ
is the canonical isomorphism U −→ U ′ such that

〈g,v〉U ,U ′ = (Λg,v)U ′ = (g,Λ−1v)U , ∀(g,v) ∈ U × U ′.

Proof. (J ′(f),g) = D(f ,g)− S(g) = (P (f)− Pobs, P (g))B + α(f ,g)U ,
∀(f ,g) ∈ U2.

The third part of equation (2.20) implies

(J ′(f),g) = α(f ,g)U +
1

ρmoy
(
∫ 0

−H
div(u∗(f))dz′, P (g))B,

∀(f ,g) ∈ U2. (2.22)
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Since (u(g), ρ(g), P (g)) is the solution of problem (2.2), we have

(
∂u(g)
∂t

,v) + a1(u(g),v) + l1(u(g),v) + d(u(g),v)

+
g

ρmoy
(ρ(g),

∫ z

−H
div(v)dz′)− (ν1vγ0(div(u(g))),

∫ 0

−H
div(v)dz′)Γ0

+
1

ρmoy
(
∫ 0

−H
div(v)dz′, P (g))Γ0 = (g, γ0v)Γ0 ,

(
∂ρ(g)
∂t

, φ) + a2(ρ(g), φ) + l2(u(g), ρ(g), φ) = 0,

(
∫ 0

−H
div(u(g))dz′, Q)Γ0 = 0, ∀(v, φ,Q) ∈ W1 × V2 × L2(Γ0),

u(g)(0) = 0, ρ(g)(0) = 0,

and so, setting (v, φ,Q) = (u∗(f), ρ∗(f), P ∗(f)),

(
∂u(g)
∂t

,u∗(f)) + a1(u(g),u∗(f)) + l1(u(g),u∗(f))

− (ν1vγ0(div(u(g))),
∫ 0

−H
div(u∗(f))dz′)Γ0 + d(u(g),u∗(f))

+
g

ρmoy
(ρ(g),

∫ z

−H
div(u∗(f))dz′) +

1
ρmoy

(
∫ 0

−H
div(u∗(f))dz′, P (g))Γ0

= (g, γ0u∗(f))Γ0 ,

(
∂ρ(g)
∂t

, ρ∗(f)) + a2(ρ(g), ρ∗(f)) + l2(u(g), ρ(g), ρ∗(f)) = 0,

(
∫ 0

−H
div(u(g))dz′, P ∗(f))Γ0 = 0,

u(g)(0) = 0, ρ(g)(0) = 0.

Since (u∗(f), ρ∗(f), P ∗(f)) is the solution of problem (2.20), we thus obtain
after integrating by time:∫ T

0
b2(u(g), ρ0, ρ

∗(f))dt =
∫ T

0

g

ρmoy
(ρ(g),

∫ z

−H
div(u∗(f))dz′)dt

and ∫ T

0
(P (f)− Pobs, P (g))Γ0dt =

∫ T

0
(g, γ0u∗(f))Γ0dt.

We can now conclude that J ′(f) = 0 if and only if αf−Λ−1γ0u∗(f) = 0 in U
(according to (2.22)).
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We have proved that the optimal control f , the solution of problem (2.19),
is characterized by the following set of equations:

(
∂u(f)
∂t

,v) + a1(u(f),v) + l1(u(f),v) + d(u(f),v)

+
g

ρmoy
(ρ(f),

∫ z

−H
div(v)dz′)− (ν1vγ0(div(u(f))),

∫ 0

−H
div(v)dz′)Γ0

+
1

ρmoy
(
∫ 0

−H
div(v)dz′, P (f))Γ0 = (f , γ0v)Γ0 ,

(
∂ρ(f)
∂t

, φ) + a2(ρ(f), φ) + l2(u(f), ρ(f), φ) = 0,

(
∫ 0

−H
div(u(f))dz′, Q)Γ0 = 0,

(−∂u∗(f)
∂t

,v) + a1(u∗(f),v) + l1(v,u∗(f)) + (ρ∗(f)∇ρ0,v)

− (ρ∗(f)
∂ρ0

∂z
,

∫ z

−H
div(v)dz′) +

1
ρmoy

(P ∗(f),
∫ 0

−H
div(v)dz′)Γ0

− (ν1v

∫ 0

−H
div(u∗(f))dz′, γ0 div(v))Γ0 − d(u∗(f),v) = 0,

(−∂ρ
∗(f)
∂t

, φ) + a2(ρ∗(f), φ) + b2(u0, φ, ρ
∗(f))

− g

ρmoy
(
∫ z

−H
div(u∗(f))dz′, φ) = 0,

1
ρmoy

(
∫ 0

−H
div(u∗(f))dz′, Q)Γ0 = (P (f)− Pobs, Q)Γ0 ,

∀(v, φ,Q) ∈ ((W1 × V2) ∩H2)× L2(Γ0),

∫
Γ0

(P (f)− Pobs)dΓ0 = 0,

u∗(f)(T ) = u(f)(0) = 0, ρ∗(f)(T ) = ρ(f)(0) = 0,

αf − Λ−1γ0u∗(f) = 0 in U .
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3. The two dimensional cyclic problem

3.1. Variational formulation.

In order to study problem (1.10), we introduce the following functional
spaces:

V0 = {(v, v3) ∈ (H1(ω))3∣∣ div0(v) +
∂v3

∂z
= 0, (v, v3).n0 = 0 on γ},

H1c = {v ∈ (L2
c(ω))2∣∣ (v, 0).n0 = 0 on γ0 ∪ γ3 ∪ γ4 ∪ γ5},

W1c = {v ∈ (H1
c (ω))2∣∣ Wm(v) = −

∫ z

−H
divm(v)dz′ ∈ H1

c (ω),

v = 0 on γ5, (v, 0).n0 = 0 on γ0 ∪ γ3 ∪ γ4},

V1c = {v ∈ W1c
∣∣ ∫ 0

−H
divm(v)dz = 0},

H2c = L2
c(ω),

V2c = {φ ∈ H1
c (ω)

∣∣ φ = 0 on γ5 ∪ γ3 ∪ γ4},

where, n0 = (0, n1, n2), n = (n1, n2) the unit outward vector normal to γ.
Let X be a real Hilbert space, Xc denotes the complex space defined by:

v ∈ Xc if v = v1 + iv2, with real part v1 ∈ X and imaginary part v2 ∈ X .
The norm in Xc is defined by

‖ v ‖2Xc=‖ v1 ‖2X + ‖ v2 ‖2X
where | . |1,ω and ‖ . ‖1,ω denotes the semi-norm, and the norm on H1

c (ω).
They are equivalent on W1c, V1c and V2c. We set ‖ u ‖=| u |1,ω, ‖ φ ‖=
| φ |1,ω, | u | and | φ | denotes the norm in L2

c(Ω).
W1c (resp. V1c) is equipped with the following norm:

‖ v ‖2W=‖ v ‖2 + ‖
∫ 0

−H
divm(v)dz ‖2, ∀v ∈ W1c (resp. v ∈ V1c),

and V2c is equipped with the norm ‖ φ ‖, ∀φ ∈ V2c.

Lemma 3.1.

(∇mLm(u),v) = ν1h(∇m(
∫ z

−H
divm(u)dz′),∇m(

∫ z

−H
divm(v)dz′))

+ (ν1v divm(u), divm(v))− (ν1vγ0(divm(u)),
∫ 0

−H
divm(v)dz′)γ0 ,

∀(u,v) ∈ (W1c ∩H2
c )2.
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Proof. Since

(∇mLm(u),v) = (∇m(
∫ 0

z
Lm(u)dz′),v),

by using Green’s formula we obtain

(∇mLm(u),v) = −(
∫ 0

z
Lm(u)dz′, divm(v)) +

∫
γ
(
∫ 0

z
Lm(u)dz′)(v, 0).n0dγ.

where v is any element in W1c. We obtain

(∇mLm(u),v) = −(
∫ 0

z
Lm(u)dz′, divm(v)),

By integrating by part with respect to z gives

(∇mLm(u),v) = (Lm(u),
∫ z

−H
divm(v)dz′).

Since

Lm(u) = −ν1h∆mWm(u)− ∂

∂z
(ν1v

∂Wm(u)
∂z

),

by applying Green’s formula, we obtain

(∇mLm(u),v) = ν1h(∇m(
∫ z

−H
divm(u)dz′),∇m(

∫ z

−H
divm(v)dz′))

+ (ν1v divm(u), divm(v))− (ν1vγ0(divm(u)),
∫ 0

−H
divm(v)dz′)γ0 .

Remark 3.1. If v ∈ V1c, we have

(∇mLm(u),v) =ν1h(∇m(
∫ z

−H
divm(u)dz′),∇m(

∫ z

−H
divm(v)dz′))

+ (ν1v divm(u), divm(v)).

We now define:

a11m(u,v) = ν1h(∇mu,∇mv) + (ν1v
∂u
∂z
,
∂v
∂z

),

a12m(u,v) = ν1h(∇mWm(u),∇mWm(v)) + (ν1v divm(u), divm(v)),

a1m(u,v) = a11m(u,v) + a12m(u,v),

a2m(ρ, φ) = ν2h(∇mρ,∇mφ) + (ν2v
∂ρ

∂z
,
∂φ

∂z
),

d(u,v) = (F ∧2 u,v),
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b1m(u0,u,v) = ((u0∇m)u,v) + (w0
∂u
∂z
,v),

b2m(u0, ρ, φ) = ((u0∇m)ρ, φ) + (w0
∂ρ

∂z
, φ),

c1m(u,v,w) = ((u∇0)v,w) + (Wm(u)
∂v
∂z
,w),

c2m(u, ρ, φ) = ((u∇0)ρ, φ) + (Wm(u)
∂ρ

∂z
, φ),

l1m(u,v) = b1m(u0,u,v) + c1m(u,u0,v),

L1m(u, ρ,v) = l1m(u,v) + d(u,v) +
g

ρmoy
(ρ,
∫ z

−H
divm(v)dz′),

l2m(u, ρ, φ) = b2m(u0, ρ, φ) + c2m(u, ρ0, φ),

where Re(.) is the real part of (.).

Lemma 3.2. Suppose that f ∈ L2(0, T, L2
c(γ0)) and that (u, ρ, P ) is a suf-

ficiently regular. Then:

(i) −ν1h(∆mu,v)− (
∂

∂z
(ν1v

∂u
∂z

),v) = a1m(u,v)− (f , γ0v)γ0 , ∀v ∈ W1c,

(ii) −ν1h(∆mρ, φ)− (
∂

∂z
(ν1v

∂ρ

∂z
), φ) = a2m(ρ, φ), ∀φ ∈ V2c,

(iii) (∇m(
∫ 0

z
ρdz′),v) = −(

∫ 0

z
ρdz′, divm(v)) = (ρ,

∫ z

−H
divm(v)dz′),

∀v ∈ W1c.

(iv) (∇mP,v) = −(P,
∫ 0

−H
divm(v)dz′)γ0 , ∀v ∈ W1c.

γ0v denotes the trace of v on γ0, and (f , γ0v)γ0 denotes the scalar product
in L2

c(γ0), which makes sense if v ∈ W1c.

Proof. Results (i)–(ii) are deduced from the definition of the spacesW1c,V1c
and V2c, and from the boundary conditions satisfied by (u, ρ) on γ.

(iii) (∇m(
∫ 0

z
ρdz′),v) = (im

∫ 0

z
ρdz′, v1) + (

∂

∂y
(
∫ 0

z
ρdz′), v2),

= −(
∫ 0

z
ρdz′, imv1)− (

∫ 0

z
ρdz′,

∂v2

∂y
) +

∫
γ
(
∫ 0

z
ρdz′). (v, 0).n0dγ.

Since v ∈ W1c we have (v, 0).n0 = 0 on γ and therefore

(∇m(
∫ 0

z
ρdz′),v) = −(

∫ 0

z
ρdz′, divm(v)), ∀v ∈ W1c.
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By integrating by parts with respect to z gives

−(
∫ 0

z
ρdz′, divm(v)) = (ρ,

∫ z

−H
divm(v)dz′).

(iv) According to Green’s formula and boundary conditions verified by v,
we then have: (∇mP,v) = −(P, divm(v)).

Since P is only a function of y we can deduce that

(∇mP,v) = −(P,
∫ 0

−H
divm(v)dz′)γ0 .

We can now write the two weak formulations of problem (1.10), (1.11),
(1.6) satisfied by (u, ρ, P ):

Find (u, ρ) ∈ L2(0, T,V1c)× L2(0, T,V2c) such that :

(
∂u
∂t
,v) + a1m(u,v) + L1m(u, ρ,v) = (f , γ0v), ∀v ∈ V1c,

(
∂ρ

∂t
, φ) + a2m(ρ, φ) + l2m(u, ρ, φ) = 0, ∀φ ∈ V2c,

u(0) = 0, ρ(0) = 0
(3.1)

and

Find (u, ρ, P ) ∈ L2(0, T,W1c ∩H2
c )× L2(0, T,V2c ∩H2

c )× L2(0, T, L2
c(γ0))

such that :

(
∂u
∂t
,v) + a1m(u,v) + L1m(u, ρ,v)− (ν1vγ0(divm(u)),

∫ 0

−H
divm(v)dz′)γ0

− 1
ρmoy

(P,
∫ 0

−H
divm(v)dz′)γ0 = (f , γ0v)γ0 ,

(
∂ρ

∂t
, φ) + a2m(ρ, φ) + l2m(u, ρ, φ) = 0, ∀(v, φ) ∈ W1c × V2c,

− (
∫ 0

−H
divm(u)dz′, Q)γ0 = 0, ∀Q ∈ L2(γ0),

u(0) = 0, ρ(0) = 0.

(3.2)

In the two following propositions we are dealing with some properties of
operators a1m, a2m, l1m, L1m, l2m and d.

Proposition 3.1. (i) a1m (resp. a2m) is a bilinear continuous and co-
ercive form on W2

1c (resp. on V2
2c),
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(ii) d is a bilinear continuous form on W2
1c and d(u,v) = −d(v,u)

(d denotes the complex conjugate of d).
There exists a positive constant c, depending on m, such that:

(iii) ‖Wm(v) ‖L2
c(ω)≤ c ‖ v ‖, ∀v ∈ W1c

(iv) | g

ρmoy
(ρ,
∫ z

−H
divm(v)dz′) |≤ c ‖ ρ ‖L2

c(ω) ‖ v ‖,

≤ c ‖ v ‖L2
c(ω) ‖ ρ ‖, ∀(v, ρ) ∈ W1c × V2c.

Proof. (i) ν1h and ν2h are constant coefficients, ν1v and ν2v are bounded
functions, therefore the continuity and the coercivity of a1m and a2m are
easily obtained. The constant of coercivity of a1m (resp. a2m) α1m (resp.
α2m) is then given by α1m = min(ν1h,m

2ν1h,min(ν1v)) (resp. α2m =
min(ν2h,m

2ν2h,min(ν2v))).

(ii) is easily obtained from the definition of d: d(u,v) = (F ∧2 u,v).

(iii) Wm(v) = −
∫ z

−H
divm(v)dz′ = −im

∫ z

−H
v1dz

′ −
∫ z

−H

∂v2

∂y
dz′, so

|Wm(v) |≤
∫ 0

−H
| divm(v) | dz′ ≤ m

∫ 0

−H
| v1 | dz′ +

∫ 0

−H
| ∂v2

∂y
| dz′,

and therefore:

‖Wm(v) ‖2L2
c(ω)≤2m2

∫
ω
(
∫ 0

−H
| v1 | dz′)2dω + 2

∫
ω
(
∫ 0

−H
| ∂v2

∂y
| dz′)2dω,

≤2m2H ‖ v ‖2L2
c(ω) +2H ‖ v ‖2,

from which we deduce

‖Wm(v) ‖L2
c(ω)≤ c ‖ v ‖ .

(iv) | g

ρmoy
(ρ,
∫ z

−H
divm(v)dz′) |≤ g

ρmoy
‖ ρ ‖L2

c(ω) ‖
∫ z

−H
divm(v)dz′ ‖L2

c(ω)

=
g

ρmoy
‖ ρ ‖L2

c(ω) ‖Wm(v) ‖L2
c(ω) .

By using (iii) we then obtain

| g

ρmoy
(ρ,
∫ z

−H
divm(v)dz′) |≤ c ‖ ρ ‖L2

c(ω) ‖ v ‖, ∀(ρ,v) ∈ W1c × V2c.

By applying lemma 3.2, we have

g

ρmoy
(ρ,
∫ z

−H
divm(v)dz′) = − g

ρmoy
(∇m(

∫ 0

z
ρdz′),v),
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and therefore
g

ρmoy
| (ρ,

∫ z

−H
divm(v)dz′) |≤ g

ρmoy
‖ ∇m(

∫ 0

z
ρdz′) ‖L2

c(ω) ‖ v ‖L2
c(ω)

≤ gH

ρmoy
‖ ∇mρ ‖L2

c(ω) ‖ v ‖L2
c(ω) .

So there exists a positive constant c such that
g

ρmoy
| (ρ,

∫ z

−H
divm(v)dz′) |≤ c ‖ ρ ‖ ‖ v ‖L2

c(ω), ∀(v, ρ) ∈ W1c × V2c.

Proposition 3.2. (i) If the mean circulation (u0, w0, ρ0) is given such

that: u0, w0, ρ0, ∇0u0,
∂u0

∂z
, ∇0ρ0 and

∂ρ0

∂z
∈ L∞(ω), then there

exists a positive constant C such that:
(a1) | b1m(u0,u,v) |≤ C ‖ u ‖ ‖ v ‖L2

c(ω), ∀(u,v) ∈ W2
1c,

(a2) | b2m(u0, ρ, φ) |≤ C ‖ ρ ‖ ‖ φ ‖L2
c(ω), ∀(ρ, φ) ∈ V2

2c,

(b1) | c1m(u,u0,v) |≤ C ‖ u ‖ ‖ v ‖L2
c(ω), ∀(u,v) ∈ W2

1c,
(b2) | c2m(u, ρ0, φ) |≤ C ‖ u ‖ ‖ φ ‖L2

c(ω), ∀(u, φ) ∈ W1c × V2c,

(ii) b1m(u0,u,v) = −b1m(u0,v,u), ∀(u,v) ∈ W2
1c,

(iii) b2m(u0, ρ, φ) = −b2m(u0, φ, ρ), ∀(ρ, φ) ∈ V2
2c

(iv) c1m(u,u0,v) = −c1m(u,v,u0) + im(u1v,u0), ∀(u,v) ∈ V1c ×W1c,
(v) c2m(u, ρ0, φ) = −c2m(u, φ, ρ0) + im(u1φ, ρ0), ∀(u,v) ∈ V1c × V2c,
(vi) Re(b1m(u0,v,v)) = 0 and Re(b2m(u0, φ, φ)) = 0, ∀(v, φ) ∈ W1c×V2c.

Notation: u = (u1, u2), u0 = (u0, v0), u is the complex conjugate of u.

Proof. (i) (a1) b1m(u0,u,v) = im(u0u,v) + (v0
∂u
∂y
,v) + (w0

∂u
∂z
,v).

Since u0 and w0 ∈ L∞(ω), then there exists a positive constant C such that:

| ((u0∇m)u,v) + (w0
∂u
∂z
,v) |≤ C ‖ u ‖ ‖ v ‖L2

c(ω) .

The same proof is valid for (a2).

(b1) c1m(u,u0,v) = (u2
∂u0

∂y
,v) + (Wm(u)

∂u0

∂z
,v).

Since ∇0u0 and
∂w0

∂z
∈ L∞(ω), then there exists a positive constant C such

that:
| c1m(u,u0,v) |≤ C ‖ u ‖ ‖ v ‖L2

c(ω),

according to the Proposition 3.1. The same proof is valid for (b2).

(ii) b1m(u0,u,v) = ((imu0 + v0
∂

∂y
+ w0

∂

∂z
)u,v).
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Since u0 is real, we have

b1m(u0,v,u) = ((−imu0 + v0
∂

∂y
+ w0

∂

∂z
)v,u)

and then

b1m(u0,u,v) + b1m(u0,v,u) =
∫
ω
(v0

∂(u.v)
∂y

+ w0
∂(u.v)
∂z

)dω.

Using Green’s formula we obtain

b1m(u0,u,v) + b1m(u0,v,u) =−
∫
ω
(div0(u0) +

∂

∂z
w0)(u.v)dω

+
∫
∂ω

((u0, w0).n0)(u.v)dγ.

Since u0 ∈ V0, then div0(u0) +
∂

∂z
w0 = 0, and (u0, w0).n0 = 0. We have

then the result (ii). The same proof is valid for (iii).

(iv) According to the definition of c1m we have

c1m(u,u0,v) = ((u2
∂

∂y
+Wm(u)

∂

∂z
)u0,v)

and

c1m(u,v,u0) = ((u2
∂

∂y
+Wm(u)

∂

∂z
)v,u0).

Since u0 is real, we have

c1m(u,u0,v) + c1m(u,v,u0) =
∫
ω
(u2

∂(u0.v)
∂y

+Wm(u)
∂(u0.v)
∂z

)dω.

According to u ∈ V1c (u2 = 0 on γ3 ∪ γ4 and Wm(u) = 0 on γ0 ∪ γ5 ) and
integrating by part with respect to y (resp. z), we have

c1m(u,u0,v) + c1m(u,v,u0) =
∫
ω
(−∂u2

∂y
(u0.v)− ∂Wm(u)

∂z
(u0.v))dω.

Since

Wm(u) = −
∫ z

−H
(imu1 +

∂u2

∂y
)dz′

we thus obtain the result (iv). The same proof is valid for (v).

Setting v = u (resp. φ = ρ) in (iii) (resp. in (iv)) we deduce the result
(vi).
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3.2 Existence and uniqueness of the solution.

Theorem 3.1. For (u0, w0) and f given, (u0, w0) ∈ V0, u0, w0,∇0u0,
∂w0

∂z
,

ρ0,∇0ρ0,
∂ρ0

∂z
∈ L∞(ω) and f ∈ L2(0, T, L2

c(γ0)), there exists a unique

solution (u, ρ) of problem (3.1) satisfying:

u ∈ L2(0, T,V1c) ∩ C0([0, T ],H1c),
∂u
∂t
∈ L2(0, T,V ′1c),

ρ ∈ L2(0, T,V2) ∩ C0([0, T ],H2c),
∂ρ

∂t
∈ L2(0, T,V ′2c).

Proof. To prove the existence of a solution we use the Faedo-Galerkin
method with the same notations as in Section 2: (v1, ...,vl, ...) is a total
and free sequence in V1c and (φ1, ..., φl, ...) is a total and free sequence in
V2c. The approached solution (ul, ρl) is defined as the solution of the fol-
lowing problem:

(
∂ul
∂t

,vk) + a1m(ul,vk) + L1m(ul, ρl,vk) = (f , γ0vk)γ0 ,

(
∂ρl
∂t
, φk) + a2m(ρl, φk) + l2m(ul, ρl, φk) = 0, ∀k = 1, ..., l. (3.3)

By applying the coercivity of a1m and a2m, the result of Propositions 3.1
and 3.2, we obtain the estimations:

d

dt
| ul |2 +2α1m ‖ ul ‖2W≤ c1 | ul | ‖ ul ‖ +c2 | ρl | ‖ ul ‖ +c3 | f |γ0 ‖ ul ‖

d

dt
| ρl |2 +2α2m ‖ ρl ‖2≤ c4 | ρl | ‖ ul ‖ +c5 ‖ ρl ‖ | ρl |, (3.4)

where (ci)i=1,... ,5 are positive constants. By setting Xl = (ul, ρl), we can
deduce from (3.4) the estimation

d

dt
| Xl |2 +K ‖ Xl ‖2W≤ c6 | Xl |2 +c7 | f |2γ0

, (3.5)

where K is a positive constant. Then the proof is achieved in the same way
as in the proof of Theorem 2.1.

Proposition 3.3. If (u, ρ) is the solution of problem (3.1), then there is
a unique distribution pressure P (up to a constant) such that (u, ρ, P ) is
solution of problem (1.10), in the distribution sense.

The proof of this proposition is very similar to that of Proposition 2.2.
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3.3. A result of regularity.

From now on we assume the following regularity of the wind-stress:

f ∈ L2(0, T,H1
c (γ0)),

∂f
∂t
∈ L2(0, T, L2

c(γ0)), (3.6)

f must be consistent with the initial and boundary conditions (1.6), (1.11)
imposed to the velocity u. We then have to impose the following compati-
bility conditions:

f(0) = 0 on γ0,

f2(−Ly, t) = f2(Ly, t) = 0, ∀t ∈ [0, T ]
∂f1

∂y
(−Ly, t) =

∂f1

∂y
(Ly, t) = 0, ∀t ∈ [0, T ].

(3.7)

Lemma 3.3. If the wind-stress f satisfies the conditions (3.6), (3.7), then
(u, ρ), solution of problem (3.1), is such that:

(u, ρ) ∈ C0([0, T ],V1c × V2c),

(
∂u
∂t
,
∂ρ

∂t
) ∈ L2(0, T,V1c × V2c) ∩ C0([0, T ],H1c ×H2c).

Theorem 3.2. If the wind-stress f satisfies the regularity (3.6), and the
initial and boundary conditions (3.7), then the solution (u, ρ, P ) of prob-
lem (3.1) is such that

u ∈ L2(0, T,H2
c (ω)), ρ ∈ L2(0, T,H2

c (ω)), P ∈ L2(0, T, L2
c(γ0)).

Proof. The proof of Lemma 3.2 and theorem 3.2 are very similar to that
of Lemma 2.3 and Theorem 2.2. So we omit the details.

Proposition 3.4. If the wind-stress f satisfies the conditions (3.6), (3.7)

and u0, ρ0, w0,∇0u0,∇0ρ0,
∂u0

∂z
and

∂ρ0

∂z
∈ L∞(ω), then the solution (u, ρ, P )

of problem (3.1) satisfies the following estimates:
(i) ‖ u ‖L2(0,T,H2

c (ω))≤ C ‖ f ‖Uc,
(ii) ‖ ρ ‖L2(0,T,H2

c (ω))≤ C ‖ f ‖Uc,
(iii) ‖ P ‖L2(0,T,L2

c(γ0))≤ C ‖ f ‖Uc,
where

Uc = {f
∣∣ f ∈ L2(0, T,H1

c (γ0)),
∂f
∂t
∈ L2(0, T, L2

c(γ0))},

‖ f ‖2U=‖ f ‖2L2(0,T,H1
c (γ0)) + ‖ ∂f

∂t
‖2L2(0,T,L2

c(γ0)) .
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Proof. According to the Theorem 3.2, the estimation (2.12) and the regu-
larity of (u0, w0, ρ0) we have:

‖ u ‖2L2(0,T,H2
c (ω))≤ C(‖ u ‖2L2(0,T,V1c) + ‖ ∂u

∂t
‖2L2(0,T,H1c)

+ ‖ ρ ‖2L2(0,T,H2c) + ‖ f ‖2L2(0,T,H1
c (γ0))),

‖ ρ ‖L2(0,T,H2
c (ω))≤ C(‖ ρ ‖2L2(0,T,V2c) + ‖ ∂ρ

∂t
‖2L2(0,T,H2c)

+ ‖ u ‖2L2(0,T,H1c)),

‖ P ‖L2(0,T,L2
c(γ))≤ C(‖ u ‖2L2(0,T,V1c) + ‖ ∂u

∂t
‖2L2(0,T,H1c)

+ ‖ ρ ‖2L2(0,T,H2c) + ‖ f ‖2L2(0,T,H1
c (γ0))).

(3.8)

Setting v = u and φ = ρ in (3.1) gives

d

dt
| u |2 +2a1m(u,u) + L1m(u, ρ,u) = 2(f , γ0u)γ0 ,

d

dt
| ρ |2 +2a2m(ρ, ρ) + l2m(u, ρ, ρ) = 0.

According to the coercivity of a1m and a2m, the result of Propositions 3.1
and 3.2, and by applying Hölder’s inequality, we deduce that:

d

dt
| X |2 +K ‖ X ‖2W≤ c9 | X |2 +c7 | f |2γ0

, (3.9)

where X = (u, ρ), K is a positive constant. Applying the Gronwall lemma
now gives

| X | (t)2 ≤ C ‖ f ‖2L2(0,T,H1
c (γ0)), ∀t ∈ [0, T ]. (3.10)

We deduce from (3.9), (3.10) that

‖ X ‖2L2(0,T,H1c×H2c)≤ C ‖ f ‖2L2(0,T,H1
c (γ0)),

‖ X ‖2L2(0,T,V1c×V2c)≤ C ‖ f ‖2L2(0,T,H1
c (γ0)) .

(3.11)

Setting (v, φ) = (
∂u
∂t
,
∂ρ

∂t
) = (u′, φ′) in (3.1) gives

| u′ |2 +a1m(u,u′) + L1m(u, ρ,u′) = (f , γ0u′)γ0 ,

| ρ′ |2 +a2m(ρ, ρ′) + l2m(u, ρ, ρ′) = 0

and

| u′ |2 +a1m(u,u′) + L1m(u, ρ,u′) = (f , γ0u′)γ0 ,

| ρ′ |2 +a2m(ρ, ρ′) + l2m(u, ρ, ρ′) = 0.
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Summing these two systems we obtain:

2 | u′ |2 +
d

dt
(a1m(u,u)) + 2Re(L1m(u, ρ,u′)) = (f , γ0u′)γ0 + (f , γ0u′)γ0 ,

2 | ρ′ |2 +
d

dt
(a2m(ρ, ρ)) + 2Re(l2m(u, ρ, ρ′)) = 0.

Moreover

(f , γ0u′)γ0 + (f , γ0u′)γ0 = 2
d

dt
(Re((f , γ0u)γ0))− 2Re((f ′, γ0u)γ0).

Then after integration with respect to time we obtain

2
∫ t

0
| u′ |2 (s)ds+ a1m(u(t),u(t)) = −2

∫ t

0
Re(L1m(u(s), ρ(s),u′(s)))ds

+ 2Re((f(t), γ0u(t))γ0)− 2
∫ t

0
Re((f ′(s), γ0u(s))γ0)ds,

2
∫ t

0
| ρ′ |2 (s)ds+ a2m(ρ(t), ρ(t)) = −2

∫ t

0
Re(l2m(u(s), ρ(s), ρ′(s)))ds,

∀t ∈ [0, T ].

Applying the coercivity of a1m and a2m yields

2
∫ t

0
| u′ |2 (s)ds+ α1m ‖ u ‖2≤ 2

∫ t

0
| L1m(u(s), ρ(s),u′(s)) | ds

+ 2 | (f(t), γ0u(t))γ0 | +2
∫ t

0
| (f ′(s), γ0u(s))γ0 | ds,

2
∫ t

0
| ρ′ |2 (s)ds+ α2m ‖ ρ ‖2≤ 2

∫ t

0
| l2m(u(s), ρ(s), ρ′(s)) | ds,

∀t ∈ [0, T ].

(3.12)

According to the results of the Propositions 3.1 and 3.2, which yields:

| L1m(u, ρ,u′) |≤ C1(‖ u ‖ + | ρ |) | u′ |,
| l2m(u, ρ, ρ′) |≤ C2(‖ ρ ‖ + | u |) | ρ′ | .

(3.13)

Since f(t) =
∫ t

0 f ′(s)ds, we have

| f |2γ0
(t) ≤ C ‖ f ′ ‖2L2(0,T,L2

c(γ0)), ∀t ∈ [0, T ].

According to (3.11)–(3.13) we obtain

‖ u′ ‖2L2(0,T,H1c)≤ C ‖ f ‖2Uc ,

‖ ρ′ ‖2L2(0,T,H2c)≤ C ‖ f ‖2Uc .
(3.14)

We deduce from (3.8), (3.11) and (3.14) the estimates (i)–(iii).
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3.4. The optimal control problem.

The problem is controlled by the variability of the wind-stress f . The
observation is the pressure on γ0, deduced from altimetric measurements.
Controls and observations are thus defined on γ0. Thereby

Uc = {f
∣∣ f ∈ L2(0, T,H1

c (γ0)),
∂f
∂t
∈ L2(0, T, L2

c(γ0))}

will be the control space; Bc = L2(0, T, L2
c(γ0)) will be the observation

space. For each control f , (u(f), ρ(f), P (f)) is the solution of the weak
problem (3.2), and the cost function J is defined by

J (f) =
1
2
‖ P (f)− Pobs ‖2Bc +

α

2
‖ f ‖2Uc . (3.15)

Pobs ∈ Bc is the observation. α is a given positive constant (α 6= 0). The
optimal control problem then is as follows:

Find f ∈ Uc such that
J (f) = inf

g∈Uc
J (g). (3.16)

Remark 3.2.

1) The derivative of J , at point f , in g direction is given by

(J ′(f),g) = Re((P (f)− Pobs, P (g))Bc + α(f ,g)Uc), ∀(f ,g) ∈ U2
c .

2) P ∈ L2
c(γ0) and P is defined regardless of any time-dependant function.

We now determine this function by setting the condition∫
γ0

Pdγ =
∫
γ0

Pobsdγ.

Proposition 3.5. Problem (3.16) admits one unique solution f ∈ Uc.

The proof of this proposition is very similar to that of Proposition 2.5.

For a wind-stress f ∈ Uc, (u(f), ρ(f), P (f)) is the solution of (3.2). We
note (ũ(f), ρ̃(f), P̃ (f)) the adjoint state which is the solution of the adjoint
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problem:

(−∂u∗(f)
∂t

,v) + a1m(u∗(f),v) + l1m(v,u∗(f)) + (ρ∗(f)∇0ρ0,v)

− (ρ∗(f)
∂ρ0

∂z
,

∫ z

−H
divm(v)dz′) +

1
ρmoy

(P ∗(f),
∫ 0

−H
divm(v)dz′)γ0

− (ν1v

∫ 0

−H
divm(u∗(f))dz′, γ0 divm(v))γ0 − d(u∗(f),v) = 0,

(−∂ρ
∗(f)
∂t

, φ) + a2m(ρ∗(f), φ)− ((u0∇m)ρ∗(f), φ)− (w0
∂ρ∗(f)
∂z

, φ)

− g

ρmoy
(
∫ z

−H
divm(u∗(f))dz′, φ) = 0,

1
ρmoy

(
∫ 0

−H
divm(u∗(f))dz′, Q)γ0 = (P (f)− Pobs, Q)γ0 ,

∀(v, φ,Q) ∈ W1c ∩H2
c × V2c ∩H2

c × L2
c(γ0),

u∗(f)(T ) = 0, ρ∗(f)(T ) = 0,∫
γ0

(P (f)− Pobs)dγ0 = 0.

(3.17)

Proposition 3.6. The adjoint problem (3.17) admits one unique solution
such that:

(ũ(f), ρ̃(f), P̃ (f)) ∈ L2(0, T,W1c × V2c × L2
c(γ0)).

The proof of this proposition is very similar to that of Proposition 2.6.

Proposition 3.7. J ′(f) = 0 if and only if αf − Λ−1γ0u∗(f) = 0 in Uc.
λ is the canonical isomorphism Uc −→ U ′c such that

〈g,v〉Uc,U ′c = (Λg,v)U ′c = (g,Λ−1v)Uc , ∀(g,v) ∈ Uc × U ′c.

Proof. (J ′(f),g) = Re(((P (f)− Pobs, P (g))Bc + α(f ,g)Uc), ∀(f ,g)) ∈ U2
c .

The third part of equation (3.17) implies

(J ′(f),g) = Re(α(f ,g)Uc + (
∫ 0

−H
divm(u∗(f))dz′, P (g))Bc), ∀(f ,g) ∈ U2

c .
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Setting (v, φ,Q) = (u∗(f), ρ∗(f), P ∗(f)) in problem (3.2) gives (according to
the definition of L1m):

(
∂u(g)
∂t

,u∗(f)) + a1m(u(g),u∗(f)) + l1m(u(g),u∗(f))

+
g

ρmoy
(ρ(g),

∫ z

−H
divm(u∗(f))dz′)

− (ν1vγ0(divm(u(g))),
∫ 0

−H
divm(u∗(f))dz′)γ0

− 1
ρmoy

(P (g),
∫ 0

−H
divm(u∗(f))dz′)γ0 + d(u(g),u∗(f)) = (g, γ0u∗(f))γ0 ,

(
∂ρ(g)
∂t

, ρ∗(f)) + a2m(ρ(g), ρ∗(f)) + l2m(u(g), ρ(g), ρ∗(f)) = 0,

− (
∫ 0

−H
divm(u(g))dz′, P ∗(f))γ0 = 0,

u(g)(0) = 0, ρ(g)(0) = 0.

By the time integration we then obtain:

−
∫ T

0
(
∂u∗(f)
∂t

,u(g))dt+
∫ T

0
a1m(u∗(f),u(g))dt

+
∫ T

0
l1m(u(g),u∗(f))(t)dt+

g

ρmoy

∫ T

0
(ρ(g),

∫ z

−H
divm(u∗(f))dz′)(t)dt

−
∫ T

0
(ν1vγ0(divm(u(g))),

∫ 0

−H
divm(u∗(f))dz′)γ0(t)dt

− 1
ρmoy

∫ T

0
(P (g),

∫ 0

−H
divm(u∗(f))dz′)γ0(t)dt+

∫ T

0
d(u(g),u∗(f))(t)dt

=
∫ T

0
(g, γ0u∗(f))γ0(t)dt,

−
∫ T

0
(
∂ρ∗(f)
∂t

, ρ(g))dt+
∫ T

0
a2m(ρ∗(f), ρ(g))dt

−
∫ T

0
l2m(u(g), ρ(g), ρ∗(f))(t)dt = 0,

−
∫ T

0
(
∫ 0

−H
divm(u(g))dz′, P ∗(f))γ0(t)dt = 0.
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So,

−
∫ T

0
(
∂u∗(f)
∂t

,u(g))dt+
∫ T

0
a1m(u∗(f),u(g))dt

+
∫ T

0
l1m(u(g),u∗(f))(t)dt+

g

ρmoy

∫ T

0
(
∫ z

−H
divm(u∗(f))dz′, ρ(g))(t)dt

−
∫ T

0
(ν1v

∫ 0

−H
divm(u∗(f))dz′, γ0(divm(u(g))))γ0(t)dt

− 1
ρmoy

∫ T

0
(
∫ 0

−H
divm(u∗(f))dz′, P (g))γ0(t)dt

−
∫ T

0
d(u∗(f),u(g))(t)dt =

∫ T

0
(γ0u∗(f),g)γ0(t)dt,

−
∫ T

0
(
∂ρ∗(f)
∂t

, ρ(g))dt+
∫ T

0
a2m(ρ∗(f), ρ(g))dt

−
∫ T

0
l2m(u(g), ρ(g), ρ∗(f))(t)dt = 0,

−
∫ T

0
(
∫ 0

−H
divm(u(g))dz′, P ∗(f))γ0(t)dt = 0.

Since (u∗(f), ρ∗(f), P ∗(f)) is the solution of the adjoint problem (3.17). We
thus obtain

−
∫ T

0
(ρ∗(f)

∂ρ0

∂z
,

∫ z

−H
divm(u(g))dz′)(t)dt+

∫ T

0
((ρ∗(f)∇0)ρ0,u(g))dt

=
g

ρmoy

∫ T

0
(
∫ z

−H
divm(u∗(f))dz′, ρ(g))(t)dt

and ∫ T

0
(P (f)− Pobs, P (g))γ0 =

∫ T

0
(γ0u∗(f),g)dt.

We can now conclude that J ′(f) = 0 if and only if

αf − Λ−1γ0u∗(f) = 0 in Uc.
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We have proved that the optimal control f , the solution of problem (3.16),
is characterized by the following set of equations:

(
∂u(f)
∂t

,v) + a1m(u(f),v) + l1m(u(f),v) + d(u(f),v)

+
g

ρmoy
(ρ(f),

∫ z

−H
div(v)dz′)− (ν1vγ0(divm(u(f))),

∫ 0

−H
divm(v)dz′)

+
1

ρmoy
(
∫ 0

−H
divm(v)dz′, P (f))γ0 = (f , γ0v),

(
∂ρ(g)
∂t

, φ) + a2m(ρ(g), φ) + l2m(u(g), ρ(g), φ) = 0,

(
∫ 0

−H
div(u(g))dz′, Q)γ0 = 0,

(−∂u∗(f)
∂t

,v) + a1m(u∗(f),v) + l1m(v,u∗(f)) + (ρ∗(f)∇0ρ0,v)

− (ρ∗(f)
∂ρ0

∂z
,

∫ z

−H
divm(v)dz′) +

1
ρmoy

(P ∗(f),
∫ 0

−H
divm(v))γ0

− (ν1v

∫ 0

−H
divm(u∗(f))dz′, γ0 divm(v))γ0 − d(u∗(f),v) = 0,

(−∂ρ
∗(f)
∂t

, φ) + a2m(ρ∗(f), φ)− ((u0∇m)ρ∗(f), φ)− (w0
∂ρ∗(f)
∂z

, φ)

− g

ρmoy
(
∫ z

−H
divm(u∗(f))dz′, φ) = 0,

1
ρmoy

(
∫ 0

−H
divm(u∗(f))dz′, Q)γ0 = (P (f)− Pobs, Q)γ0 ,

∀(v, φ,Q) ∈ W1c ∩H2
c × V2c ∩H2

c × L2
c(γ0),∫

γ0

(P (f)− Pobs)dγ0 = 0.

u∗(f)(T ) = u(f)(0) = 0, ρ∗(f)(T ) = ρ(f)(0) = 0,

αf − Λ−1γ0u∗(f) = 0 in Uc.
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France

e-mail: Aziz.Belmiloudi@insa-rennes.fr


