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Abstract. The density topologies with respect to measure and cate-
gory are motivation to consider the density topologies with respect to
invariant σ-ideals on R. The properties of such topologies, including
the separation axioms, are studied.

Notation

By R we shall denote the set of all reals numbers and by N the set of
positive integers. Let l stand for Lebesgue measure. The capitals L and L
denote the σ-algebra of all Lebesgue measurable sets in R and the σ-ideal
of all Lebesgue null sets. The natural topology on R is denoted by T0. If T
is a topology on R, then we fix the notation:

B(T ) — the σ-algebra of all Borel sets with respect to T ,
Ba(T ) — the σ-algebra of all sets having the Baire property with
respect to T ,
K(T ) — the σ-ideal of all meager sets with respect to T .
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For any set X ⊂ R, IntT X is the interior of X with respect to T , and
X
T is the closure of X with respect to T . If T = T0, then we use shortly the

following symbols: B, Ba, K, IntX,X. The symmetric difference of sets X
and Y we shall denote by X M Y , and S M J denotes the smallest σ-algebra
containing S and J . For any sets X and Y belonging to S, the fact that
X M Y ∈ J will be denoted by X ∼ Y . For each set X ⊂ R and a, t ∈ R,
we denote

tX = {y ∈ R : y = tx, x ∈ X},
X + a = {y ∈ R : y = x+ a, x ∈ X}.

By J0 we shall denote the ideal consisting of the empty set, and by Jω
the σ-ideal of the countable sets. Only proper σ-ideals are considered. The
cardinality of the continuum is denoted by c.

1. The concept of the density topology

Let X ∈ L. We say that 0 is a Lebesgue density point of X if
limh→0+ l(X ∩ [−h, h])/(2h) = 1. It is not difficult to check that the
last assertion is equivalent to the statement saying that limn→∞ l(nX ∩
[−1, 1]) = 2. This is equivalent to the fact that the sequence of characteris-
tic function {fn}n∈N = {χnX∩[−1,1] : n ∈ N} tends in measure to χ[−1,1] (see
[15]). Using the Riesz theorem, we obtain that the sequence {fn}n∈N con-
verges with respect to the σ-ideal of the Lebesgue null sets. It means that
every subsequence of the sequence {fn}n∈N contains subsequence convergent
to χ[−1,1] almost everywhere.

The concept of convergence with respect to a σ-ideal (see [14]) enables
one to introduce a density point with respect to the Baire category (see [13],
[15], [16]). We extend this concept to consider the density topologies with
respect to invariant σ-ideals.

Definition 1.1. We shall say that a family A of subsets of R is invariant if
for each X ∈ A and all n ∈ N, a ∈ R, we have that nX ∈ A and X+a ∈ A.

Definition 1.2. We shall say that a pair (S,J ), where S is a σ-algebra of
subsets of R and J is a σ-ideal of subsets of R, is invariant if J ⊂ S, and
both the σ-algebra S and the σ-ideal J are invariant.

We consider only invariant pairs (S,J ) such that B ⊂ S.

Remark 1.3. If J is an invariant σ-ideal, then the pair (B M J ,J ) is
invariant.

From now, let (S,J ) be an invariant pair.
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Definition 1.4. We shall say that 0 is a J -density point of an S-measurable
set X if and only if the sequence of characteristic functions {χnX∩[−1,1] :
n ∈ N} is convergent with respect to the σ-ideal J to the characteristic
function χ[−1,1] (it means that every subsequence of the sequence χ[−1,1]
contains a subsequence convergent to χ[−1,1] everywhere except for a set
belonging to J .

A point x0 ∈ R is a J -density point of a set X ∈ S if and only if 0 is a
J -density point of the set X − x0.

For each X ∈ S, we define

ΦJ (X) = {x ∈ R : x is a J -density point of X}.
The following property is an easy and useful characterization of the fact
that 0 is a J -density point of the set X.

Lemma 1.5 (cf. [3], [15]). The number 0 is a J -density point of the set
X ∈ S if and only if, for each increasing sequence {nk}k∈N of positive
integers, there exists a subsequence {nkj}j∈N such that

lim sup
j→∞

([−1, 1]\nkj X) ∈ J .

It is clear that the last condition has the form
∞⋂
i=1

∞⋃
j=i

([−1, 1]\nkj X) ∈ J .

Directly from the definition of a J -density point we have

Proposition 1.6. For every S-measurable set X, every positive integer n
and every real number a, if x ∈ ΦJ (X), then nx ∈ ΦJ (nX) and (x + a) ∈
ΦJ (X + a).

Proposition 1.7. For any S-measurable sets X and Y , if X ⊂ Y , then
ΦJ (X) ⊂ ΦJ (Y ).

As a consequence of the definition of a J -density point we have for each
σ-ideal J ⊂ S the following three propositions:

Proposition 1.8. For any S-measurable sets X and Y , the following con-
ditions hold:

I. if X ∼ Y , then ΦJ (X) = ΦJ (Y ),
II. ΦJ (X ∩ Y ) = ΦJ (X) ∩ ΦJ (Y ),

III. ΦJ (∅) = ∅, ΦJ (R) = R.
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We define the family TJ of S-measurable sets by

TJ = {X ∈ S : X ⊂ ΦJ (X)}.
Propositions 1.6 and 1.8 imply

Proposition 1.9. The family TJ has the following properties:
1. ∅,R ∈ TJ ,
2. TJ is closed under finite intersections,
3. if X ∈ J , then R\X ∈ TJ ,
4. TJ is invariant with respect to each operation of the form nx+a where
n ∈ N and a ∈ R.

We are also pointing out the following

Proposition 1.10. T0 ⊂ TJ .

Proof. Let V0 ∈ T0. Of course, V ∈ S. If V = ∅, then, by condition
III of Proposition 1.8, we have V ∈ TJ . Let x0 ∈ V . Then 0 ∈ V − x0.
Since V − x0 is open, there exists ε > 0 such that (−ε, ε) ⊂ V − x0. It
is obvious that, for every increasing sequence {ni}i∈N of positive integers,⋂∞
j=1
⋃∞
i=j([−1, 1]\ni(V −x0)) = ∅. This means that x0 is a J -density point

of V . Since x0 is an arbitrary point, we conclude that V ∈ TJ .

Although the family TJ containing ∅ and R is closed under finite inter-
sections, it need not be a topology on the real line.

Example 1.11. Let us consider the pair (B,Jω). Obviously (B,Jω) is an
invariant pair. However, the family TJω = {X ∈ B : X ⊂ ΦJω(X)} is not a
topology.

To prove this, we use the example given in Lemma 2.18 from [3]. Namely,
there exists a perfect set C ⊂ R such that each number x ∈ C is a Jω-density
point of the set R\C. Simultaneously, by Proposition 1.10, we have that
R\C ⊂ ΦJω(R\C). Hence ΦJω(R\C) = R. Let P be a non-Borel subset
of C. If x ∈ P , then {x} ∪ (R\C) ∈ TJω because {x} ∪ (R\C) ∈ B and
{x}∪(R\C) ⊂ ΦJω({x}∪(R\C)). But

⋃
x∈P ({x}∪(R\C)) = P∪(R\C) /∈ B.

Motivated by this example, we introduce the following

Definition 1.12. If the family

TJ = {X ∈ S : X ⊂ ΦJ (X)}
forms a topology, then TJ is called the J -density topology associated with
the pair (S,J ) or the J -density topology generated by the pair (S,J ).
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Example 1.13. If J is an invariant σ-ideal, then the pair (2R,J ) is invari-
ant and, by Propositions 1.7 and 1.9, we conclude that the family TJ is a
J -density topology associated with the pair (2R,J ).

The whole difficulty to prove that an invariant pair (S,J ) generates a
J -density topology lies in the verification whether the family TJ is closed
under an arbitrary union. In Example 1.13 we could avoid this difficulty
because of the fact that S = 2R. In some cases, the following property of
the operator ΦJ is very useful. We denote it by IV along to the properties
I–III in Proposition 1.8.

IV. For every S-measurable set X,

X ∼ ΦJ (X).

It is an analogue of the classical Lebesgue density theorem in the abstract
sense when we consider the density with respect to an invariant σ-ideal J .

Proposition 1.14 (cf. [1]). The following conditions are equivalent:
1. ∀X∈S X \ ΦJ (X) ∈ J ,
2. ∀X∈S X ∼ ΦJ (X).

By Proposition 1.14, condition IV can be interpreted as: J -almost every
point of every S-measurable set is a J -density point of that set.

Definition 1.15. We say that an invariant pair (S,J ) has the J -density
property if condition IV is satisfied.

The J -density property for a pair (S,J ) implies that for every X ∈ S
we have ΦJ (X) ∈ S.

Operator ΦJ satisfying conditions I–IV is called, in the lifting theory, the
lower density operator on (R, S,J ). Thus in the context of Proposition 6.37
and Theorem 6.39 from [10] we have

Theorem 1.16. Every invariant pair (S,J ) having the J -density property
and satisfying countable chain condition (c.c.c.) generates the J -density
topology TJ .

Theorem 1.17. If an invariant pair (S,J ) has the J -density property and
generates the J -density topology, then K(TJ ) = J and Ba(TJ ) = S.

There are two fundamental examples in which, by Theorem 1.16, we get
the abstract density topologies.
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Example 1.18. Let S = L and J = L. It is well known that the pair
(S,J ) is invariant. Also, (S,J ) satisfies c.c.c. Moreover, for each setX ∈ S,
ΦJ (X) is the set of density points of X. By the Lebesgue density theorem,
we have that X ∼ ΦJ (X) and thus, by Theorem 1.16, the family

TJ = {X ∈ S : X ⊂ ΦJ (X)}
is a topology known as the density topology, usually labelled by Td and
called the d-topology(see [4], [5]).

Example 1.19. Let S = Ba and J = K. The pair (S,J ) is invariant and
satisfies c.c.c. We easily conclude that, for each set V ∈ T0, V ⊂ ΦJ (V ) ⊂ V
(see [15]). Since V \V is a meager set, we have that ΦJ (V ) ∼ V . If X ∈ S,
then X = V M Z where V ∈ T0 and Z ∈ J . Since X ∼ V , from Proposition
1.8 we have ΦJ (X) = ΦJ (V ). This implies that ΦJ (X) ∼ X. By Theorem
1.16, the family

TJ = {X ∈ S : X ⊂ ΦJ (X)}
forms a topology. It is a category analogue of the density topology (see [13],
[3]). In the literature on that topic, it is known as the I-density topology.
By that reason we shall denote it is the sequel by TI .

Further examples of the J -density topologies generated by invariant pairs
(S,J ) having the J -density property are included in [1]. They concern
product σ-ideals, and σ-algebras on the plane, related to them.

The J -density property for the pairs (S,J ) in Examples 1.18 and 1.19
plays an important role in deriving the J -density topology by a lower den-
sity operator. We consider an example convincing us that the J -density
property of the pair (S,J ) is not necessary for the operator ΦJ to induce
the J -density topology.

First, we pay attention to the following

Lemma 1.20. If (Sn,Jn)n∈N is a sequence of invariant pairs such that, for
every positive integer n, the pair (Sn,Jn)n∈N induces the J -density topol-
ogy TJn, then the pair (S,J ), where S =

⋂∞
n=1 Sn and J =

⋂∞
n=1 Jn, is

invariant and yields the J -density topology TJ . Moreover, TJ =
⋂∞
n=1 TJn.

Proof. It is clear that the pair (S,J ) is invariant. To prove that TJ =⋂∞
n=1 TJn , it is sufficient to observe that, for each X ∈ S, we have

ΦJ (X) =
∞⋂
n=1

ΦJn(X).

For every positive integer n, J ⊂ Jn. This implies that ΦJ (X) ⊂⋂∞
n=1 ΦJn(X). Now, let x ∈

⋂∞
n=1 ΦJn(X). We show that x ∈ ΦJ (X).
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Let {ni}i∈N be an arbitrary sequence of positive integers. We prove that
there exists a subsequence {nik}k∈N such that χnik (X−x)∩[−1,1] −−−→

k→∞
χ[−1,1]

J -a.e. Since x ∈
⋂∞
n=1 ΦJn(X), we can construct, by induction, a se-

quence of sequences {n(m)
i }i,m∈N such that, for every m, {n(m)

i }i,m∈N ⊂
{n(m−1)

i }i,m∈N, where {n(0)
i } = {ni}i∈N, and a sequence of sets {Am}m∈N

such thatAm ∈ Jm for each positive integerm, and that χ
n

(m)
i (X−x)∩[−1,1]

(x)

−−−→
i→∞

χ[−1,1](x) for any x /∈ Am. This implies that the sequence {nim}m∈N,

where nim = n
(m)
m for each m ∈ N (in other words {nim}m∈N is the diag-

onal sequence for the double sequence {n(m)
i }i,m∈N) has the property that

χnim (X−x)∩[−1,1](x) −−−→
i→∞

χ[−1,1](x) for any x /∈
⋂∞
m=1Am. Namely, if x /∈⋂∞

m=1Am, there exists m0 such that x /∈ Am0 . Then χ
n

(m0)
i (X−x)∩[−1,1]

(x)

−−−→
i→∞

χ[−1,1](x). Hence the sequence {χnim (X−x)∩[−1,1](x)}m∈N converges

to χ[−1,1](x). Since
⋂∞
m=1Am ∈ J , we conclude that x is a J -density point

of X. Hence x ∈ ΦJ (X). Now, we have

TJ = {X ∈ S : X ⊂ ΦJ (X)} = {X ∈
∞⋂
n=1

Sn : X ⊂
∞⋂
n=1

ΦJn(X)}

=
∞⋂
n=1

{X ∈ Sn : X ⊂ ΦJn(X)} =
∞⋂
n=1

TJn .

It follows that TJ is a topology as the intersection of topologies and, at the
same time, TJ =

⋂∞
n=1 TJn .

Example 1.21. Let S = Ba ∩ L and J = K ∩ L. The pair (S,J ) is
invariant. By Examples 1.18, 1.19 and Lemma 1.20 the pair (S,J ) generates
the J -density topology TJ for which TJ = Td ∩ TI . We point out that the
pair (S,J ) does not possess the J -density property. Namely, let Borel sets
A and B be a decomposition of reals, such that A ∈ L, B ∈ K (see [12]).
Then A ∈ S and A /∈ J . By Lemma 1.20, we have ΦJ (A) = ΦL(A)∩ΦK(A).
Since ΦL(A) = ∅, we have that ΦJ (A) = ∅. Consequently, ΦJ (X) ∼ X for
each X ∈ S.

It is also true in this example that:

Lemma 1.22 (cf. [2]). Ba ∩ L = B M (K ∩ L).

This example shows that the J -density property is not necessary to as-
sert that an invariant pair (S,J ) yields the J -density topology. This is a
motivation for considering the J -density topology related to an invariant
pair (S,J ) without the J -density property.
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We have the following

Observation 1.23. For every invariant σ-ideal J , there exists the small-
est σ-algebra S(J ) such that (S(J ),J ) is an invariant pair generating the
J -density topology.

Proof. Let {St}t∈T be the family of all invariant σ-algebras such that, for
each t ∈ T , the pair (St,J ) is invariant and yields the J -density topology
T tJ . We see that T 6= ∅ because, by Example 1.13, the pair (2R,J ) is
invariant and yields the J -density topology. Putting S(J ) =

⋂
t∈T St, we

have that the pair (S(J ),J ) is invariant and

TJ = {X ∈ S(J ) : X ⊂ ΦJ (X)}

=
⋂
t∈T
{X ∈ St : X ⊂ ΦJ (X)} =

⋂
t∈T
T tJ .

The last assertion means that the pair (S(J ),J ) induces the J -density
topology.

Remark 1.24. By the definition of the invariant pair (S(J ),J ), it is clear
that

B M J ⊂ S(J ) ⊂ 2R.

In Examples 1.18 and 1.19 we see that if J = L or J = K, then S(J ) =
B M J . Also, for J = K ∩ L, from Example 1.21 and Lemma 1.22 we have
S(J ) = B M J . However, Example 1.11 says that if J is the σ-ideal of
countable sets, then S(J ) 6= B = B M J . Simultaneously, S(J ) ⊂ B M
(K ∩ L). Thus S(J ) 6= 2R.

Problem 1.25. Does there exist an invariant σ-ideal J such that S(J ) =
2R?

2. Properties of the density topologies

In the definition of the J -density topology TJ generated by an invari-
ant pair (S,J ), only some S-measurable sets are taken under considera-
tion: namely, an S-measurable set X is TJ -open if X ⊂ ΦJ (X). Other
S-measurable sets are not members of the family TJ . In this context, the
natural question arises:

How can we decrease the σ-algebra S in the sense of inclusion to another
σ-algebra S ′ ⊂ S such that the pair (S ′,J ) is invariant and yields the
J -density topology T ′J which is identical with the J -density topology TJ ?
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Theorem 2.1. Let (S,J ) be an invariant pair generating the J -density
topology TJ . The family K(TJ ) of meager sets with respect to the topology
TJ is identical with J if and only if there exists a σ-algebra S ′ such that

1. J ⊂ S ′ ⊂ S,
2. (S ′,J ) is invariant,
3. (S ′,J ) has the J -density property,
4. T ′J = {X ∈ S ′ : X ⊂ ΦJ (X)} is the J -density topology associated

with the pair (S ′,J ), and T ′J = TJ .

Proof. Necessity. Let S ′ = TJ M J . Since J = K(TJ ), we have that
S ′ is the σ-algebra of all sets having the Baire property with respect to
the topology TJ . Because J ⊂ S and TJ ⊂ S, we see that condition 1 is
satisfied. By Proposition 1.9, we see that the family TJ is invariant with
respect to every linear operation of the form nx + a where n is a positive
integer and a is an arbitrary real number. It implies that the pair (S ′,J ) is
invariant. Now, we prove that the pair (S ′,J ) has the J -density property.
Let X ∈ S ′. Then X = V M Y where V ∈ TJ and Y ∈ J . Thus ΦJ (X) =
ΦJ (V M Y ) = ΦJ (V ) ⊃ V . Hence X\ΦJ (X) ⊂ (V M Y )\V ⊂ Y ∈ J .
Since S ′ is a σ-algebra, we conclude, by Proposition 1.14 that X ∼ ΦJ (X)
for any X ∈ S ′. Hence the pair (S ′,J ) has the J -density property. Further,
we prove condition 4. It is sufficient to establish that T ′J = TJ . Since
S ′ ⊂ S, we have that T ′J ⊂ TJ . The inclusion TJ ⊂ S ′ implies TJ ⊂ T ′J .
Thus we conclude that T ′J is a topology and, by the definition of the family
T ′J , we see that it is the J -density topology associated with the pair (S ′,J ).

Sufficiency. Let us consider the pair (S ′,J ) satisfying conditions 1–4. By
condition 2, we can define the family T ′J with respect to the pair (S ′,J ).
Condition 4 guarantees that T ′J is the J -density topology associated with
the pair (S ′,J ). Condition 3 implies that the topology T ′J is induced by the
lower operator ΦJ and thus, by Theorem 1.17 the family K(T ′J ) of meager
sets with respect to the topology T ′J is identical with the σ-ideal J . The
equality T ′J = TJ implies that K(T ′J ) = J .

Remark 2.2. There exists an example of an invariant pair (S,J ) without
the J -density property for which there exists a σ-algebra S ′ ⊂ S such that
the pair (S ′,J ) is invariant and has the J -density property. This example
is based on an extension of Lebesgue measure (see [6], [8]).

Proposition 2.3. If (S,J ) is an invariant pair generating the J -density
topology TJ , such that K(TJ ) = J , then the smallest σ-algebra S(J ) such
that the invariant pair (S(J ),J ) generates the J -density topology identical
with TJ is equal to Ba(TJ ).
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Proof. By the proof of Theorem 2.1, we conclude that S(J ) ⊂ TJ M J .
Since TJ ⊂ S(J ) and J ⊂ S(J ), we have that TJ M J ⊂ S(J ). Thus
S(J ) = TJ M J = TJ M K(TJ ) = Ba(TJ ).

Proposition 2.4. If (S,J ) is an invariant pair generating the J -density
topology TJ , then

1. B M J ⊂ TJ M K(TJ ),
2. B M J ⊂ S(J ) ⊂ S.

Moreover, if the pair (S,J ) has the J -density property, then TJ M K(TJ ) =
S(J ) = S.

Proof. The above inclusions are obvious. If the pair (S,J ) has the J -
density property, then, by Theorem 1.17, we have K(TJ ) = J and S =
TJ M K(TJ ). Thus, by the previous proposition, the equality holds.

Corollary 2.5. If (B M J ,J ) is an invariant pair generating the J -density
topology TJ and (B M J ,J ) has the J -density property, then Ba(TJ ) =
S(J ) = B M J .

Now, we estimate the cardinality of S(J ). We need the following lemmas:

Lemma 2.6. For each X ⊂ R, we have ΦJ0(X) ⊂ X.

Proof. Let x ∈ ΦJ0(X). Thus 0 is a J0-density point of the set X − x.
From Lemma 1.5 we easily conclude that 0 ∈ X − x. Thus x ∈ X.

Lemma 2.7. There exists a nonempty perfect set F ⊂ R such that
ΦJ0((R\F ) ∪ {x}) = (R\F ) ∪ {x} for each x ∈ F .

Proof. Let H be any Hamel basis of the space of reals over the field of
rational numbers, containing a nonempty perfect set F (see [9]). Since
R\F ∈ T0, Proposition 1.10 gives that R\F ⊂ ΦJ0(R\F ). We have to prove
that each point x ∈ F is a J0-density point of (R\F ) ∪ {x}. Let {nk}k∈N
be any increasing subsequence of positive integers. We show that

[−1, 1] ⊂
∞⋃
j=1

∞⋂
k=j

nk(((R\F ) ∪ {x})− x).

Let α ∈ [−1, 1]. Clearly, we may assume that α 6= 0. There exists at
most one positive integer k such that α /∈ nk((R\F ) − x). Indeed, let us
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suppose that we have k1 and k2 such that k1 6= k2 and α /∈ nk1((R\F )− x),
α /∈ nk2((R\F )− x). Consequently,

α

nk1

+ x = z1 and
α

nk2

+ x = z2, where z1, z2 ∈ F.

Since α 6= 0, we have z1 6= z2 6= x and

(nk1 − nk2)x+ nk1z1 + nk2z2 = 0.

Since H is a Hamel basis, nk1 = nk2 = 0, contrary to the fact that nk1 6= nk2

and, consequently, α ∈
⋃∞
l=1
⋂∞
k=l nk(((R\F )∪{x})−x). Therefore (R\F )∪

{x} ⊂ ΦJ0((R\F ) ∪ {x}). By the previous lemma, we have ΦJ0((R\F ) ∪
{x}) = (R\F ) ∪ {x}.

Theorem 2.8. If TJ is the family associated with the invariant pair (S,J ),
then TJ \T0 6= ∅.

Proof. By Lemma 2.7, there exists a nonempty perfect set F ⊂ R such
that ΦJ0((R\F ) ∪ {x}) = (R\F ) ∪ {x} for each x ∈ F . Let x ∈ F and
Y = (R\F ) ∪ {x}, then Y ∈ B. Thus Y ∈ S and Y = ΦJ0(Y ) ⊂ ΦJ (Y ).
Hence Y ∈ TJ \T0.

Theorem 2.9. For every invariant pair (S,J ) generating the J -density
topology TJ , cardS = 2c.

Proof. By Lemma 2.7 there exists a nonempty perfect set F ⊂ R such that,
for each x ∈ F , we have ΦJ0((R\F ) ∪ {x}) = (R\F ) ∪ {x}. It is clear that
ΦJ0((R\F )∪{x}) ⊂ ΦJ ((R\F )∪{x}). Since (R\F )∪{x} ∈ S, we conclude
that (R\F ) ∪ {x} ∈ TJ for each x ∈ F . Let us suppose that cardS < 2c.
Then there exists a set X ⊂ F such that (R\F ) ∪ X /∈ S. At the same
time, (R\F ) ∪X =

⋃
x∈X((R\F ) ∪ {x}) ∈ TJ and, by the definition of the

J -density topology, it should be a member of S. This contradiction proves
that cardS = 2c.

Corollary 2.10. For every invariant σ-ideal J , cardS(J ) = 2c.

Now we present some properties of the density topologies with respect to
σ-ideals having some connections with measure and category.

Definition 2.11. We shall say that a σ-ideal J ⊂ 2R is controlled by mea-
sure if J ⊂ L or L ⊂ J .

Definition 2.12. We shall say that a σ-ideal J ⊂ 2R is controlled by cat-
egory if J ⊂ K or K ⊂ J .
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The following lemma will be useful in further considerations.

Lemma 2.13. If (S1,J1) and (S2,J2) are invariant pairs generating the
J1-density topology TJ1 and the J2-density topology TJ2, respectively, and
S1 ⊂ S2, J1 ⊂ J2, then the pair (S2,J1) is invariant and generates the
J1-density topology T 2

J1
for which TJ1 ⊂ T 2

J1
⊂ TJ2.

Proof. It is obvious that the pair (S2,J1) is invariant. Let T 2
J1

= {X ∈
S2 : X ⊂ ΦJ∞(X)}. By Proposition 1.9, it is sufficient to show that the
union of any subfamily of sets belonging to the family T 2

J1
is a member of

T 2
J1

. Since J1 ⊂ J2, therefore T 2
J1
⊂ TJ2 . Hence the union of any subfamily

of subsets of the family T 2
J1

is a TJ2-open set. Thus it is an S2-measurable
set and, in that way, belongs to the family T 2

J1
. Since S1 ⊂ S2, we have

TJ1 ⊂ T 2
J1

.

Theorem 2.14. If J is an invariant σ-ideal such that J ⊂ K , then the
J -density topology TJ generated by the pair (S(J ),J ) has the property that
K(TJ ) = K and Ba(TJ ) = Ba.

Proof. We show that K(TJ ) ⊂ K. Let X ∈ K(TJ ). It suffices to assume
that a X is a TJ -nowhere dense closed set. It is clear that X ∈ S(J ). It is
obvious that the pair (Ba,J ) is invariant. From Example 1.21 and Lemma
2.13 we conclude that this pair generates the J -density topology T ′J , and
TJ ⊂ T ′J ⊂ TI . This implies that R\X ∈ TI and then X ∈ Ba. The set
X having the Baire property has the form X = V M Z, where V ∈ T0
and Z ∈ K. We show that V = ∅. Let us suppose that V 6= ∅. Of course,
V ∈ TJ . Since X is TJ -nowhere dense, there exists a nonempty TJ -open set
V1 such that V1 ⊂ V and V1 ∩X = ∅. Since TJ ⊂ TI , we have V1 ∈ TI . As
V1 6= ∅, we infer that V1 /∈ K. Since Z = X M V = X M [(V \V1) ∪ V1] ⊃ V1,
we get a contradiction with the fact that Z ∈ K and V1 /∈ K. Finally, V = ∅
and X = Z. Therefore X ∈ K. Now, we show that K ⊂ K(TJ ). Let
X be a nowhere dense set with respect to the natural topology. Assume
that X is closed. It is clear that X has the Baire property with respect
to TJ . Thus X = V M Z, where V ∈ TJ ⊂ TI and Z ∈ K(TJ ) ⊂ K.
We have V = X M Z, hence V ∈ K. So, the set V as TI-open must be
empty. This implies that X = Z. Consequently, X ∈ K(TJ ). We show
that Ba(TJ ) = Ba. By Proposition 1.10, we have that T0 ⊂ TJ and by
the first part of the proof that K(TJ ) = K, we infer that Ba ⊂ Ba(TJ ).
We have observed that S(J ) ⊂ Ba, then TJ ⊂ Ba. Including the fact that
K(TJ ) = K we get that Ba(TJ ) ⊂ Ba. Finally, Ba(TJ ) = Ba.



ON DENSITY TOPOLOGIES WITH RESPECT TO INVARIANT σ-IDEALS 213

Corollary 2.15. If S = Ba ∩ L and J = K ∩ L, then K(TJ ) = K and
Ba(TJ ) = Ba.

Proof. By Lemma 1.22 and Remark 1.24, S(J ) = Ba ∩ L. Thus, by The-
orem 2.14, K(TJ ) = K and Ba(TJ ) = Ba.

Property 2.16. No invariant pair (S,J ) generating the J -density topol-
ogy TJ and such that J $ K possesses the J -density property.

Proof. By Theorem 2.14, the J -density topology TJ generated by the pair
(S(J ),J ) does not possess the J -density property since, otherwise, by
Theorem 1.17, we would have that K(TJ ) = J , contrary to the fact that
J 6= K. Since S(J ) ⊂ S, we deduce that (S,J ) does not possess the
J -density property.

It is worth observing that the property described in Theorem 2.14 does
not hold in the case of the σ-ideal L considered instead of K. Indeed, let
S = Ba ∩ L and J = K ∩ L. Then, by Corollary 2.15, we have that
K(TJ ) = K. Hence K(TJ )\L 6= ∅ and L\K(TJ ) 6= ∅.

For invariant σ-ideals containing L or K, we have the following

Theorem 2.17. If J is an invariant σ-ideal such that J ⊃ K (J ⊃ L),
then

1. S(J ) = B M J ,
2. (S(J ),J ) has the J -density property,
3. J = K (J = L) if and only if TJ = TI (TJ = Td),

where TJ is the topology generated by the invariant pair (S(J ),J ).

Proof. Let us suppose that J ⊃ K. In the case of condition 1, it is sufficient
to prove that the invariant pair (B M J ,J ) yields the J -density topology.
First of all, we notice that the pair (B M J ,J ) has the J -density property.
Namely, let X ∈ B M J ; then X = Y M Z, where Y ∈ B and Z ∈ J . Thus

X\ΦJ (X) = (Y M Z)\ΦJ (Y M Z)

= (Y M Z)\ΦJ (Y ) ⊂ (Y M Z)\ΦK(Y ) ⊂ (Y \ΦK(Y )) ∪ Z ∈ J .

Hence, by Proposition 1.14, for each X ∈ B M J , we have X ∼ ΦJ (X).
Thus, by Proposition 1.8, the operator ΦJ is a lower density operator.
Moreover, we prove that the pair (B M J ,J ) satisfies countable chain con-
dition (c.c.c.). In fact, it is clear that the pair (B,K) satisfies c.c.c. Let
us suppose that the pair (B M J ,J ) does not satisfy c.c.c. Then there
exists a sequence {Xα}α<ω1 of pairwise disjoint sets such that, for each
α < ω1, Xα = Yα M Zα, where Yα ∈ B, Zα ∈ J and Xα ∈ (B M J )\J . We
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put W0 = Y0 and Wα = Yα\
⋃
β<αWβ for any 0 < α < ω1. If α1, α2 < ω1,

and α1 6= α2, then Wα1 ∩Wα2 = ∅. Since Wα ∈ B\J for 0 ≤ α < ω1, this
contradicts the fact that the pair (B,K) satisfies c.c.c. Now, by Theorem
1.16, we deduce that the pair (B M J ,J ) yields the J -density topology. In
that way, S(J ) = B M J . The proof of condition 1 is completed. We see
that it contains a proof of the fact that the pair (S(J ),J ) has the J -density
property.

Now, we prove condition 3. Necessity is obvious. Let us show sufficiency.
We only need to prove that J ⊂ K. Suppose that J \K 6= ∅. Let X ∈ J \K.
We consider two cases: X ∈ B M K and X /∈ B M K. If X ∈ B M K, then
ΦK(X) ∩ X ∈ TI and ΦK(X) ∩ X 6= ∅ because X /∈ K. According to the
assumption, we have that ΦK(X)∩X ⊂ ΦJ (ΦK(X)∩X). The last assertion
is not true because ΦJ (ΦK(X) ∩ X) = ∅. Let X /∈ B M K. Since X ∈ J ,
then R\X ∈ TJ . Thus R\X ∈ TI . It follows that X ∈ B M K, which
contradicts the fact that X /∈ B M K. The proof of the case that J ⊃ L
runs in the same way.

The following theorem gives us another property of invariant pairs having
the density property.

Theorem 2.18. If invariant pairs (S1,J ), (S2,J ), having the density prop-
erty generate the J -density topologies T 1

J and T 2
J , respectively, then

T 1
J = T 2

J ⇐⇒ S1 = S2.

Proof. Sufficiency is obvious.
Necessity. If X ∈ S1, then ΦJ (X) ∈ T 1

J because, by the J -density
property, we have that ΦJ (X) ∈ S1 and ΦJ (X) ⊂ ΦJ (ΦJ (X)). Since
T 1
J = T 2

J , therefore ΦJ (X) ∈ T 2
J . Simultaneously, ΦJ (X) M X ∈ J .

Therefore X ∈ S2 . The proof of the case when S2 ⊂ S1 runs in the same
way.

Corollary 2.19. In the family of invariant σ-algebras over R the unique σ-
algebra S such that the invariant pair (S,K) has the K-density property and
yields the K-density topology identical with TI is the family of sets having
the Baire property.

Corollary 2.20. In the family of invariant σ-algebras over R the unique
σ-algebra S such that the invariant pair (S,L) has the L-density property
and yields the L-density topology identical with Td is the family of Lebesgue
measurable sets.
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3. The separation axioms of the density topologies

We are going to present some properties of the J -density topology TJ
in the aspect of separation axioms. Our results will mostly concern the
σ-ideals controlled by measure and category.

Property 3.1. The space (R, TJ ), where TJ is the J -density topology gen-
erated by the invariant pair (S,J ), is Hausdorff.

Proof. By Proposition 1.10, T0 ⊂ TJ . Hence (R, TJ ) is Hausdorff.

Property 3.2. If a σ-ideal J is controlled by category, then the topologi-
cal space (R, TJ ) where TJ is the J -density topology generated by the pair
(S(J ),J ) is not regular.

Proof. Case I. Let us suppose that J ⊂ K. Let us observe that the set Q of
rational numbers is TJ -closed. If J ⊃ Jw, then it is clear that ΦJ (R\Q) =
R. Hence R\Q is TJ -open and Q is TJ -closed. Let J = J0. We show that
ΦJ0(R\Q) = R\Q. By Lemma 2.6, we have that ΦJ0(R\Q) ⊂ R\Q. Let
x ∈ R\Q. We prove that x ∈ ΦJ0(R\Q). It suffices to show that, for an
arbitrary sequence {ni}i∈N of positive integers, we have

[−1, 1] ⊂ ni
(
(R\Q)− x

)
. (∗)

For any i ∈ N and α ∈ [−1, 1] ∩Q, it follows that
α

ni
+ x ∈ R\Q.

Let us notice that, for each α ∈ [−1, 1]\Q, the set

Aα =
{
i ∈ N :

α

ni
+ x /∈ R\Q

}
.

is at most a singleton. Indeed, suppose that there are i1, i2 ∈ N, i1 6= i2, and
α/ni1 + x = q1 and α/ni2 + x = q2, q1, q2 ∈ Q. Hence α(1/ni1 − 1/ni2) =
q1−q2, contrary to the fact that α is an irrational number. Thus there exists
a positive integer k ∈ Aα such that, for i ≥ k, α/ni + x ∈ R\Q. Therefore

α ∈ ni
(
(R\Q)− x

)
and the condition (∗) is satisfied. We have obtained that Q is closed in an
arbitrary topology TJ .

Further, we prove that, for any x /∈ Q, the sets {x} and Q cannot be
separated by TJ -open sets. Let us suppose that there exist x /∈ Q and
TJ -open sets Vx 3 x and V ⊃ Q, such that Vx ∩ V = ∅. It is clear that
S(J ) ⊂ Ba, because the pair (Ba,J ) is invariant and yields the J -density
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topology. Since TJ ⊂ S(J ) ⊂ Ba, the sets Vx, V have the Baire property.
Also,

Vx ⊂ ΦJ (Vx) ⊂ ΦK(Vx)
and

V ⊂ ΦJ (V ) ⊂ ΦK(V ).
Hence the nonempty sets Vx and V are open in the I-density topology. This
implies that Vx /∈ K and V /∈ K. Now, we prove that each open set V in
the I-density topology and containing a dense set D is residual. First, we
show that, for every nonempty open set W , W ∩ V /∈ K. Since W ∩D 6= ∅,
there exist x ∈ V and a positive number δ, such that (x − δ, x + δ) ⊂ W .
Hence V ∩ (x− δ, x+ δ) /∈ K. Therefore V ∩W /∈ K. The set V having the
Baire property has the form V = A ∪ B, where A ∈ Gδ and B ∈ K. Since
V ∩W /∈ K, therefore A ∩W 6= ∅. This means that A is residual and thus
V is residual. So, V ∩ Vx 6= ∅, contrary to the fact that V ∩ Vx = ∅.

Case II. K ⊂ J . By Theorem 2.17, S(J ) = B M J . Similarly as in the
previous case, we prove that, for any x /∈ Q, the sets {x} and Q cannot
be separated by TJ -open sets. Let us suppose that there exist x /∈ Q and
TJ -open sets Vx 3 x and V ⊃ Q, such that Vx ∩ V = ∅. Since TJ ⊂ B M J ,
therefore Vx, V ∈ B M J . It is clear that Vx /∈ J . Hence Vx /∈ K. Also,
Q ⊂ V ⊂ ΦJ (V ). Note that

B M J = {X ⊂ R : X = W M Z, W ∈ T0, Z ∈ J }.
Hence V = W M Z, where W ∈ T0 and Z ∈ J . Thus ΦJ (V ) = ΦJ (W ).
By Proposition 1.8 and 1.10, we have that W ⊂ ΦJ (W ) ⊂ W . Theorefore
ΦJ (W ) = W ∪ K, where K ∈ K. This implies that Q ⊂ V ⊂ ΦJ (V ) =
W ∪ K. We see that the set ΦJ (V ) has the Baire property. For every
nonempty open set U , U ∩ V /∈ J since, otherwise,

∅ 6= U ∩Q ⊂ U ∩ V ⊂ ΦJ (U) ∩ ΦJ (V ) = ΦJ (U ∩ V ) = ∅.
So, U ∩W /∈ J . Then U ∩W 6= ∅. Hence W is dense and open. Thus
ΦJ (V ) is residual. Then

∅ 6= Vx ∩ ΦJ (V ) ⊂ ΦJ (Vx) ∩ ΦJ (V ) = ΦJ (Vx ∩ V ).

Hence Vx ∩ V 6= ∅.

Property 3.3. The space (R, TJ ), where TJ is the J -density topology gen-
erated by an invariant pair (S,J ) does not possess the Lindelöf property.

Proof. According to Lemma 2.7 there exists a nonempty perfect set F such
that, for each x ∈ F , we have Vx = (R\F ) ∪ {x} ∈ TJ . Hence the family
{Vx}x∈F is a covering of R, but it has no countable subcovering of R.
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Property 3.4. Let TJ be the J -density topology generated by an invariant
pair (S,J ). Then the space (R, TJ ) is not separable.

Proof. Let TJ be the J -density topology generated by an invariant pair
(S,J ) and let TJ0 be the J0-density topology generated by the invariant pair
(S(J ),J ). It is clear that S(J0) ⊂ S. Lemma 2.13 implies that TJ0 ⊂ TJ .
Therefore it is sufficient to prove that the space (R, TJ0) is not separable.
Let X ⊂ R be a countable set. We show that there exists a nonempty set
W ∈ TJ0 such that W ∩X = ∅. Of course, we may assume that X is infinite.
Let X = {x1, x2, . . . , xn, . . . }. Let us consider R as a vector space E over
the field Q of all rational numbers. Let B be a Hamel basis of E. For any
element x ∈ E we have the unique representation x = q1b1+q2b2+. . .+qmbm,
where m ∈ N and qi ∈ Q \ {0}, bi ∈ B for 1 ≤ i ≤ m. Let B(x) =

⋃m
i=1{bi}

and B(X) =
⋃∞
i=1B(xi). Putting W = E\lin(B(X)), where lin(B(X))

denotes the vector space over Q generated by the set B(X), we have that
W ∩ X = ∅. We prove that W ∈ TJ0 . Firstly we see that W is the
complement of a countable set. Thus X ∈ S(J0) as a Borel set. Further
we prove that W ⊂ ΦJ0(W ). Let x ∈ W . Of course, x 6= 0. According to
Lemma 1.5, we have to prove that

[−1, 1] ⊂
∞⋃
j=1

∞⋂
k=j

nk(W − x),

where {nk}k∈N is an increasing sequence of positive integers. Let α ∈ [−1, 1].
The case, where α = 0 is obvious. Suppose that α 6= 0. Let us observe that
a set Aα =

{
k ∈ N : α/nk + x /∈W

}
is at most a singleton. Suppose to the

contrary that there are nk1 , nk2 ⊂ Aα and nk1 6= nk2 . By definition of the
set W , we have that

α

nk1

+ x ∈ lin(B(X))

and
α

nk2

+ x ∈ lin(B(X)).

Hence
(nk1 − nk2)x ∈ lin(B(X)).

Thus x ∈ lin(B(X)), contrary to the fact that x /∈ lin(B(X)). Finally, there
exists a positive integer j ∈ Aα such that for k ≥ j, α/nk + x ∈ W . It
implies that

α ∈
∞⋃
j=1

∞⋂
k=j

nk(W − x).
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Property 3.5. Assume that J is an invariant σ-ideal such that L ⊂ J ,
and TJ is the J -density topology generated by an invariant pair (S(J ),J ).
The space (R, TJ ) is regular if and only if J = L.

Proof. Sufficiency. If J = L, then S(J ) = B M L = L and the J -density
topology TJ is the density topology Td which is regular (see [4]).

Necessity. Let L ⊂ J . Then, by Theorem 2.17, S(J ) = B M J . Since
L ⊂ J , it is clear that B M J = L M J . For any X ∈ J , the inner
Lebesgue measure, l∗(X) = 0. Using the Marczewski method (see [11]), we
can define a measure µ on the σ-algebra L M J in the following manner.
Let X ∈ L M J . Then X = Y M Z, where Y ∈ L and Z ∈ J . Putting
µ(X) = l(Y ), we get that µ is a correctly defined measure on S(J ). Let us
notice that, for the measure µ so defined, the σ-ideal Iµ of µ-null sets is of
the form

Iµ = {X ∈ S(J ) : X = A ∪B, A ∈ L, B ∈ J }.

Hence Iµ = J . At the same time, µ is an extension of Lebesgue measure
l and the pair (S(J ),J ) is invariant. Moreover, for any n ∈ N, a ∈ R and
X ∈ S(J ), we have µ(nX) = nµ(X) and µ(X + a) = µ(X). According to
the above properties, we claim that a point x ∈ R is a µ-density point of a
set X ∈ S(J ) if and only if it is a J -density point of X. Thus

TJ = {X ∈ S(J ) : X ⊂ ΦJ (X)} = {X ∈ S(J ) : X ⊂ Φµ(X)},

where

Φµ(X) = {x ∈ R : x is a density point of X with respect to measure µ}.

By Theorem 2 from [6], we have that TJ = {X : X = A\B, A ∈ Td, µ(B) =
0}. By Property 7 from [7], TJ is regular if TJ = Td. We show that
J = L. It is sufficient to show that J ⊂ L. Let X ∈ J . Then R\X ∈ TJ .
Thus R\X ∈ Td, which implies R\X ∈ L and X ∈ L. It is clear that
0 = µ(X) = l(X). Hence X ∈ L.
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