ON DENSITY TOPOLOGIES WITH RESPECT TO INVARIANT σ -IDEALS

J. HEJDUK

Received June 13, 2001 and, in revised form, December 17, 2001

Abstract. The density topologies with respect to measure and category are motivation to consider the density topologies with respect to invariant σ -ideals on \mathbb{R} . The properties of such topologies, including the separation axioms, are studied.

Notation

By \mathbb{R} we shall denote the set of all reals numbers and by \mathbb{N} the set of positive integers. Let l stand for Lebesgue measure. The capitals \mathcal{L} and \mathbb{L} denote the σ -algebra of all Lebesgue measurable sets in \mathbb{R} and the σ -ideal of all Lebesgue null sets. The natural topology on \mathbb{R} is denoted by \mathcal{T}_0 . If \mathcal{T} is a topology on \mathbb{R} , then we fix the notation:

- $\mathcal{B}(\mathcal{T})$ the σ -algebra of all Borel sets with respect to \mathcal{T} ,
- $\mathcal{B}a(\mathcal{T})$ the σ -algebra of all sets having the Baire property with respect to \mathcal{T} ,
- $\mathcal{K}(\mathcal{T})$ the σ -ideal of all meager sets with respect to \mathcal{T} .

²⁰⁰⁰ Mathematics Subject Classification. 28A05, 54A10.

Key words and phrases. Density point, density topology, the separation axioms, invariant ideals and algebras.

For any set $X \subset \mathbb{R}$, $\operatorname{Int}_{\mathcal{T}} X$ is the interior of X with respect to \mathcal{T} , and $\overline{X}^{\mathcal{T}}$ is the closure of X with respect to \mathcal{T} . If $\mathcal{T} = \mathcal{T}_0$, then we use shortly the following symbols: \mathcal{B} , $\mathcal{B}a$, \mathbb{K} , $\operatorname{Int} X$, \overline{X} . The symmetric difference of sets X and Y we shall denote by $X \bigtriangleup Y$, and $S \bigtriangleup \mathcal{J}$ denotes the smallest σ -algebra containing S and \mathcal{J} . For any sets X and Y belonging to S, the fact that $X \bigtriangleup Y \in \mathcal{J}$ will be denoted by $X \sim Y$. For each set $X \subset \mathbb{R}$ and $a, t \in \mathbb{R}$, we denote

$$tX = \{y \in \mathbb{R} : y = tx, \ x \in X\},\ X + a = \{y \in \mathbb{R} : y = x + a, \ x \in X\}.$$

By \mathcal{J}_0 we shall denote the ideal consisting of the empty set, and by \mathcal{J}_{ω} the σ -ideal of the countable sets. Only proper σ -ideals are considered. The cardinality of the continuum is denoted by \mathfrak{c} .

1. The concept of the density topology

Let $X \in \mathcal{L}$. We say that 0 is a Lebesgue density point of X if $\lim_{h\to 0^+} l(X\cap [-h,h])/(2h) = 1$. It is not difficult to check that the last assertion is equivalent to the statement saying that $\lim_{n\to\infty} l(nX\cap [-1,1])=2$. This is equivalent to the fact that the sequence of characteristic function $\{f_n\}_{n\in\mathbb{N}}=\{\chi_{nX\cap [-1,1]}:n\in\mathbb{N}\}$ tends in measure to $\chi_{[-1,1]}$ (see [15]). Using the Riesz theorem, we obtain that the sequence $\{f_n\}_{n\in\mathbb{N}}$ converges with respect to the σ -ideal of the Lebesgue null sets. It means that every subsequence of the sequence $\{f_n\}_{n\in\mathbb{N}}$ contains subsequence convergent to $\chi_{[-1,1]}$ almost everywhere.

The concept of convergence with respect to a σ -ideal (see [14]) enables one to introduce a density point with respect to the Baire category (see [13], [15], [16]). We extend this concept to consider the density topologies with respect to invariant σ -ideals.

Definition 1.1. We shall say that a family \mathcal{A} of subsets of \mathbb{R} is invariant if for each $X \in \mathcal{A}$ and all $n \in \mathbb{N}$, $a \in \mathbb{R}$, we have that $nX \in \mathcal{A}$ and $X + a \in \mathcal{A}$.

Definition 1.2. We shall say that a pair (S, \mathcal{J}) , where S is a σ -algebra of subsets of \mathbb{R} and \mathcal{J} is a σ -ideal of subsets of \mathbb{R} , is invariant if $\mathcal{J} \subset S$, and both the σ -algebra S and the σ -ideal \mathcal{J} are invariant.

We consider only invariant pairs (S, \mathcal{J}) such that $\mathcal{B} \subset S$.

Remark 1.3. If \mathcal{J} is an invariant σ -ideal, then the pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ is invariant.

From now, let $(\mathcal{S}, \mathcal{J})$ be an invariant pair.

Definition 1.4. We shall say that 0 is a \mathcal{J} -density point of an \mathcal{S} -measurable set X if and only if the sequence of characteristic functions $\{\chi_{nX\cap[-1,1]}: n \in \mathbb{N}\}$ is convergent with respect to the σ -ideal \mathcal{J} to the characteristic function $\chi_{[-1,1]}$ (it means that every subsequence of the sequence $\chi_{[-1,1]}$ contains a subsequence convergent to $\chi_{[-1,1]}$ everywhere except for a set belonging to \mathcal{J} .

A point $x_0 \in \mathbb{R}$ is a \mathcal{J} -density point of a set $X \in \mathcal{S}$ if and only if 0 is a \mathcal{J} -density point of the set $X - x_0$.

For each $X \in \mathcal{S}$, we define

$$\Phi_{\mathcal{J}}(X) = \{x \in \mathbb{R} : x \text{ is a } \mathcal{J}\text{-density point of } X\}.$$

The following property is an easy and useful characterization of the fact that 0 is a \mathcal{J} -density point of the set X.

Lemma 1.5 (cf. [3], [15]). The number 0 is a \mathcal{J} -density point of the set $X \in \mathcal{S}$ if and only if, for each increasing sequence $\{n_k\}_{k\in\mathbb{N}}$ of positive integers, there exists a subsequence $\{n_{k_j}\}_{j\in\mathbb{N}}$ such that

$$\limsup_{j \to \infty} ([-1, 1] \setminus n_{k_j} X) \in \mathcal{J}.$$

It is clear that the last condition has the form

$$\bigcap_{i=1}^{\infty} \bigcup_{j=i}^{\infty} ([-1,1] \backslash n_{k_j} X) \in \mathcal{J}.$$

Directly from the definition of a \mathcal{J} -density point we have

Proposition 1.6. For every S-measurable set X, every positive integer n and every real number a, if $x \in \Phi_{\mathcal{J}}(X)$, then $nx \in \Phi_{\mathcal{J}}(nX)$ and $(x + a) \in \Phi_{\mathcal{J}}(X + a)$.

Proposition 1.7. For any S-measurable sets X and Y, if $X \subset Y$, then $\Phi_{\mathcal{J}}(X) \subset \Phi_{\mathcal{J}}(Y)$.

As a consequence of the definition of a \mathcal{J} -density point we have for each σ -ideal $\mathcal{J} \subset S$ the following three propositions:

Proposition 1.8. For any S-measurable sets X and Y, the following conditions hold:

I. if
$$X \sim Y$$
, then $\Phi_{\mathcal{J}}(X) = \Phi_{\mathcal{J}}(Y)$,

II.
$$\Phi_{\mathcal{J}}(X \cap Y) = \Phi_{\mathcal{J}}(X) \cap \Phi_{\mathcal{J}}(Y)$$
,

III.
$$\Phi_{\mathcal{J}}(\emptyset) = \emptyset$$
, $\Phi_{\mathcal{J}}(\mathbb{R}) = \mathbb{R}$.

We define the family $\mathcal{T}_{\mathcal{I}}$ of \mathcal{S} -measurable sets by

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S} : X \subset \Phi_{\mathcal{J}}(X) \}.$$

Propositions 1.6 and 1.8 imply

Proposition 1.9. The family $\mathcal{T}_{\mathcal{J}}$ has the following properties:

- 1. $\emptyset, \mathbb{R} \in \mathcal{T}_{\mathcal{J}}$
- 2. $\mathcal{T}_{\mathcal{J}}$ is closed under finite intersections,
- 3. if $X \in \mathcal{J}$, then $\mathbb{R} \backslash X \in \mathcal{T}_{\mathcal{J}}$,
- 4. $\mathcal{T}_{\mathcal{J}}$ is invariant with respect to each operation of the form nx + a where $n \in \mathbb{N}$ and $a \in \mathbb{R}$.

We are also pointing out the following

Proposition 1.10. $\mathcal{T}_0 \subset \mathcal{T}_{\mathcal{J}}$.

Proof. Let $V_0 \in \mathcal{T}_0$. Of course, $V \in \mathcal{S}$. If $V = \emptyset$, then, by condition III of Proposition 1.8, we have $V \in \mathcal{T}_{\mathcal{J}}$. Let $x_0 \in V$. Then $0 \in V - x_0$. Since $V - x_0$ is open, there exists $\varepsilon > 0$ such that $(-\varepsilon, \varepsilon) \subset V - x_0$. It is obvious that, for every increasing sequence $\{n_i\}_{i \in \mathbb{N}}$ of positive integers, $\bigcap_{j=1}^{\infty} \bigcup_{i=j}^{\infty} ([-1,1] \setminus n_i(V-x_0)) = \emptyset$. This means that x_0 is a \mathcal{J} -density point of V. Since x_0 is an arbitrary point, we conclude that $V \in \mathcal{T}_{\mathcal{J}}$.

Although the family $\mathcal{T}_{\mathcal{J}}$ containing \emptyset and \mathbb{R} is closed under finite intersections, it need not be a topology on the real line.

Example 1.11. Let us consider the pair $(\mathcal{B}, \mathcal{J}_{\omega})$. Obviously $(\mathcal{B}, \mathcal{J}_{\omega})$ is an invariant pair. However, the family $\mathcal{T}_{\mathcal{J}_{\omega}} = \{X \in \mathcal{B} : X \subset \Phi_{\mathcal{J}_{\omega}}(X)\}$ is not a topology.

To prove this, we use the example given in Lemma 2.18 from [3]. Namely, there exists a perfect set $C \subset \mathbb{R}$ such that each number $x \in C$ is a \mathcal{J}_{ω} -density point of the set $\mathbb{R}\backslash C$. Simultaneously, by Proposition 1.10, we have that $\mathbb{R}\backslash C \subset \Phi_{\mathcal{J}_{\omega}}(\mathbb{R}\backslash C)$. Hence $\Phi_{\mathcal{J}_{\omega}}(\mathbb{R}\backslash C) = \mathbb{R}$. Let P be a non-Borel subset of C. If $x \in P$, then $\{x\} \cup (\mathbb{R}\backslash C) \in \mathcal{T}_{\mathcal{J}_{\omega}}$ because $\{x\} \cup (\mathbb{R}\backslash C) \in \mathcal{B}$ and $\{x\} \cup (\mathbb{R}\backslash C) \subset \Phi_{\mathcal{J}_{\omega}}(\{x\} \cup (\mathbb{R}\backslash C))$. But $\bigcup_{x \in P}(\{x\} \cup (\mathbb{R}\backslash C)) = P \cup (\mathbb{R}\backslash C) \notin \mathcal{B}$.

Motivated by this example, we introduce the following

Definition 1.12. If the family

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S} : X \subset \Phi_{\mathcal{J}}(X) \}$$

forms a topology, then $\mathcal{T}_{\mathcal{J}}$ is called the \mathcal{J} -density topology associated with the pair $(\mathcal{S}, \mathcal{J})$ or the \mathcal{J} -density topology generated by the pair $(\mathcal{S}, \mathcal{J})$.

Example 1.13. If \mathcal{J} is an invariant σ -ideal, then the pair $(2^{\mathbb{R}}, \mathcal{J})$ is invariant and, by Propositions 1.7 and 1.9, we conclude that the family $\mathcal{T}_{\mathcal{J}}$ is a \mathcal{J} -density topology associated with the pair $(2^{\mathbb{R}}, \mathcal{J})$.

The whole difficulty to prove that an invariant pair (S, \mathcal{J}) generates a \mathcal{J} -density topology lies in the verification whether the family $\mathcal{T}_{\mathcal{J}}$ is closed under an arbitrary union. In Example 1.13 we could avoid this difficulty because of the fact that $S = 2^{\mathbb{R}}$. In some cases, the following property of the operator $\Phi_{\mathcal{J}}$ is very useful. We denote it by IV along to the properties I–III in Proposition 1.8.

IV. For every S-measurable set X,

$$X \sim \Phi_{\mathcal{J}}(X)$$
.

It is an analogue of the classical Lebesgue density theorem in the abstract sense when we consider the density with respect to an invariant σ -ideal \mathcal{J} .

Proposition 1.14 (cf. [1]). The following conditions are equivalent:

- 1. $\forall_{X \in S} \ X \setminus \Phi_{\mathcal{J}}(X) \in \mathcal{J}$,
- 2. $\forall_{X \in S} \ X \sim \Phi_{\mathcal{J}}(X)$.

By Proposition 1.14, condition IV can be interpreted as: \mathcal{J} -almost every point of every \mathcal{S} -measurable set is a \mathcal{J} -density point of that set.

Definition 1.15. We say that an invariant pair (S, \mathcal{J}) has the \mathcal{J} -density property if condition IV is satisfied.

The \mathcal{J} -density property for a pair (S, \mathcal{J}) implies that for every $X \in S$ we have $\Phi_{\mathcal{J}}(X) \in S$.

Operator $\Phi_{\mathcal{J}}$ satisfying conditions I–IV is called, in the lifting theory, the lower density operator on $(\mathbb{R}, S, \mathcal{J})$. Thus in the context of Proposition 6.37 and Theorem 6.39 from [10] we have

Theorem 1.16. Every invariant pair (S, \mathcal{J}) having the \mathcal{J} -density property and satisfying countable chain condition (c.c.c.) generates the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$.

Theorem 1.17. If an invariant pair (S, \mathcal{J}) has the \mathcal{J} -density property and generates the \mathcal{J} -density topology, then $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathcal{J}$ and $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = S$.

There are two fundamental examples in which, by Theorem 1.16, we get the abstract density topologies.

Example 1.18. Let $S = \mathcal{L}$ and $\mathcal{J} = \mathbb{L}$. It is well known that the pair (S, \mathcal{J}) is invariant. Also, (S, \mathcal{J}) satisfies c.c.c. Moreover, for each set $X \in S$, $\Phi_{\mathcal{J}}(X)$ is the set of density points of X. By the Lebesgue density theorem, we have that $X \sim \Phi_{\mathcal{J}}(X)$ and thus, by Theorem 1.16, the family

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S} : X \subset \Phi_{\mathcal{J}}(X) \}$$

is a topology known as the density topology, usually labelled by \mathcal{T}_d and called the d-topology(see [4], [5]).

Example 1.19. Let S = Ba and $\mathcal{J} = \mathbb{K}$. The pair (S, \mathcal{J}) is invariant and satisfies c.c.c. We easily conclude that, for each set $V \in \mathcal{T}_0$, $V \subset \Phi_{\mathcal{J}}(V) \subset \overline{V}$ (see [15]). Since $\overline{V} \setminus V$ is a meager set, we have that $\Phi_{\mathcal{J}}(V) \sim V$. If $X \in S$, then $X = V \triangle Z$ where $V \in \mathcal{T}_0$ and $Z \in \mathcal{J}$. Since $X \sim V$, from Proposition 1.8 we have $\Phi_{\mathcal{J}}(X) = \Phi_{\mathcal{J}}(V)$. This implies that $\Phi_{\mathcal{J}}(X) \sim X$. By Theorem 1.16, the family

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S} : X \subset \Phi_{\mathcal{J}}(X) \}$$

forms a topology. It is a category analogue of the density topology (see [13], [3]). In the literature on that topic, it is known as the \mathcal{I} -density topology. By that reason we shall denote it is the sequel by $\mathcal{T}_{\mathcal{I}}$.

Further examples of the \mathcal{J} -density topologies generated by invariant pairs $(\mathcal{S}, \mathcal{J})$ having the \mathcal{J} -density property are included in [1]. They concern product σ -ideals, and σ -algebras on the plane, related to them.

The \mathcal{J} -density property for the pairs $(\mathcal{S}, \mathcal{J})$ in Examples 1.18 and 1.19 plays an important role in deriving the \mathcal{J} -density topology by a lower density operator. We consider an example convincing us that the \mathcal{J} -density property of the pair $(\mathcal{S}, \mathcal{J})$ is not necessary for the operator $\Phi_{\mathcal{J}}$ to induce the \mathcal{J} -density topology.

First, we pay attention to the following

Lemma 1.20. If $(S_n, \mathcal{J}_n)_{n \in \mathbb{N}}$ is a sequence of invariant pairs such that, for every positive integer n, the pair $(S_n, \mathcal{J}_n)_{n \in \mathbb{N}}$ induces the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}_n}$, then the pair (S, \mathcal{J}) , where $S = \bigcap_{n=1}^{\infty} S_n$ and $\mathcal{J} = \bigcap_{n=1}^{\infty} \mathcal{J}_n$, is invariant and yields the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$. Moreover, $\mathcal{T}_{\mathcal{J}} = \bigcap_{n=1}^{\infty} \mathcal{T}_{\mathcal{J}_n}$.

Proof. It is clear that the pair (S, \mathcal{J}) is invariant. To prove that $\mathcal{T}_{\mathcal{J}} = \bigcap_{n=1}^{\infty} \mathcal{T}_{\mathcal{J}_n}$, it is sufficient to observe that, for each $X \in S$, we have

$$\Phi_{\mathcal{J}}(X) = \bigcap_{n=1}^{\infty} \Phi_{\mathcal{J}_n}(X).$$

For every positive integer n, $\mathcal{J} \subset \mathcal{J}_n$. This implies that $\Phi_{\mathcal{J}}(X) \subset \bigcap_{n=1}^{\infty} \Phi_{\mathcal{J}_n}(X)$. Now, let $x \in \bigcap_{n=1}^{\infty} \Phi_{\mathcal{J}_n}(X)$. We show that $x \in \Phi_{\mathcal{J}}(X)$.

Let $\{n_i\}_{i\in\mathbb{N}}$ be an arbitrary sequence of positive integers. We prove that there exists a subsequence $\{n_{i_k}\}_{k\in\mathbb{N}}$ such that $\chi_{n_{i_k}(X-x)\cap[-1,1]} \xrightarrow[k\to\infty]{} \chi_{[-1,1]}$ \mathcal{J} -a.e. Since $x\in\bigcap_{n=1}^\infty \varPhi_{\mathcal{J}_n}(X)$, we can construct, by induction, a sequence of sequences $\{n_i^{(m)}\}_{i,m\in\mathbb{N}}$ such that, for every m, $\{n_i^{(m)}\}_{i,m\in\mathbb{N}}$ \subset $\{n_i^{(m-1)}\}_{i,m\in\mathbb{N}}$, where $\{n_i^{(0)}\}=\{n_i\}_{i\in\mathbb{N}}$, and a sequence of sets $\{A_m\}_{m\in\mathbb{N}}$ such that $A_m\in\mathcal{J}_m$ for each positive integer m, and that $\chi_{n_i^{(m)}(X-x)\cap[-1,1]}(x)$ $\xrightarrow[i\to\infty]{}\chi_{[-1,1]}(x)$ for any $x\notin A_m$. This implies that the sequence $\{n_{i_m}\}_{m\in\mathbb{N}}$, where $n_{i_m}=n_m^{(m)}$ for each $m\in\mathbb{N}$ (in other words $\{n_{i_m}\}_{m\in\mathbb{N}}$ is the diagonal sequence for the double sequence $\{n_i^{(m)}\}_{i,m\in\mathbb{N}}$) has the property that $\chi_{n_{i_m}(X-x)\cap[-1,1]}(x)\xrightarrow[i\to\infty]{}\chi_{[-1,1]}(x)$ for any $x\notin\bigcap_{m=1}^\infty A_m$. Namely, if $x\notin\bigcap_{m=1}^\infty A_m$, there exists m_0 such that $x\notin A_{m_0}$. Then $\chi_{n_i^{(m_0)}(X-x)\cap[-1,1]}(x)$ $\xrightarrow[i\to\infty]{}\chi_{[-1,1]}(x)$. Hence the sequence $\{\chi_{n_{i_m}(X-x)\cap[-1,1]}(x)\}_{m\in\mathbb{N}}$ converges to $\chi_{[-1,1]}(x)$. Since $\bigcap_{m=1}^\infty A_m\in\mathcal{J}$, we conclude that x is a \mathcal{J} -density point of X. Hence $x\in\mathcal{\Phi}_{\mathcal{J}}(X)$. Now, we have

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S} : X \subset \Phi_{\mathcal{J}}(X) \} = \{ X \in \bigcap_{n=1}^{\infty} \mathcal{S}_n : X \subset \bigcap_{n=1}^{\infty} \Phi_{\mathcal{J}_n}(X) \}$$
$$= \bigcap_{n=1}^{\infty} \{ X \in \mathcal{S}_n : X \subset \Phi_{\mathcal{J}_n}(X) \} = \bigcap_{n=1}^{\infty} \mathcal{T}_{\mathcal{J}_n}.$$

It follows that $\mathcal{T}_{\mathcal{J}}$ is a topology as the intersection of topologies and, at the same time, $\mathcal{T}_{\mathcal{J}} = \bigcap_{n=1}^{\infty} \mathcal{T}_{\mathcal{J}_n}$.

Example 1.21. Let $S = \mathcal{B}a \cap \mathcal{L}$ and $\mathcal{J} = \mathbb{K} \cap \mathbb{L}$. The pair (S, \mathcal{J}) is invariant. By Examples 1.18, 1.19 and Lemma 1.20 the pair (S, \mathcal{J}) generates the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ for which $\mathcal{T}_{\mathcal{J}} = \mathcal{T}_d \cap \mathcal{T}_{\mathcal{I}}$. We point out that the pair (S, \mathcal{J}) does not possess the \mathcal{J} -density property. Namely, let Borel sets A and B be a decomposition of reals, such that $A \in \mathbb{L}$, $B \in \mathbb{K}$ (see [12]). Then $A \in \mathcal{S}$ and $A \notin \mathcal{J}$. By Lemma 1.20, we have $\Phi_{\mathcal{J}}(A) = \Phi_{\mathbb{L}}(A) \cap \Phi_{\mathbb{K}}(A)$. Since $\Phi_{\mathbb{L}}(A) = \emptyset$, we have that $\Phi_{\mathcal{J}}(A) = \emptyset$. Consequently, $\Phi_{\mathcal{J}}(X) \sim X$ for each $X \in \mathcal{S}$.

It is also true in this example that:

Lemma 1.22 (cf. [2]).
$$\mathcal{B}a \cap \mathcal{L} = \mathcal{B} \triangle (\mathbb{K} \cap \mathbb{L})$$
.

This example shows that the \mathcal{J} -density property is not necessary to assert that an invariant pair $(\mathcal{S}, \mathcal{J})$ yields the \mathcal{J} -density topology. This is a motivation for considering the \mathcal{J} -density topology related to an invariant pair $(\mathcal{S}, \mathcal{J})$ without the \mathcal{J} -density property.

We have the following

Observation 1.23. For every invariant σ -ideal \mathcal{J} , there exists the smallest σ -algebra $\mathcal{S}(\mathcal{J})$ such that $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ is an invariant pair generating the \mathcal{J} -density topology.

Proof. Let $\{S_t\}_{t\in T}$ be the family of all invariant σ -algebras such that, for each $t\in T$, the pair (S_t,\mathcal{J}) is invariant and yields the \mathcal{J} -density topology $T_{\mathcal{J}}^t$. We see that $T\neq\emptyset$ because, by Example 1.13, the pair $(2^{\mathbb{R}},\mathcal{J})$ is invariant and yields the \mathcal{J} -density topology. Putting $S(\mathcal{J})=\bigcap_{t\in T}S_t$, we have that the pair $(S(\mathcal{J}),\mathcal{J})$ is invariant and

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S}(\mathcal{J}) : X \subset \Phi_{\mathcal{J}}(X) \}$$
$$= \bigcap_{t \in T} \{ X \in \mathcal{S}_t : X \subset \Phi_{\mathcal{J}}(X) \} = \bigcap_{t \in T} \mathcal{T}_{\mathcal{J}}^t.$$

The last assertion means that the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ induces the \mathcal{J} -density topology.

Remark 1.24. By the definition of the invariant pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$, it is clear that

$$\mathcal{B} \triangle \mathcal{J} \subset \mathcal{S}(\mathcal{J}) \subset 2^{\mathbb{R}}$$
.

In Examples 1.18 and 1.19 we see that if $\mathcal{J} = \mathbb{L}$ or $\mathcal{J} = \mathbb{K}$, then $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$. Also, for $\mathcal{J} = \mathbb{K} \cap \mathbb{L}$, from Example 1.21 and Lemma 1.22 we have $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$. However, Example 1.11 says that if \mathcal{J} is the σ -ideal of countable sets, then $\mathcal{S}(\mathcal{J}) \neq \mathcal{B} = \mathcal{B} \triangle \mathcal{J}$. Simultaneously, $\mathcal{S}(\mathcal{J}) \subset \mathcal{B} \triangle (\mathbb{K} \cap \mathbb{L})$. Thus $\mathcal{S}(\mathcal{J}) \neq 2^{\mathbb{R}}$.

Problem 1.25. Does there exist an invariant σ -ideal \mathcal{J} such that $\mathcal{S}(\mathcal{J}) = 2^{\mathbb{R}}$?

2. Properties of the density topologies

In the definition of the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ generated by an invariant pair $(\mathcal{S}, \mathcal{J})$, only some \mathcal{S} -measurable sets are taken under consideration: namely, an \mathcal{S} -measurable set X is $\mathcal{T}_{\mathcal{J}}$ -open if $X \subset \Phi_{\mathcal{J}}(X)$. Other \mathcal{S} -measurable sets are not members of the family $\mathcal{T}_{\mathcal{J}}$. In this context, the natural question arises:

How can we decrease the σ -algebra \mathcal{S} in the sense of inclusion to another σ -algebra $\mathcal{S}' \subset \mathcal{S}$ such that the pair $(\mathcal{S}', \mathcal{J})$ is invariant and yields the \mathcal{J} -density topology $\mathcal{T}'_{\mathcal{J}}$ which is identical with the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$?

Theorem 2.1. Let (S, \mathcal{J}) be an invariant pair generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$. The family $\mathcal{K}(\mathcal{T}_{\mathcal{J}})$ of meager sets with respect to the topology $\mathcal{T}_{\mathcal{J}}$ is identical with \mathcal{J} if and only if there exists a σ -algebra S' such that

- 1. $\mathcal{J} \subset \mathcal{S}' \subset \mathcal{S}$,
- 2. (S', \mathcal{J}) is invariant,
- 3. (S', \mathcal{J}) has the \mathcal{J} -density property,
- 4. $\mathcal{T}'_{\mathcal{J}} = \{X \in \mathcal{S}' : X \subset \Phi_{\mathcal{J}}(X)\}\$ is the \mathcal{J} -density topology associated with the pair $(\mathcal{S}', \mathcal{J})$, and $\mathcal{T}'_{\mathcal{J}} = \mathcal{T}_{\mathcal{J}}$.

Proof. Necessity. Let $S' = T_{\mathcal{J}} \triangle \mathcal{J}$. Since $\mathcal{J} = \mathcal{K}(T_{\mathcal{J}})$, we have that \mathcal{S}' is the σ -algebra of all sets having the Baire property with respect to the topology $\mathcal{T}_{\mathcal{J}}$. Because $\mathcal{J} \subset \mathcal{S}$ and $\mathcal{T}_{\mathcal{J}} \subset \mathcal{S}$, we see that condition 1 is satisfied. By Proposition 1.9, we see that the family $\mathcal{T}_{\mathcal{J}}$ is invariant with respect to every linear operation of the form nx + a where n is a positive integer and a is an arbitrary real number. It implies that the pair $(\mathcal{S}', \mathcal{J})$ is invariant. Now, we prove that the pair (S', \mathcal{J}) has the \mathcal{J} -density property. Let $X \in \mathcal{S}'$. Then $X = V \triangle Y$ where $V \in \mathcal{T}_{\mathcal{J}}$ and $Y \in \mathcal{J}$. Thus $\Phi_{\mathcal{J}}(X) =$ $\Phi_{\mathcal{J}}(V \triangle Y) = \Phi_{\mathcal{J}}(V) \supset V$. Hence $X \setminus \Phi_{\mathcal{J}}(X) \subset (V \triangle Y) \setminus V \subset Y \in \mathcal{J}$. Since S' is a σ -algebra, we conclude, by Proposition 1.14 that $X \sim \Phi_{\mathcal{J}}(X)$ for any $X \in \mathcal{S}'$. Hence the pair $(\mathcal{S}', \mathcal{J})$ has the \mathcal{J} -density property. Further, we prove condition 4. It is sufficient to establish that $T'_{\mathcal{I}} = T_{\mathcal{I}}$. Since $\mathcal{S}' \subset \mathcal{S}$, we have that $\mathcal{T}'_{\mathcal{I}} \subset \mathcal{T}_{\mathcal{I}}$. The inclusion $\mathcal{T}_{\mathcal{I}} \subset \mathcal{S}'$ implies $\mathcal{T}_{\mathcal{I}} \subset \mathcal{T}'_{\mathcal{I}}$. Thus we conclude that $\mathcal{T}'_{\mathcal{I}}$ is a topology and, by the definition of the family $\mathcal{T}'_{\mathcal{I}}$, we see that it is the \mathcal{J} -density topology associated with the pair $(\mathcal{S}', \mathcal{J})$. Sufficiency. Let us consider the pair (S', \mathcal{J}) satisfying conditions 1–4. By condition 2, we can define the family $\mathcal{T}'_{\mathcal{J}}$ with respect to the pair (S', \mathcal{J}) . Condition 4 guarantees that $T'_{\mathcal{J}}$ is the $\tilde{\mathcal{J}}$ -density topology associated with the pair (S', \mathcal{J}) . Condition 3 implies that the topology $\mathcal{T}'_{\mathcal{I}}$ is induced by the lower operator $\Phi_{\mathcal{J}}$ and thus, by Theorem 1.17 the family $\mathcal{K}(\mathcal{T}'_{\mathcal{I}})$ of meager sets with respect to the topology $\mathcal{T}'_{\mathcal{J}}$ is identical with the σ -ideal \mathcal{J} . The equality $T'_{\mathcal{I}} = T_{\mathcal{I}}$ implies that $\mathcal{K}(T'_{\mathcal{I}}) = \mathcal{I}$.

Remark 2.2. There exists an example of an invariant pair (S, \mathcal{J}) without the \mathcal{J} -density property for which there exists a σ -algebra $S' \subset S$ such that the pair (S', \mathcal{J}) is invariant and has the \mathcal{J} -density property. This example is based on an extension of Lebesgue measure (see [6], [8]).

Proposition 2.3. If (S, \mathcal{J}) is an invariant pair generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$, such that $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathcal{J}$, then the smallest σ -algebra $S(\mathcal{J})$ such that the invariant pair $(S(\mathcal{J}), \mathcal{J})$ generates the \mathcal{J} -density topology identical with $\mathcal{T}_{\mathcal{J}}$ is equal to $\mathcal{B}a(\mathcal{T}_{\mathcal{J}})$.

Proof. By the proof of Theorem 2.1, we conclude that $\mathcal{S}(\mathcal{J}) \subset \mathcal{T}_{\mathcal{J}} \triangle \mathcal{J}$. Since $\mathcal{T}_{\mathcal{J}} \subset \mathcal{S}(\mathcal{J})$ and $\mathcal{J} \subset \mathcal{S}(\mathcal{J})$, we have that $\mathcal{T}_{\mathcal{J}} \triangle \mathcal{J} \subset \mathcal{S}(\mathcal{J})$. Thus $\mathcal{S}(\mathcal{J}) = \mathcal{T}_{\mathcal{J}} \triangle \mathcal{J} = \mathcal{T}_{\mathcal{J}} \triangle \mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathcal{B}a(\mathcal{T}_{\mathcal{J}})$.

Proposition 2.4. If (S, \mathcal{J}) is an invariant pair generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$, then

- 1. $\mathcal{B} \triangle \mathcal{J} \subset \mathcal{T}_{\mathcal{J}} \triangle \mathcal{K}(\mathcal{T}_{\mathcal{J}})$,
- 2. $\mathcal{B} \wedge \mathcal{J} \subset \mathcal{S}(\mathcal{J}) \subset \mathcal{S}$.

Moreover, if the pair (S, \mathcal{J}) has the \mathcal{J} -density property, then $\mathcal{T}_{\mathcal{J}} \triangle \mathcal{K}(\mathcal{T}_{\mathcal{J}}) = S(\mathcal{J}) = S$.

Proof. The above inclusions are obvious. If the pair (S, \mathcal{J}) has the \mathcal{J} -density property, then, by Theorem 1.17, we have $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathcal{J}$ and $S = \mathcal{T}_{\mathcal{J}} \triangle \mathcal{K}(\mathcal{T}_{\mathcal{J}})$. Thus, by the previous proposition, the equality holds.

Corollary 2.5. If $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ is an invariant pair generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ and $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ has the \mathcal{J} -density property, then $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$.

Now, we estimate the cardinality of $S(\mathcal{J})$. We need the following lemmas:

Lemma 2.6. For each $X \subset \mathbb{R}$, we have $\Phi_{\mathcal{J}_0}(X) \subset X$.

Proof. Let $x \in \Phi_{\mathcal{J}_0}(X)$. Thus 0 is a \mathcal{J}_0 -density point of the set X - x. From Lemma 1.5 we easily conclude that $0 \in X - x$. Thus $x \in X$.

Lemma 2.7. There exists a nonempty perfect set $F \subset \mathbb{R}$ such that $\Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\}) = (\mathbb{R}\backslash F) \cup \{x\}$ for each $x \in F$.

Proof. Let H be any Hamel basis of the space of reals over the field of rational numbers, containing a nonempty perfect set F (see [9]). Since $\mathbb{R}\backslash F \in \mathcal{T}_0$, Proposition 1.10 gives that $\mathbb{R}\backslash F \subset \Phi_{\mathcal{J}_0}(\mathbb{R}\backslash F)$. We have to prove that each point $x \in F$ is a \mathcal{J}_0 -density point of $(\mathbb{R}\backslash F) \cup \{x\}$. Let $\{n_k\}_{k\in\mathbb{N}}$ be any increasing subsequence of positive integers. We show that

$$[-1,1] \subset \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} n_k(((\mathbb{R}\backslash F) \cup \{x\}) - x).$$

Let $\alpha \in [-1,1]$. Clearly, we may assume that $\alpha \neq 0$. There exists at most one positive integer k such that $\alpha \notin n_k((\mathbb{R}\backslash F) - x)$. Indeed, let us

suppose that we have k_1 and k_2 such that $k_1 \neq k_2$ and $\alpha \notin n_{k_1}((\mathbb{R}\backslash F) - x)$, $\alpha \notin n_{k_2}((\mathbb{R}\backslash F) - x)$. Consequently,

$$\frac{\alpha}{n_{k_1}} + x = z_1$$
 and $\frac{\alpha}{n_{k_2}} + x = z_2$, where $z_1, z_2 \in F$.

Since $\alpha \neq 0$, we have $z_1 \neq z_2 \neq x$ and

$$(n_{k_1} - n_{k_2})x + n_{k_1}z_1 + n_{k_2}z_2 = 0.$$

Since H is a Hamel basis, $n_{k_1} = n_{k_2} = 0$, contrary to the fact that $n_{k_1} \neq n_{k_2}$ and, consequently, $\alpha \in \bigcup_{l=1}^{\infty} \bigcap_{k=l}^{\infty} n_k(((\mathbb{R}\backslash F) \cup \{x\}) - x)$. Therefore $(\mathbb{R}\backslash F) \cup \{x\} \subset \Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\})$. By the previous lemma, we have $\Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\}) = (\mathbb{R}\backslash F) \cup \{x\}$.

Theorem 2.8. If $\mathcal{T}_{\mathcal{J}}$ is the family associated with the invariant pair $(\mathcal{S}, \mathcal{J})$, then $\mathcal{T}_{\mathcal{J}} \setminus \mathcal{T}_0 \neq \emptyset$.

Proof. By Lemma 2.7, there exists a nonempty perfect set $F \subset \mathbb{R}$ such that $\Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\}) = (\mathbb{R}\backslash F) \cup \{x\}$ for each $x \in F$. Let $x \in F$ and $Y = (\mathbb{R}\backslash F) \cup \{x\}$, then $Y \in \mathcal{B}$. Thus $Y \in \mathcal{S}$ and $Y = \Phi_{\mathcal{J}_0}(Y) \subset \Phi_{\mathcal{J}}(Y)$. Hence $Y \in \mathcal{T}_{\mathcal{J}}\backslash \mathcal{T}_0$.

Theorem 2.9. For every invariant pair (S, \mathcal{J}) generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$, card $S = 2^{\mathfrak{c}}$.

Proof. By Lemma 2.7 there exists a nonempty perfect set $F \subset \mathbb{R}$ such that, for each $x \in F$, we have $\Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\}) = (\mathbb{R}\backslash F) \cup \{x\}$. It is clear that $\Phi_{\mathcal{J}_0}((\mathbb{R}\backslash F) \cup \{x\}) \subset \Phi_{\mathcal{J}}((\mathbb{R}\backslash F) \cup \{x\})$. Since $(\mathbb{R}\backslash F) \cup \{x\} \in \mathcal{S}$, we conclude that $(\mathbb{R}\backslash F) \cup \{x\} \in \mathcal{T}_{\mathcal{J}}$ for each $x \in F$. Let us suppose that $\operatorname{card} \mathcal{S} < 2^{\mathfrak{c}}$. Then there exists a set $X \subset F$ such that $(\mathbb{R}\backslash F) \cup X \notin \mathcal{S}$. At the same time, $(\mathbb{R}\backslash F) \cup X = \bigcup_{x \in X} ((\mathbb{R}\backslash F) \cup \{x\}) \in \mathcal{T}_{\mathcal{J}}$ and, by the definition of the \mathcal{J} -density topology, it should be a member of \mathcal{S} . This contradiction proves that $\operatorname{card} \mathcal{S} = 2^{\mathfrak{c}}$.

Corollary 2.10. For every invariant σ -ideal \mathcal{J} , card $\mathcal{S}(\mathcal{J}) = 2^{\mathfrak{c}}$.

Now we present some properties of the density topologies with respect to σ -ideals having some connections with measure and category.

Definition 2.11. We shall say that a σ -ideal $\mathcal{J} \subset 2^{\mathbb{R}}$ is controlled by measure if $\mathcal{J} \subset \mathbb{L}$ or $\mathbb{L} \subset \mathcal{J}$.

Definition 2.12. We shall say that a σ -ideal $\mathcal{J} \subset 2^{\mathbb{R}}$ is controlled by category if $\mathcal{J} \subset \mathbb{K}$ or $\mathbb{K} \subset \mathcal{J}$.

The following lemma will be useful in further considerations.

Lemma 2.13. If (S_1, \mathcal{J}_1) and (S_2, \mathcal{J}_2) are invariant pairs generating the \mathcal{J}_1 -density topology $\mathcal{T}_{\mathcal{J}_1}$ and the \mathcal{J}_2 -density topology $\mathcal{T}_{\mathcal{J}_2}$, respectively, and $S_1 \subset S_2$, $\mathcal{J}_1 \subset \mathcal{J}_2$, then the pair (S_2, \mathcal{J}_1) is invariant and generates the \mathcal{J}_1 -density topology $\mathcal{T}_{\mathcal{J}_1}^2$ for which $\mathcal{T}_{\mathcal{J}_1} \subset \mathcal{T}_{\mathcal{J}_2}^2$.

Proof. It is obvious that the pair (S_2, \mathcal{J}_1) is invariant. Let $\mathcal{T}_{\mathcal{J}_1}^2 = \{X \in S_2 : X \subset \Phi_{\mathcal{J}_{\infty}}(X)\}$. By Proposition 1.9, it is sufficient to show that the union of any subfamily of sets belonging to the family $\mathcal{T}_{\mathcal{J}_1}^2$ is a member of $\mathcal{T}_{\mathcal{J}_1}^2$. Since $\mathcal{J}_1 \subset \mathcal{J}_2$, therefore $\mathcal{T}_{\mathcal{J}_1}^2 \subset \mathcal{T}_{\mathcal{J}_2}$. Hence the union of any subfamily of subsets of the family $\mathcal{T}_{\mathcal{J}_1}^2$ is a $\mathcal{T}_{\mathcal{J}_2}$ -open set. Thus it is an S_2 -measurable set and, in that way, belongs to the family $\mathcal{T}_{\mathcal{J}_1}^2$. Since $S_1 \subset S_2$, we have $\mathcal{T}_{\mathcal{J}_1} \subset \mathcal{T}_{\mathcal{J}_1}^2$.

Theorem 2.14. If \mathcal{J} is an invariant σ -ideal such that $\mathcal{J} \subset \mathbb{K}$, then the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ generated by the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ has the property that $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathbb{K}$ and $\mathcal{B}a(\mathcal{T}_{\mathcal{T}}) = \mathcal{B}a$.

Proof. We show that $\mathcal{K}(\mathcal{T}_{\mathcal{I}}) \subset \mathbb{K}$. Let $X \in \mathcal{K}(\mathcal{T}_{\mathcal{I}})$. It suffices to assume that a X is a $\mathcal{T}_{\mathcal{J}}$ -nowhere dense closed set. It is clear that $X \in \mathcal{S}(\mathcal{J})$. It is obvious that the pair $(\mathcal{B}a, \mathcal{J})$ is invariant. From Example 1.21 and Lemma 2.13 we conclude that this pair generates the \mathcal{J} -density topology $\mathcal{T}'_{\mathcal{I}}$, and $\mathcal{T}_{\mathcal{I}} \subset \mathcal{T}'_{\mathcal{I}} \subset \mathcal{T}_{\mathcal{I}}$. This implies that $\mathbb{R} \backslash X \in \mathcal{T}_{\mathcal{I}}$ and then $X \in \mathcal{B}a$. The set X having the Baire property has the form $X = V \triangle Z$, where $V \in \mathcal{T}_0$ and $Z \in \mathbb{K}$. We show that $V = \emptyset$. Let us suppose that $V \neq \emptyset$. Of course, $V \in \mathcal{T}_{\mathcal{T}}$. Since X is $\mathcal{T}_{\mathcal{T}}$ -nowhere dense, there exists a nonempty $\mathcal{T}_{\mathcal{T}}$ -open set V_1 such that $V_1 \subset V$ and $V_1 \cap X = \emptyset$. Since $\mathcal{T}_{\mathcal{J}} \subset \mathcal{T}_{\mathcal{I}}$, we have $V_1 \in \mathcal{T}_{\mathcal{I}}$. As $V_1 \neq \emptyset$, we infer that $V_1 \notin \mathbb{K}$. Since $Z = X \triangle V = X \triangle [(V \setminus V_1) \cup V_1] \supset V_1$, we get a contradiction with the fact that $Z \in \mathbb{K}$ and $V_1 \notin \mathbb{K}$. Finally, $V = \emptyset$ and X = Z. Therefore $X \in \mathbb{K}$. Now, we show that $\mathbb{K} \subset \mathcal{K}(\mathcal{T}_{\mathcal{I}})$. Let X be a nowhere dense set with respect to the natural topology. Assume that X is closed. It is clear that X has the Baire property with respect to $\mathcal{T}_{\mathcal{J}}$. Thus $X = V \triangle Z$, where $V \in \mathcal{T}_{\mathcal{J}} \subset \mathcal{T}_{\mathcal{I}}$ and $Z \in \mathcal{K}(\mathcal{T}_{\mathcal{J}}) \subset \mathbb{K}$. We have $V = X \triangle Z$, hence $V \in \mathbb{K}$. So, the set V as $\mathcal{T}_{\mathcal{I}}$ -open must be empty. This implies that X = Z. Consequently, $X \in \mathcal{K}(\mathcal{T}_{\mathcal{J}})$. We show that $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{B}a$. By Proposition 1.10, we have that $\mathcal{T}_0 \subset \mathcal{T}_{\mathcal{J}}$ and by the first part of the proof that $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathbb{K}$, we infer that $\mathcal{B}a \subset \mathcal{B}a(\mathcal{T}_{\mathcal{J}})$. We have observed that $\mathcal{S}(\mathcal{J}) \subset \mathcal{B}a$, then $\mathcal{T}_{\mathcal{J}} \subset \mathcal{B}a$. Including the fact that $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathbb{K}$ we get that $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) \subset \mathcal{B}a$. Finally, $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{B}a$.

Corollary 2.15. If $S = \mathcal{B}a \cap \mathcal{L}$ and $\mathcal{J} = \mathbb{K} \cap \mathbb{L}$, then $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathbb{K}$ and $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{B}a$.

Proof. By Lemma 1.22 and Remark 1.24, $\mathcal{S}(\mathcal{J}) = \mathcal{B}a \cap \mathcal{L}$. Thus, by Theorem 2.14, $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathbb{K}$ and $\mathcal{B}a(\mathcal{T}_{\mathcal{J}}) = \mathcal{B}a$.

Property 2.16. No invariant pair (S, \mathcal{J}) generating the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ and such that $\mathcal{J} \subsetneq \mathbb{K}$ possesses the \mathcal{J} -density property.

Proof. By Theorem 2.14, the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ generated by the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ does not possess the \mathcal{J} -density property since, otherwise, by Theorem 1.17, we would have that $\mathcal{K}(\mathcal{T}_{\mathcal{J}}) = \mathcal{J}$, contrary to the fact that $\mathcal{J} \neq \mathbb{K}$. Since $\mathcal{S}(\mathcal{J}) \subset \mathcal{S}$, we deduce that $(\mathcal{S}, \mathcal{J})$ does not possess the \mathcal{J} -density property.

It is worth observing that the property described in Theorem 2.14 does not hold in the case of the σ -ideal \mathbb{L} considered instead of \mathbb{K} . Indeed, let $\mathcal{S} = \mathcal{B}a \cap \mathcal{L}$ and $\mathcal{J} = \mathbb{K} \cap \mathbb{L}$. Then, by Corollary 2.15, we have that $\mathcal{K}(\mathcal{T}_{\mathcal{T}}) = \mathbb{K}$. Hence $\mathcal{K}(\mathcal{T}_{\mathcal{T}}) \setminus \mathbb{L} \neq \emptyset$ and $\mathbb{L} \setminus \mathcal{K}(\mathcal{T}_{\mathcal{T}}) \neq \emptyset$.

For invariant σ -ideals containing \mathbb{L} or \mathbb{K} , we have the following

Theorem 2.17. If \mathcal{J} is an invariant σ -ideal such that $\mathcal{J} \supset \mathbb{K}$ $(\mathcal{J} \supset \mathbb{L})$, then

- 1. $S(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$,
- 2. $(S(\mathcal{J}), \mathcal{J})$ has the \mathcal{J} -density property,
- 3. $\mathcal{J} = \mathbb{K} \ (\mathcal{J} = \mathbb{L}) \ if \ and \ only \ if \ \mathcal{T}_{\mathcal{J}} = \mathcal{T}_{\mathcal{I}} \ (\mathcal{T}_{\mathcal{J}} = \mathcal{T}_d),$

where $\mathcal{T}_{\mathcal{T}}$ is the topology generated by the invariant pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$.

Proof. Let us suppose that $\mathcal{J} \supset \mathbb{K}$. In the case of condition 1, it is sufficient to prove that the invariant pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ yields the \mathcal{J} -density topology. First of all, we notice that the pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ has the \mathcal{J} -density property. Namely, let $X \in \mathcal{B} \triangle \mathcal{J}$; then $X = Y \triangle Z$, where $Y \in \mathcal{B}$ and $Z \in \mathcal{J}$. Thus

$$X \setminus \Phi_{\mathcal{J}}(X) = (Y \triangle Z) \setminus \Phi_{\mathcal{J}}(Y \triangle Z)$$

= $(Y \triangle Z) \setminus \Phi_{\mathcal{J}}(Y) \subset (Y \triangle Z) \setminus \Phi_{\mathbb{K}}(Y) \subset (Y \setminus \Phi_{\mathbb{K}}(Y)) \cup Z \in \mathcal{J}.$

Hence, by Proposition 1.14, for each $X \in \mathcal{B} \triangle \mathcal{J}$, we have $X \sim \Phi_{\mathcal{J}}(X)$. Thus, by Proposition 1.8, the operator $\Phi_{\mathcal{J}}$ is a lower density operator. Moreover, we prove that the pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ satisfies countable chain condition (c.c.c.). In fact, it is clear that the pair $(\mathcal{B}, \mathbb{K})$ satisfies c.c.c. Let us suppose that the pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ does not satisfy c.c.c. Then there exists a sequence $\{X_{\alpha}\}_{\alpha<\omega_1}$ of pairwise disjoint sets such that, for each $\alpha<\omega_1, X_{\alpha}=Y_{\alpha} \triangle Z_{\alpha}$, where $Y_{\alpha}\in \mathcal{B}, Z_{\alpha}\in \mathcal{J}$ and $X_{\alpha}\in (\mathcal{B} \triangle \mathcal{J})\backslash \mathcal{J}$. We

put $W_0 = Y_0$ and $W_\alpha = Y_\alpha \setminus \bigcup_{\beta < \alpha} W_\beta$ for any $0 < \alpha < \omega_1$. If $\alpha_1, \alpha_2 < \omega_1$, and $\alpha_1 \neq \alpha_2$, then $W_{\alpha_1} \cap W_{\alpha_2} = \emptyset$. Since $W_\alpha \in \mathcal{B} \setminus \mathcal{J}$ for $0 \leq \alpha < \omega_1$, this contradicts the fact that the pair $(\mathcal{B}, \mathbb{K})$ satisfies c.c.c. Now, by Theorem 1.16, we deduce that the pair $(\mathcal{B} \triangle \mathcal{J}, \mathcal{J})$ yields the \mathcal{J} -density topology. In that way, $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$. The proof of condition 1 is completed. We see that it contains a proof of the fact that the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ has the \mathcal{J} -density property.

Now, we prove condition 3. Necessity is obvious. Let us show sufficiency. We only need to prove that $\mathcal{J} \subset \mathbb{K}$. Suppose that $\mathcal{J} \setminus \mathbb{K} \neq \emptyset$. Let $X \in \mathcal{J} \setminus \mathbb{K}$. We consider two cases: $X \in \mathcal{B} \triangle \mathbb{K}$ and $X \notin \mathcal{B} \triangle \mathbb{K}$. If $X \in \mathcal{B} \triangle \mathbb{K}$, then $\Phi_{\mathbb{K}}(X) \cap X \in \mathcal{T}_{\mathcal{I}}$ and $\Phi_{\mathbb{K}}(X) \cap X \neq \emptyset$ because $X \notin \mathbb{K}$. According to the assumption, we have that $\Phi_{\mathbb{K}}(X) \cap X \subset \Phi_{\mathcal{J}}(\Phi_{\mathbb{K}}(X) \cap X)$. The last assertion is not true because $\Phi_{\mathcal{J}}(\Phi_{\mathbb{K}}(X) \cap X) = \emptyset$. Let $X \notin \mathcal{B} \triangle \mathbb{K}$. Since $X \in \mathcal{J}$, then $\mathbb{R} \setminus X \in \mathcal{T}_{\mathcal{J}}$. Thus $\mathbb{R} \setminus X \in \mathcal{T}_{\mathcal{I}}$. It follows that $X \in \mathcal{B} \triangle \mathbb{K}$, which contradicts the fact that $X \notin \mathcal{B} \triangle \mathbb{K}$. The proof of the case that $\mathcal{J} \supset \mathbb{L}$ runs in the same way.

The following theorem gives us another property of invariant pairs having the density property.

Theorem 2.18. If invariant pairs (S_1, \mathcal{J}) , (S_2, \mathcal{J}) , having the density property generate the \mathcal{J} -density topologies $\mathcal{T}^1_{\mathcal{I}}$ and $\mathcal{T}^2_{\mathcal{I}}$, respectively, then

$$\mathcal{T}^1_{\mathcal{J}} = \mathcal{T}^2_{\mathcal{J}} \Longleftrightarrow \mathcal{S}_1 = \mathcal{S}_2.$$

Proof. Sufficiency is obvious.

Necessity. If $X \in \mathcal{S}_1$, then $\Phi_{\mathcal{J}}(X) \in \mathcal{T}_{\mathcal{J}}^1$ because, by the \mathcal{J} -density property, we have that $\Phi_{\mathcal{J}}(X) \in \mathcal{S}_1$ and $\Phi_{\mathcal{J}}(X) \subset \Phi_{\mathcal{J}}(\Phi_{\mathcal{J}}(X))$. Since $\mathcal{T}_{\mathcal{J}}^1 = \mathcal{T}_{\mathcal{J}}^2$, therefore $\Phi_{\mathcal{J}}(X) \in \mathcal{T}_{\mathcal{J}}^2$. Simultaneously, $\Phi_{\mathcal{J}}(X) \triangle X \in \mathcal{J}$. Therefore $X \in \mathcal{S}_2$. The proof of the case when $\mathcal{S}_2 \subset \mathcal{S}_1$ runs in the same way.

Corollary 2.19. In the family of invariant σ -algebras over \mathbb{R} the unique σ -algebra \mathcal{S} such that the invariant pair $(\mathcal{S}, \mathbb{K})$ has the \mathbb{K} -density property and yields the \mathbb{K} -density topology identical with $\mathcal{T}_{\mathcal{I}}$ is the family of sets having the Baire property.

Corollary 2.20. In the family of invariant σ -algebras over \mathbb{R} the unique σ -algebra \mathcal{S} such that the invariant pair $(\mathcal{S}, \mathbb{L})$ has the \mathbb{L} -density property and yields the \mathbb{L} -density topology identical with \mathcal{T}_d is the family of Lebesgue measurable sets.

3. The separation axioms of the density topologies

We are going to present some properties of the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ in the aspect of separation axioms. Our results will mostly concern the σ -ideals controlled by measure and category.

Property 3.1. The space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$, where $\mathcal{T}_{\mathcal{J}}$ is the \mathcal{J} -density topology generated by the invariant pair $(\mathcal{S}, \mathcal{J})$, is Hausdorff.

Proof. By Proposition 1.10, $\mathcal{T}_0 \subset \mathcal{T}_{\mathcal{J}}$. Hence $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is Hausdorff.

Property 3.2. If a σ -ideal \mathcal{J} is controlled by category, then the topological space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ where $\mathcal{T}_{\mathcal{J}}$ is the \mathcal{J} -density topology generated by the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ is not regular.

Proof. Case I. Let us suppose that $\mathcal{J} \subset \mathbb{K}$. Let us observe that the set Q of rational numbers is $\mathcal{T}_{\mathcal{J}}$ -closed. If $\mathcal{J} \supset \mathcal{J}_w$, then it is clear that $\Phi_{\mathcal{J}}(\mathbb{R}\backslash Q) = \mathbb{R}$. Hence $\mathbb{R}\backslash Q$ is $\mathcal{T}_{\mathcal{J}}$ -open and Q is $\mathcal{T}_{\mathcal{J}}$ -closed. Let $\mathcal{J} = \mathcal{J}_0$. We show that $\Phi_{\mathcal{J}_0}(\mathbb{R}\backslash Q) = \mathbb{R}\backslash Q$. By Lemma 2.6, we have that $\Phi_{\mathcal{J}_0}(\mathbb{R}\backslash Q) \subset \mathbb{R}\backslash Q$. Let $x \in \mathbb{R}\backslash Q$. We prove that $x \in \Phi_{\mathcal{J}_0}(\mathbb{R}\backslash Q)$. It suffices to show that, for an arbitrary sequence $\{n_i\}_{i\in\mathbb{N}}$ of positive integers, we have

$$[-1,1] \subset n_i((\mathbb{R}\backslash Q) - x). \tag{*}$$

For any $i \in \mathbb{N}$ and $\alpha \in [-1,1] \cap Q$, it follows that

$$\frac{\alpha}{n_i} + x \in \mathbb{R} \backslash Q.$$

Let us notice that, for each $\alpha \in [-1, 1] \setminus Q$, the set

$$A_{\alpha} = \left\{ i \in \mathbb{N} : \frac{\alpha}{n_i} + x \notin \mathbb{R} \backslash Q \right\}.$$

is at most a singleton. Indeed, suppose that there are $i_1, i_2 \in \mathbb{N}$, $i_1 \neq i_2$, and $\alpha/n_{i_1} + x = q_1$ and $\alpha/n_{i_2} + x = q_2$, $q_1, q_2 \in Q$. Hence $\alpha(1/n_{i_1} - 1/n_{i_2}) = q_1 - q_2$, contrary to the fact that α is an irrational number. Thus there exists a positive integer $k \in A_{\alpha}$ such that, for $i \geq k$, $\alpha/n_i + x \in \mathbb{R} \setminus Q$. Therefore

$$\alpha \in n_i \big((\mathbb{R} \backslash Q) - x \big)$$

and the condition (*) is satisfied. We have obtained that Q is closed in an arbitrary topology $\mathcal{T}_{\mathcal{J}}$.

Further, we prove that, for any $x \notin Q$, the sets $\{x\}$ and Q cannot be separated by $\mathcal{T}_{\mathcal{J}}$ -open sets. Let us suppose that there exist $x \notin Q$ and $\mathcal{T}_{\mathcal{J}}$ -open sets $V_x \ni x$ and $V \supset Q$, such that $V_x \cap V = \emptyset$. It is clear that $\mathcal{S}(\mathcal{J}) \subset \mathcal{B}a$, because the pair $(\mathcal{B}a, \mathcal{J})$ is invariant and yields the \mathcal{J} -density

topology. Since $\mathcal{T}_{\mathcal{J}} \subset \mathcal{S}(\mathcal{J}) \subset \mathcal{B}a$, the sets V_x , V have the Baire property. Also,

$$V_x \subset \Phi_{\mathcal{I}}(V_x) \subset \Phi_{\mathbb{K}}(V_x)$$

and

$$V \subset \Phi_{\mathcal{I}}(V) \subset \Phi_{\mathbb{K}}(V).$$

Hence the nonempty sets V_x and V are open in the \mathcal{I} -density topology. This implies that $V_x \notin \mathbb{K}$ and $V \notin \mathbb{K}$. Now, we prove that each open set V in the \mathcal{I} -density topology and containing a dense set D is residual. First, we show that, for every nonempty open set $W, W \cap V \notin \mathbb{K}$. Since $W \cap D \neq \emptyset$, there exist $x \in V$ and a positive number δ , such that $(x - \delta, x + \delta) \subset W$. Hence $V \cap (x - \delta, x + \delta) \notin \mathbb{K}$. Therefore $V \cap W \notin \mathbb{K}$. The set V having the Baire property has the form $V = A \cup B$, where $A \in G_\delta$ and $B \in \mathbb{K}$. Since $V \cap W \notin \mathbb{K}$, therefore $A \cap W \neq \emptyset$. This means that A is residual and thus V is residual. So, $V \cap V_x \neq \emptyset$, contrary to the fact that $V \cap V_x = \emptyset$.

Case II. $\mathbb{K} \subset \mathcal{J}$. By Theorem 2.17, $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$. Similarly as in the previous case, we prove that, for any $x \notin Q$, the sets $\{x\}$ and Q cannot be separated by $\mathcal{T}_{\mathcal{J}}$ -open sets. Let us suppose that there exist $x \notin Q$ and $\mathcal{T}_{\mathcal{J}}$ -open sets $V_x \ni x$ and $V \supset Q$, such that $V_x \cap V = \emptyset$. Since $\mathcal{T}_{\mathcal{J}} \subset \mathcal{B} \triangle \mathcal{J}$, therefore $V_x, V \in \mathcal{B} \triangle \mathcal{J}$. It is clear that $V_x \notin \mathcal{J}$. Hence $V_x \notin \mathbb{K}$. Also, $Q \subset V \subset \Phi_{\mathcal{J}}(V)$. Note that

$$\mathcal{B} \triangle \mathcal{J} = \{X \subset \mathbb{R} : X = W \triangle Z, W \in \mathcal{T}_0, Z \in \mathcal{J}\}.$$

Hence $V = W \triangle Z$, where $W \in \mathcal{T}_0$ and $Z \in \mathcal{J}$. Thus $\Phi_{\mathcal{J}}(V) = \Phi_{\mathcal{J}}(W)$. By Proposition 1.8 and 1.10, we have that $W \subset \Phi_{\mathcal{J}}(W) \subset \overline{W}$. Theorefore $\Phi_{\mathcal{J}}(W) = W \cup K$, where $K \in \mathbb{K}$. This implies that $Q \subset V \subset \Phi_{\mathcal{J}}(V) = W \cup K$. We see that the set $\Phi_{\mathcal{J}}(V)$ has the Baire property. For every nonempty open set $U, U \cap V \notin \mathcal{J}$ since, otherwise,

$$\emptyset \neq U \cap Q \subset U \cap V \subset \Phi_{\mathcal{J}}(U) \cap \Phi_{\mathcal{J}}(V) = \Phi_{\mathcal{J}}(U \cap V) = \emptyset.$$

So, $U \cap W \notin \mathcal{J}$. Then $U \cap W \neq \emptyset$. Hence W is dense and open. Thus $\Phi_{\mathcal{J}}(V)$ is residual. Then

$$\emptyset \neq V_x \cap \varPhi_{\mathcal{J}}(V) \subset \varPhi_{\mathcal{J}}(V_x) \cap \varPhi_{\mathcal{J}}(V) = \varPhi_{\mathcal{J}}(V_x \cap V).$$

Hence $V_x \cap V \neq \emptyset$.

Property 3.3. The space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$, where $\mathcal{T}_{\mathcal{J}}$ is the \mathcal{J} -density topology generated by an invariant pair $(\mathcal{S}, \mathcal{J})$ does not possess the Lindelöf property.

Proof. According to Lemma 2.7 there exists a nonempty perfect set F such that, for each $x \in F$, we have $V_x = (\mathbb{R} \backslash F) \cup \{x\} \in \mathcal{T}_{\mathcal{J}}$. Hence the family $\{V_x\}_{x \in F}$ is a covering of \mathbb{R} , but it has no countable subcovering of \mathbb{R} . \square

Property 3.4. Let $\mathcal{T}_{\mathcal{J}}$ be the \mathcal{J} -density topology generated by an invariant pair $(\mathcal{S}, \mathcal{J})$. Then the space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is not separable.

Proof. Let $\mathcal{T}_{\mathcal{J}}$ be the \mathcal{J} -density topology generated by an invariant pair $(\mathcal{S}, \mathcal{J})$ and let $\mathcal{T}_{\mathcal{J}_0}$ be the \mathcal{J}_0 -density topology generated by the invariant pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$. It is clear that $\mathcal{S}(\mathcal{J}_0) \subset \mathcal{S}$. Lemma 2.13 implies that $\mathcal{T}_{\mathcal{J}_0} \subset \mathcal{T}_{\mathcal{J}}$. Therefore it is sufficient to prove that the space $(\mathbb{R}, \mathcal{T}_{\mathcal{T}_0})$ is not separable. Let $X \subset \mathbb{R}$ be a countable set. We show that there exists a nonempty set $W \in \mathcal{T}_{\mathcal{J}_0}$ such that $W \cap X = \emptyset$. Of course, we may assume that X is infinite. Let $X = \{x_1, x_2, \dots, x_n, \dots\}$. Let us consider \mathbb{R} as a vector space \mathbb{E} over the field Q of all rational numbers. Let B be a Hamel basis of \mathbb{E} . For any element $x \in \mathbb{E}$ we have the unique representation $x = q_1b_1 + q_2b_2 + \ldots + q_mb_m$, where $m \in \mathbb{N}$ and $q_i \in Q \setminus \{0\}$, $b_i \in B$ for $1 \leq i \leq m$. Let $B(x) = \bigcup_{i=1}^m \{b_i\}$ and $B(X) = \bigcup_{i=1}^{\infty} B(x_i)$. Putting $W = \mathbb{E} \setminus \ln(B(X))$, where $\ln(B(X))$ denotes the vector space over Q generated by the set B(X), we have that $W \cap X = \emptyset$. We prove that $W \in \mathcal{T}_{\mathcal{J}_0}$. Firstly we see that W is the complement of a countable set. Thus $X \in \mathcal{S}(\mathcal{J}_0)$ as a Borel set. Further we prove that $W \subset \Phi_{\mathcal{J}_0}(W)$. Let $x \in W$. Of course, $x \neq 0$. According to Lemma 1.5, we have to prove that

$$[-1,1] \subset \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} n_k(W-x),$$

where $\{n_k\}_{k\in\mathbb{N}}$ is an increasing sequence of positive integers. Let $\alpha\in[-1,1]$. The case, where $\alpha=0$ is obvious. Suppose that $\alpha\neq 0$. Let us observe that a set $A_{\alpha}=\{k\in\mathbb{N}:\alpha/n_k+x\notin W\}$ is at most a singleton. Suppose to the contrary that there are $n_{k_1},n_{k_2}\subset A_{\alpha}$ and $n_{k_1}\neq n_{k_2}$. By definition of the set W, we have that

$$\frac{\alpha}{n_{k_1}} + x \in \lim(B(X))$$

and

$$\frac{\alpha}{n_{k_2}} + x \in \lim(B(X)).$$

Hence

$$(n_{k_1} - n_{k_2})x \in \lim(B(X)).$$

Thus $x \in \text{lin}(B(X))$, contrary to the fact that $x \notin \text{lin}(B(X))$. Finally, there exists a positive integer $j \in A_{\alpha}$ such that for $k \geq j$, $\alpha/n_k + x \in W$. It implies that

$$\alpha \in \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty} n_k(W-x).$$

Property 3.5. Assume that \mathcal{J} is an invariant σ -ideal such that $\mathbb{L} \subset \mathcal{J}$, and $\mathcal{T}_{\mathcal{J}}$ is the \mathcal{J} -density topology generated by an invariant pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$. The space $(\mathbb{R}, \mathcal{T}_{\mathcal{J}})$ is regular if and only if $\mathcal{J} = \mathbb{L}$.

Proof. Sufficiency. If $\mathcal{J} = \mathbb{L}$, then $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathbb{L} = \mathcal{L}$ and the \mathcal{J} -density topology $\mathcal{T}_{\mathcal{J}}$ is the density topology \mathcal{T}_d which is regular (see [4]).

Necessity. Let $\mathbb{L} \subset \mathcal{J}$. Then, by Theorem 2.17, $\mathcal{S}(\mathcal{J}) = \mathcal{B} \triangle \mathcal{J}$. Since $\mathbb{L} \subset \mathcal{J}$, it is clear that $\mathcal{B} \triangle \mathcal{J} = \mathcal{L} \triangle \mathcal{J}$. For any $X \in \mathcal{J}$, the inner Lebesgue measure, $l_*(X) = 0$. Using the Marczewski method (see [11]), we can define a measure μ on the σ -algebra $\mathcal{L} \triangle \mathcal{J}$ in the following manner. Let $X \in \mathcal{L} \triangle \mathcal{J}$. Then $X = Y \triangle Z$, where $Y \in \mathcal{L}$ and $Z \in \mathcal{J}$. Putting $\mu(X) = l(Y)$, we get that μ is a correctly defined measure on $\mathcal{S}(\mathcal{J})$. Let us notice that, for the measure μ so defined, the σ -ideal \mathcal{I}_{μ} of μ -null sets is of the form

$$\mathcal{I}_{\mu} = \{ X \in \mathcal{S}(\mathcal{J}) : X = A \cup B, A \in \mathbb{L}, B \in \mathcal{J} \}.$$

Hence $\mathcal{I}_{\mu} = \mathcal{J}$. At the same time, μ is an extension of Lebesgue measure l and the pair $(\mathcal{S}(\mathcal{J}), \mathcal{J})$ is invariant. Moreover, for any $n \in \mathbb{N}$, $a \in \mathbb{R}$ and $X \in \mathcal{S}(\mathcal{J})$, we have $\mu(n X) = n \mu(X)$ and $\mu(X + a) = \mu(X)$. According to the above properties, we claim that a point $x \in \mathbb{R}$ is a μ -density point of a set $X \in \mathcal{S}(\mathcal{J})$ if and only if it is a \mathcal{J} -density point of X. Thus

$$\mathcal{T}_{\mathcal{J}} = \{ X \in \mathcal{S}(\mathcal{J}) : X \subset \Phi_{\mathcal{J}}(X) \} = \{ X \in \mathcal{S}(\mathcal{J}) : X \subset \Phi_{\mu}(X) \},$$

where

 $\Phi_{\mu}(X) = \{x \in \mathbb{R} : x \text{ is a density point of } X \text{ with respect to measure } \mu\}.$

By Theorem 2 from [6], we have that $\mathcal{T}_{\mathcal{J}} = \{X : X = A \setminus B, A \in \mathcal{T}_d, \mu(B) = 0\}$. By Property 7 from [7], $\mathcal{T}_{\mathcal{J}}$ is regular if $\mathcal{T}_{\mathcal{J}} = \mathcal{T}_d$. We show that $\mathcal{J} = \mathbb{L}$. It is sufficient to show that $\mathcal{J} \subset \mathbb{L}$. Let $X \in \mathcal{J}$. Then $\mathbb{R} \setminus X \in \mathcal{T}_{\mathcal{J}}$. Thus $\mathbb{R} \setminus X \in \mathcal{T}_d$, which implies $\mathbb{R} \setminus X \in \mathcal{L}$ and $X \in \mathcal{L}$. It is clear that $0 = \mu(X) = l(X)$. Hence $X \in \mathbb{L}$.

References

- Balcerzak, M., Hejduk, J., Density topologies for products of σ-ideals, Real Anal. Exchange 20(1) (1994–95), 163–178.
- [2] Balcerzak, M., Hejduk, J., Wilczyński, W., Wroński, S., Why only measure and category?, Scient. Bull. Łódź Technical University Ser. Matematyka 695(26) (1994), 89–94.
- [3] Ciesielski, K., Larson, L., Ostaszewski, K., *I-density continuous functions*, Mem. Amer. Math. Soc. **515** (1994).
- [4] Goffman, C., Neugebauer, C., Nishiura, T., Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–506.

- [5] Goffman, C., Waterman, D., Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116–121.
- [6] Hejduk, J., On the density topology with resect to an extension of Lebesgue measure, Real Anal. Exchange 21(2) (1995–96), 811–816.
- [7] Hejduk, J., Some properties of the density topology with respect to an extension of the Lebesgue measure, Math. Pannon. 9(2) (1998), 173–180.
- [8] Hejduk, J., Kharazishvili, A. B., On density points with respect to von Neumann's topology, Real Anal. Exchange **21**(1) (1995–96), 278–291.
- [9] Kuczma, M., An Introduction to the Theory of Functional Equations and Inequalities, PWN, Warszawa-Katowice, 1985.
- [10] Lukeš, J., Malý, J., Zajiček, L., Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer Verlag, Berlin, 1986.
- [11] Marczewski, E., Sur l'extension de la mesure lebesguienne, Fund. Math. 25 (1935), 551–558.
- [12] Oxtoby, J. C., Measure and Category, Springer Verlag, New York, 1980.
- [13] Poreda, W., Wagner-Bojakowska, E., Wilczyński, W., A category analogue of the density topology, Fund. Math. 125 (1985), 167–173.
- [14] Wagner-Bojakowska, E., Sequences of measurable functions, Fund. Math. 112 (1981), 89–102
- [15] Wilczyński, W. A category analogue of the density topology, approximate continuity and the approximate derivative, Real Anal. Exchange 10(2) (1984–85), 241–265.
- [16] Wilczyński, W., A generalization of density topology, Real Anal. Exchange 8(1) (1982–83), 16–20.

Jacek Hejduk
Faculty of Mathematics
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-Mail:Jachej@math.uni.lodz.pl