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Abstract. In this paper, nonlocal in time problem for abstract evolu-
tion equation of second order is studied and theorem on existence and
uniqueness of its solution is proved. Some applications of this theorem
for hyperbolic partial differential equations and systems are considered
and it is proved, that well-posedness of the mentioned problems de-
pends on algebraic properties of ratios between the dimensions of the
spatial boundary and the times appearing in the nonlocal in time initial
conditions.

1. Introduction

Nonlocal in time problems are non-classical initial boundary value prob-
lems, where instead of classical initial conditions we have a combination of
the initial value of the solution and values of the solution for later times.
These problems are generalizations of periodical problem, which is a par-
ticular case of problem of controllability by the initial conditions, where
we seek for such initial conditions that state of the dynamical system at a
certain moment of time coincides with its initial state.
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Nonlocal in time problems were formulated and studied in [4] for para-
bolic equations. Later in [5–7] problems of this type were investigated for
some equations of mathematical physics. In the present paper we study
nonlocal in time problem for abstract evolution equation of second order
and generalize results obtained before for hyperbolic equations in [6, 7]. We
investigate dependence of well-posedness of nonlocal in time problems on
algebraic properties of expressions, which contain given moments of time
and dimensions of the spatial boundary.

The outline of the paper is the following. In Section 2 the variational
formulation of nonlocal in time problem for abstract evolution equation of
second order is given and theorem on existence and uniqueness of its solution
is proved. In Section 3 we consider some applications of the general theorem
formulated in Section 2 for hyperbolic partial differential equations and
systems. We show that for some nonlocal in time problems for hyperbolic
equations in case of a parallelepiped as spatial domain, the existence and
uniqueness of a solution depend on algebraic properties of ratios of the
moments of time and lengths of the sides of the parallelepiped.

2. An abstract nonlocal in time problem

Let V ⊂ H be separable Hilbert spaces such that the injection V ↪→ H
is continuous and V is dense in H. Denote with (., .) scalar product in H.
Assume that H is identified with its dual space by scalar product in H, then
it is possible to construct continuous and dense injection of H in V ′ (V ′ is
a dual space of V ) ([2]). Therefore we obtain

V ↪→ H ↪→ V ′

with continuous and dense injections. Let L(X;Y ) denotes the space of lin-
ear continuous operators fromX to Y (X, Y are Banach spaces). Lp(0, T ;X)
denotes the space of measurable functions g : (0, T )→ X equipped with the
norm

‖g‖Lp(0,T ;X) ≡
(∫ T

0
‖g(t)‖pXdt

)1/p

< +∞, for p < +∞,

‖g‖Lp(0,T ;X) ≡ sup ess
t∈[0,T ]

‖g(t)‖X < +∞, for p = +∞.

C0([0, T ];X) is the space of continuous functions of t ∈ [0, T ] with values
in X. In the case of X = R, C0([0, T ];X) denotes the space C0([0, T ]) of
continuous real-valued functions on [0, T ]. From the definition of Bochner’s
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integral it follows that function g ∈ Lp(0, T ;X) can be identified with dis-
tribution in (0, T ) with values in X ([9]), and denote with

g′ =
dg

dt
∈ D′((0, T );X) = L(D(0, T );X)

the derivative of g in the sense of distributions (D(0, T ) stands for the space
of infinitely differentiable functions with compact support in (0,T)).

Furthermore, let A ∈ L(V ;V ′) be a linear continuous operator such that
the bilinear form a(ϕ,ψ) = 〈Aϕ,ψ〉V ′,V (〈., .〉V ′,V denotes duality between
V and V ′) is symmetric and coercive, i.e.

a(ϕ,ψ) = a(ψ,ϕ), ∀ ϕ,ψ ∈ V,
a(ϕ,ϕ) ≥ α‖ϕ‖2V , α = const > 0, ∀ ϕ ∈ V,

(2.1)

and the set of eigenvectors of the operator A is complete in V .
The variational formulation of the nonlocal in time problem for abstract

evolution equation of second order

d2u

dt2
+Au = f, t ∈ (0, T ),

is as follows: find a function u ∈ C0([0, T ];V ), u′ ∈ C0([0, T ];H), which
satisfies equation

d

dt
(u′(.), v) + a(u(.), v) = (f(.), v), ∀ v ∈ V, (2.2)

in the sense of distributions in (0, T ) and the following nonlocal initial con-
ditions

u(0) = Bu+ u0,

u′(0) = Cu′ + u1,
(2.3)

where u0 ∈ V , u1 ∈ H, f ∈ L2(0, T ;H),

B ∈ L(C0([0, T ];V );V ), C ∈ L(C0([0, T ];H);H).

For the formulated problem we have the following

Theorem 2.1. Suppose that there exist linear continuous functionals b, c :
C0([0, T ])→ R such that

B(h(t)vn) = b(h(t))vn, C(h(t)vn) = c(h(t))vn, ∀ h ∈ C0([0, T ]),

for all n ∈ N, where {vn}n∈N is an orthonormal (in H) system of eigen-
vectors of the operator A with eigenvalues {λ2

n}n∈N. If there exists a real
positive number q > 0 for which the inequality

|(1− b(cos(λnt)))(1− c(cos(λnt))) + b(sin(λnt))c(sin(λnt))|
> q, (2.4)
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holds for all n ∈ N, then nonlocal problem (2.2), (2.3) has a unique solu-
tion. Moreover, the mapping {f, u0, u1} → {u, du/dt} is continuous from
L2(0, T ;H) ×V ×H to C0([0, T ];V )× C0([0, T ];H).

Proof. Let us seek a solution of the formulated problem by the generalized
Fourier series

u(t) =
∞∑
n=1

un(t)vn. (2.5)

Inserting (2.5) into equation (2.2) and after some formal transformations,
we obtain

un(t) =
1
λn

∫ t

0
fn(τ) sin(λn(t− τ))dτ

+An cos(λnt) +Bn sin(λnt), (2.6)

where f(t) =
∑∞

n=1 fn(t)vn, fn(t) = (f(t), vn). Coefficients An, Bn can be
calculated from the conditions (2.3), i.e.

An(1− b(cos(λnt)))−Bnb(sin(λnt)))

= u0n +
1
λn
b

(∫ t

0
fn(τ) sin(λn(t− τ))dτ

)
,

Anc(sin(λnt)) +Bn(1− c(cos(λnt)))

=
u1n

λn
+

1
λn
c

(∫ t

0
fn(τ) cos(λn(t− τ))dτ

)
,

(2.7)

where u0n = (u0, vn), u1n = (u1, vn). From (2.7), taking (2.4) into account,
we can uniquely determine An, Bn for which the following estimate is valid:

max(|An|, |Bn|) ≤ C1|u0n|+ C2

∣∣∣∣u1n

λn

∣∣∣∣
+ C3

1
|λn|

(∫ T

0
f2
n(τ)dτ

)1/2

(‖b‖+ ‖c‖), (2.8)

where ‖b‖, ‖c‖ are norms of the functionals b, c respectively.
Let us consider series (2.5), where un(t) is replaced by expression (2.6),

and prove that it is a solution of the formulated nonlocal in time problem.
First, we show that series (2.5) converges uniformly with respect to t in

the space V . Denote with

Fn(t) =
1
λn

∫ t

0
fn(τ) sin(λn(t− τ))dτ ≡ γn(t)

λn
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and prove, that the series
∑∞

n=1 γ
2
n(t) converges uniformly with respect to

t, and its sum is less than T
∫ T

0 ‖f‖
2
Hdt. Indeed,

γ2
n(t) ≤

∫ t

0
sin2(λn(t− τ))dτ

∫ t

0
f2
n(τ)dτ ≤ T

∫ T

0
f2
n(τ)dτ,

i.e., the series
∑∞

n=1 γ
2
n(t) is dominated by the converging number series

T
∑∞

n=1
∫ T

0 f2
n(τ)dτ , the sum of which is equal to T‖f‖2L2(0,T ;H).

By the coerciveness of the bilinear form a(., .), we obtain

0 ≤ a

(
u0 −

N∑
n=1

βn
vn
λn
, u0 −

N∑
n=1

βn
vn
λn

)
= a(u0, u0)

− 2
N∑
n=1

βna

(
u0,

vn
λn

)
+

N∑
n=1

β2
na

(
vn
λn
,
vn
λn

)

= a(u0, u0)−
N∑
n=1

β2
n, (2.9)

where βn = (1/λn)a(u0, vn). From the latter inequality it follows that∑∞
n=1 β

2
n ≤ a(u0, u0).

Taking into account estimate (2.8),
∑∞

n=1 u
2
1n = ‖u1‖2H and u0n = (u0, vn)

= (1/λ2
n)a(u0, vn), we obtain that the series

∑∞
n=1(λnun(t))2 is dominated

by the converging number series C̃4
∑∞

n=1

(∫ T
0 f2

n(τ)dτ + u2
1n + β2

n

)
and the

following estimate holds

∞∑
n=1

(λnun(t))2 ≤ C4

(
‖f‖2L2(0,T ;H) + ‖u1‖2H + ‖u0‖2V

)
.

Let us denote upq =
∑q

n=p un(t)vn. Since the system {vs}s∈N is orthogo-
nal in H, we get that it is orthogonal with respect to the form a(., .), i.e.,
a(vs, vs′) = λ2

n(vs, vs′) = 0, s 6= s′, s, s′ ∈ N. Consequently, for each ε > 0
there is a natural number N(ε) ∈ N such that

a(upq, upq) =
q∑

n=p

(λnun(t))2 < ε, for p ≥ N(ε), q ≥ p.

From conditions (2.1) we obtain

‖upq‖2V ≤
1
α

q∑
n=p

(λnun(t))2 <
ε

α
, for p ≥ N(ε), q ≥ p,
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that implies the uniform (with respect to t) convergence of series (2.5).
Therefore u ∈ C0([0, T ];V ) and the following estimate is valid

‖u(t)‖2V ≤ C5

(
‖f‖2L2(0,T ;H) + ‖u1‖2H + ‖u0‖2V

)
. (2.10)

Similarly it can be checked that the series obtained by differentiation of
series (2.5) converges uniformly with respect to t in the space H and conse-
quently u′ ∈ C0([0, T ];H). From the construction of u(t) it is obvious that
u(t) satisfies initial conditions (2.3). Therefore, it suffices to prove that u(t)
satisfies equation (2.2).

Indeed, as f ∈ L2(0, T ;H), un(t) has second derivative for almost all
t ∈ (0, T ), which is equal to −λ2

nun(t) + fn(t) and is square integrable in
(0, T ). Hence, for any function ϕ ∈ D(0, T ) and v ∈ V we have

−
∫ T

0
u′n(τ)(vn, v)ϕ′(τ)dτ =

∫ T

0

(
fn(τ)− λ2

nun(τ)
)

(vn, v)ϕ(τ)dτ

and

−
∫ T

0

N∑
n=1

u′n(τ)(vn, v)ϕ′(τ)dτ +
∫ T

0

N∑
n=1

λ2
nun(τ)(vn, v)ϕ(τ)dτ

=
∫ T

0

N∑
n=1

fn(τ)(vn, v)ϕ(τ)dτ. (2.11)

Letting N tend to ∞ in (2.11), we obtain

−
∫ T

0
(u′(τ), v)ϕ′(τ)dτ +

∫ T

0
a(u(τ), v)ϕ(τ)dτ =

∫ T

0
(f(τ), v)ϕ(τ)dτ

and, therefore, u(t) satisfies equation (2.2) in the sense of distributions in
(0, T ).

So u(t) is a solution of nonlocal problem (2.2), (2.3) and, according to
the inequalities (2.8), (2.9), (2.10), we have

‖u‖2C0([0,T ];V ) ≤ C5

(
‖f‖2L2(0,T ;H) + ‖u1‖2H + ‖u0‖2V

)
,∥∥∥∥dudt

∥∥∥∥2

C0([0,T ];H)
≤ C6

(
‖f‖2L2(0,T ;H) + ‖u1‖2H + ‖u0‖2V

)
,

that implies continuity of the mapping {f, u0, u1} → {u, du/dt} if problem
(2.2), (2.3) has a unique solution.

Let us prove that the formulated nonlocal problem has at most one so-
lution. Indeed, suppose that there exist two solutions u(t) and v(t) of the
problem. Then their difference w(t) = u(t)−v(t) is a solution of the homoge-
neous nonlocal in time problem, i.e., for f ≡ 0, u0 = 0, u1 = 0. Furthermore,
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w(t) is the solution of classical evolution problem for the equation (2.2) with
initial conditions w(0) and w′(0), which has a unique solution and

w(t) =
∞∑
n=1

(Ãn cos(λnt) + B̃n sin(λnt))vn.

Since w(t) satisfies homogeneous conditions (2.3), then (Ãn, B̃n) is a solu-
tion of homogeneous system (2.7). According to the conditions (2.4), the de-
terminant of the system is different from zero and, therefore, Ãn = B̃n = 0,
∀n ∈ N and w(t) ≡ 0. Thus, u(t) ≡ v(t) and solution is unique.

Remark 2.1. From the proof of the uniqueness of solution for nonlocal in
time problem (2.2), (2.3) it follows, that if in the formulation of Theorem
2.1 we have q = 0, then problem (2.2), (2.3) has at most one solution.

3. Nonlocal in time problems for hyperbolic equations and
systems

In the present section we consider some applications of the Theorem 2.1
for the nonlocal in time problems for hyperbolic equations and systems.

Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary. Denote with
Hs(Ω) = W 2,s(Ω) the Sobolev space of order s ∈ N, Hs

0(Ω) = W 2,s
0 (Ω) is the

closure of the set D(Ω) of infinitely differentiable functions with compact
support in Ω, in the space Hs(Ω). Assume that aij , ρ (i, j = 1, n) are
functions defined in Ω such that

aij , ρ ∈ L∞(Ω), ρ(x) ≥ 0, aij(x) = aji(x), i, j = 1, n,

∃α > 0,
n∑

i,j=1

aij(x)ξiξj ≥ α(ξ2
1 + . . .+ ξ2

n), ∀(ξ1, . . . , ξn) ∈ Rn,

almost everywhere in Ω. Let V = H1
0 (Ω), H = L2(Ω),

Au = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+ ρ(x)u, (3.1)

and as the initial conditions (2.3) take

u(x, 0) =
k∑
i=1

α1
i u(x, Ti) +

k∑
i,j=1

∫ Tj

Ti

ρ1
ij(τ)u(x, τ)dτ + u0(x),

ut(x, 0) =
k∑
i=1

α2
i ut(x, Ti) +

k∑
i,j=1

∫ Tj

Ti

ρ2
ij(τ)ut(x, τ)dτ + u1(x),

(3.2)
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where x ∈ Ω, ρ1
ij , ρ

2
ij are measurable bounded real-valued functions, α1

i , α
2
i

are real constants, Ti ∈ (0, T ] (i, j = 1, k). Note that under these conditions
the bilinear form

a(ϕ,ψ) =
n∑

i,j=1

∫
Ω
aij

∂ϕ

∂xj

∂ψ

∂xi
dx+

∫
Ω
ρϕψdx, ∀ϕ,ψ ∈ H1

0 (Ω),

defined by the operator A, fulfills conditions (2.1) and the set of eigenfunc-
tions of the operator A is complete in H1

0 (Ω). Hence, from Theorem 2.1 it
immediately follows validity of the similar theorem in the case of nonlocal
in time problem for multidimensional hyperbolic equation

∂2u

∂t2
+Au = f, in Q = Ω× (0, T ). (3.3)

Theorem 3.1. If there exists a real constant q > 0 such that∣∣∣∣∣∣
2∏
r=1

1−
k∑
i=1

αri cos(λnTi)−
k∑

i,j=1

∫ Tj

Ti

ρrij(τ) cos(λnτ)dτ


+

2∏
r=1

 k∑
i=1

αri sin(λnTi) +
k∑

i,j=1

∫ Tj

Ti

ρrij(τ) sin(λnτ)dτ

∣∣∣∣∣∣
> q, (3.4)

for all n ∈ N, u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω), f ∈ L2(Q), then nonlocal in time

problem (3.2), (3.3) with homogeneous boundary conditions has a unique
solution u ∈ C0([0, T ];H1

0 (Ω)), u′ ∈ C0([0, T ];L2(Ω)).

Corollary 3.1. If in nonlocal conditions (3.2) ρ1
ij ≡ ρ2

ij ≡ 0 and coefficients
α1
i , α

2
i (i, j = 1, k) satisfy the inequality

k∑
i=1

(|α1
i |+ |α2

i |) < 1, (3.5)

then the nonlocal problem has a unique solution.

Proof. According to Theorem 3.1, it suffices to check validity of condition
(3.4). From (3.5) we obtain
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(
1−

k∑
i=1

α1
i cos(λnTi)

)(
1−

k∑
i=1

α2
i cos(λnTi)

)

+

(
k∑
i=1

α1
i sin(λnTi)

)(
k∑
i=1

α2
i sin(λnTi)

)

≥ 1−
k∑
i=1

|α1
i | −

k∑
i=1

|α2
i | > 0

and, instead of q, we can take any positive real number less than
1−

∑k
i=1(|α1

i |+ |α2
i |).

Now, we consider some particular cases of the nonlocal in time problem
for hyperbolic equation and show an essential difference between classical
and nonlocal problems.

Let Ω = (0, l), A ≡ −∂2/∂x2, f ≡ 0 and conditions (3.2) are of the
following form:

u(x, 0) =
k∑
i=1

αiu(x, Ti) + u0(x),

ut(x, 0) =
k∑
i=1

αiut(x, Ti) + u1(x),

x ∈ Ω, (3.6)

where αi 6= 0 is a real constant, Ti ∈ (0, T ] (i = 1, k).
Therefore we obtain nonlocal in time problem for the string oscillation

equation, which, according to Theorem 3.1, has a unique solution if
∑k

i=1 |αi|
< 1. In the case of

∑k
i=1 |αi| = 1, from inequality (3.4) and Remark 2.1, we

obtain that if among the points {Ti}ki=1 at least one is such that the ratio
Ti/l is irrational, then the nonlocal problem has at most one solution. It
must be pointed out that if k = 1, then condition of irrationality of the ratio
T1/l is a necessary and sufficient condition for the uniqueness of solution of
the nonlocal problem. Moreover, for the special case of T1/l, we have the
theorem of the existence of a solution.

Theorem 3.2. Suppose that T1/l is an irrational algebraic
number of degree r > 1. If u0 ∈ Hr(Ω), u1 ∈ Hr−1(Ω), u0, Au0, . . . ,

A[(r−1)/2]u0, u1, . . . , A
[r/2]−1u1 ∈ H1

0 (Ω), then nonlocal in time problem (3.3),
(3.6) with homogeneous boundary conditions has a unique solution for any
α1 ∈ R ([y] denotes the integer part of the real number y).
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Proof. According to Liouville’s Theorem ([3]), since T1/l is an algebraic
irrational number of degree r > 1, there exists c > 0 such that∣∣∣∣T1

l
− p

n

∣∣∣∣ ≥ c

nr
, ∀ n, p ∈ N,

and, hence, ∣∣∣∣nT1

l
− p
∣∣∣∣ ≥ c

nr−1 , ∀ n, p ∈ N.
From the proof of Theorem 2.1

An =
u0n

(
1− α1 cos

(πn
l
T1

))
+
u1nl

πn
α1 sin

(πn
l
T1

)
(1 + α2

1)− 2α1 cos
(πn
l
T1

) ,

Bn =

u1nl

πn

(
1− α1 cos

(πn
l
T1

))
− u0nα1 sin

(πn
l
T1

)
(1 + α2

1)− 2α1 cos
(πn
l
T1

) ,

where

u0n =

√
2
l

∫ l

0
u0(x) sin

(πn
l
x
)
dx, u1n =

√
2
l

∫ l

0
u1(x) sin

(πn
l
x
)
dx.

Hence, if |α1| 6= 1, then the nonlocal problem has a unique solution.
Now consider the case when |α1| = 1. We have:

for α1 = 1,

An =
u0n

2
+
u1nl

2πn
cot
(
πnT1

2l

)
, Bn =

u1nl

2πn
− u0n

2
cot
(
πnT1

2l

)
;

for α1 = −1,

An =
u0n

2
− u1nl

2πn
tan

(
πnT1

2l

)
, Bn =

u1nl

2πn
+
u0n

2
tan

(
πnT1

2l

)
.

Denote with m(x) = min {(2/π)x, 2− (2/π)x}, 0 ≤ x ≤ π. It is easily
checked that for all n ∈ N,∣∣∣∣sin(πnT1

2l

)∣∣∣∣ =
∣∣∣∣sin(πnT1

2l
− π

[
nT1

2l

])∣∣∣∣ > m

(
πnT1

2l
− π

[
nT1

2l

])
,∣∣∣∣cos

(
πnT1

2l

)∣∣∣∣ =
∣∣∣∣cos

(
πnT1

2l
− π

[
nT1

2l

])∣∣∣∣ > 1 + 2
[
nT1

2l

]
− nT1

l
,

whence ∣∣∣∣cot
(
πnT1

2l

)∣∣∣∣ ≤ c̃nr−1,

∣∣∣∣tan
(
πnT1

2l

)∣∣∣∣ ≤ c̃nr−1.

Therefore,

max{|An|, |Bn|} ≤ C1

(
|u0n|+

|u1n|
n

)
nr−1.
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Since A(sin(λnx)) = λ2
n sin(λnx), λn = πn/l, n ∈ N and u0, Au0, . . . ,

A[(r−1)/2]u0 ∈ H1
0 (Ω), we obtain:

if r is even (r = 2r0), then

u0n =

√
2
l

1
λ2
n

∫ l

0
u0(x)A(sin(λnx))dx =

√
2
l

1
λ2
n

∫ l

0
(Au0)(x) sin(λnx)dx

= . . . =

√
2
l

1
λ2r0
n

∫ l

0
(Ar0u0)(x) sin(λnx)dx =

u0n

λ2r0
n

,

if r is odd (r = 2r0 + 1), then

u0n =

√
2
l

1
λ2r0
n

∫ l

0
(Ar0u0)(x) sin(λnx)dx

=

√
2
l

1
λ2r0+1
n

∫ l

0

d

dx
((Ar0u0)(x))

d

dx

(
1
λn

sin(λnx)
)
dx =

ũ0n

λ2r0+1
n

,

where
∑∞

n=1(u0n)2 ≤ c2‖u0‖2Hr(Ω),

0 ≤
∫ l

0

(
d

dx

(
(Ar0u0)(x)−

N∑
n=1

ũ0n

λn

√
2
l

sin(λnx)

))2

dx

=
∫ l

0

(
d

dx
((Ar0u0)(x))

)2

dx−
N∑
n=1

(ũ0n)2,

whence
∑∞

n=1(ũ0n)2 ≤ c3‖u0‖2Hr(Ω). Thus,

u0n =
û0nl

r

πrnr
,

∞∑
n=1

(û0n)2 ≤ ĉ‖u0‖2Hr(Ω),

and similarly

u1n =
û1nl

r−1

πr−1nr−1 ,

∞∑
n=1

(û1n)2 ≤ ĉ‖u1‖2Hr−1(Ω).

From the latter estimates for u0n, u1n we deduce, that the series

u(x, t) =
∞∑
n=1

√
2
l

(
An cos

(πn
l
t
)

+Bn sin
(πn
l
t
))

sin
(πn
l
x
)

(3.7)

converges uniformly (with respect to t) in the space H1(Ω) and the series
obtained by differentiation of (3.7) converges uniformly in L2(Ω). Thus
u ∈ C0([0, T ];H1

0 (Ω)) and u′ ∈ C0([0, T ];L2(Ω)).

Note, that similar results in the case of Dirichlet problem for hyperbolic
equations are obtained in [1, 8]. More precisely, a solution of the Dirichlet
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boundary value problem for the string oscillation equation is uniquely deter-
mined if and only if the ratio ξ = T/l of the sides of the rectangle [0, l]×[0, T ]
is irrational; the solution exists for all boundary values, which are differen-
tiable sufficiently many times, if ξ cannot “too rapidly” be approximated
by rationals.

Similarly we may consider two-dimensional and multidimensional non-
local in time problem (3.3), (3.6) with homogeneous boundary conditions.
Particularly, let Ω = (0, l1)× ...× (0, ls), A ≡ −

∑s
i=1 ∂

2/∂x2
i , f ≡ 0. Before

formulation of the analogue to Theorem 3.2 let us introduce the following
definition.

Definition 3.1. Let Ds = {dn1n2...ns ; n1, n2, ..., ns ∈ N0 = N ∪ {0}} be an
infinite set of non-negative real numbers. We say that the rate of approx-
imation of the real number d on the set Ds is less than r, r ∈ N, if there
exists a constant c > 0 such that for all n1, n2, ..., ns ∈ N0,∣∣∣∣d− p

dn1n2...ns

∣∣∣∣ ≥ c

drn1n2...ns

, ∀p ∈ N, dn1n2...ns ∈ Ds.

In the case of multidimensional nonlocal in time problem, if we have∑k
i=1 |αi| < 1, then problem (3.3), (3.6) has a unique solution. In the case

of
∑k

i=1 |αi| = 1, the nonlocal in time problem has at most one solution if
there exists Ti for which the equation(

n1

l1

)2

+
(
n2

l2

)2

+ ...+
(
ns
ls

)2

=
(
p

Ti

)2

(3.8)

is unsolvable in integers. Let us consider the case of l1 = l2 = ... = ls = l
and k = 1. According to the equation (3.8), the uniqueness of a solution of
the nonlocal in time problem depends on algebraic properties of T1/l. More
precisely, the following theorem is valid.

Theorem 3.3. If T1/l is such, that n1, ..., ns, pl/T1 are not the genera-
lized Pythagorean numbers, i.e., don’t satisfy equation (3.8) for any integers
n1, ..., ns, p and the rate of approximation of T1/l on the set Ds = {dn1...ns =√
n2

1 + . . .+ n2
s; n1, . . . , ns ∈ N0} is less than r > 1, u0 ∈ Hr(Ω), u1 ∈

Hr−1(Ω), Akγuγ ∈ H1
0 (Ω), 0 ≤ kγ ≤ [(r − 1 + γ)/2] − γ, γ = 0, 1, then

nonlocal problem (3.3), (3.6) with homogeneous boundary conditions has a
unique solution for any α1 ∈ R.

Proof. We only sketch the proof, because it is similar to the proof of The-
orem 3.2. Note, that if |α1| 6= 1, then the formulated theorem follows from
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Theorem 3.1. Let us consider the case of |α1| = 1. As in the proof of
Theorem 2.1 solution of the nonlocal problem we seek by Fourier series

u(x1, ..., xs, t) =
∞∑

n1=1

. . .
∞∑

ns=1

(An1...ns cos(λn1...nst)

+Bn1...ns sin(λn1...nst)) vn1...ns(x1, . . . , xs), (3.9)

where

vn1...ns(x1, . . . , xs) =
(

2
l

)s/2
sin
(πn1

l
x1

)
. . . sin

(πns
l
xs

)
,

λn1...ns =
π
√
n2

1 + . . .+ n2
s

l
,

n1, . . . , ns ∈ N.

Coefficients An1...ns , Bn1...ns determined from initial conditions (3.6), are of
the following form:

An1...ns =
u0n1...ns

2
+
u1n1...ns

2λn1...ns

(
α1 + 1

2
cot +

α1 − 1
2

tan
)(

λn1...nsT1

2

)
,

Bn1...ns =
u1n1...ns

2λn1...ns

− u0n1...ns

2

(
α1 + 1

2
cot +

α1 − 1
2

tan
)(

λn1...nsT1

2

)
.

Taking into account property of T1/l, we obtain

max{|An1...ns |, |Bn1...ns |}

≤ C

(
|u0n1...ns |+

u1n1...ns√
n2

1 + . . .+ n2
s

)√
n2

1 + . . .+ n2
s

r−1
,

and from the latter estimate, as in the proof of Theorem 3.2, we deduce,
that the function u(x1, . . . , xs, t) defined by series (3.9) is a solution of the
nonlocal in time problem (3.3), (3.6).

It must be pointed out that Theorem 2.1 allows to investigate nonlocal
in time problem for hyperbolic system. Let Ω ⊂ Rn be a bounded domain
with regular boundary, V = Hm0 (Ω) = [Hm

0 (Ω)]N , H = L2(Ω) = [L2(Ω)]N

and let A be an elliptic operator of order 2m:

A =
m∑
k=0

(−1)k
∑ ∂k

∂xi1 . . . ∂xik

(
Ai1...ikj1...jk

(x)
∂k

∂xj1 . . . ∂xjk

)
, (3.10)

where in the inner sum each index i1, . . . , ik, j1, . . . , jk independently range
over the set {1, . . . , n}. u is N -component vector-function, Ai1...ikj1...jk

(x) —
square matrix of order N , which does not change for any transposition of
upper or lower indices and turns into transpose of the matrix if all upper
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indices are transposed with all lower indices. Furthermore, assume that the
elements of the matrices belong to L∞(Ω) and for almost all x ∈ Ω,((∑

Ai1...imj1...jm
(x)tj1...jm , ti1...im

))
≥ α

∑
‖ti1...im‖2, α > 0,((∑

Ai1...ikj1...jk
(x)tj1...jk , ti1...ik

))
≥ 0, k = 0, 1, . . . ,m− 1. (3.11)

In (3.11) ti1...ik is N -component vector, which does not change for any trans-
position of indices i1, . . . , ik (k = 1,m), ((., .)), ‖.‖ denote the scalar product
and norm in the N -dimensional Euclidean space, respectively.

Let us consider now nonlocal in time problem for hyperbolic system

∂2u

∂t2
+Au = f, in Q = Ω× (0, T ), (3.12)

with nonlocal initial conditions of the form (3.2) and homogeneous boundary
conditions

u =
∂u

∂ν
= . . . =

∂m−1u

∂νm−1 = 0, on Γ = ∂Ω× [0, T ],

where ν is the unit outward normal to ∂Ω. In this case bilinear form a(., .)
defined by the operator A is of the following form

a(u, v) =
∫

Ω

m∑
k=0

∑((
Ai1...ikj1...jk

(x)
∂ku

∂xj1 . . . ∂xjk
,

∂kv

∂xi1 . . . ∂xik

))
dx.

Taking into account conditions (3.11) it is not difficult to check that
bilinear form a(., .) is symmetric and coercive on V × V . Moreover, it is
well known, that Hm0 (Ω) is dense in L2(Ω) and the set of eigenfunctions of
the operator A is complete in V .

So, applying Theorem 2.1, we obtain the following statement.

Theorem 3.4. If u0 ∈ Hm0 (Ω), u1 ∈ L2(Ω), f ∈ L2(Q) and condition (3.4)
is fulfilled, then the formulated nonlocal in time problem for the hyperbolic
system has a unique solution u ∈ C0([0, T ];Hm0 (Ω)), u′ ∈ C0([0, T ];L2(Ω)).
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