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Abstract. In this paper we shall consider the nonlinear neutral delay
differential equations with variable coefficients. Some new sufficient con-
ditions for oscillation of all solutions are obtained. Our results extend
and improve some of the well known results in the literature. Some ex-
amples are considered to illustrate our main results. The neutral logistic
equation with variable coefficients is considered to give some new suffi-
cient conditions for oscillation of all positive solutions about its positive
steady state.

1. Introduction

In recent years the literature on the oscillation theory of neutral delay
differential equations is growing very fast. It is relatively a new field with
interesting applications in real world life problems. In fact, the neutral
delay differential equations appear in modelling of the networks containing
lossless transmission lines (as in high-speed computers where the lossless
transmission lines are used to interconnect switching circuits), in the study
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of vibrating masses attached to an elastic bar, as the Euler equation in some
variational problems, theory of automatic control and in neuromechanical
systems in which inertia plays an important role. see Hale [16], Driver
[8], Brayton and Willoughby [5], Popov [23] and Boe and Chang [4] and
reference cited therein).

Recently some papers [13, 34] have appeared which are concerned with
the oscillation and nonoscillation behavior of the neutral delay differential
equation with variable coefficients,
d

dt
[a(t)x(t)− P (t)x(t− τ)] + Q(t)f(x(t − σ)) = 0, t ≥ t0 (1.1)

where

a, P, Q ∈ C([t0,∞),R+), σ, τ ∈ [0,∞), (1.2)

and f satisfies
f ∈ C([t0,∞),R), uf(u) > 0 for u 6= 0

and lim
u→0

u

f(u)
= β exists. (1.3)

Let ρ = max{σ, τ} and let t1 ≥ t0. By a solution of equation (1.1) on [t1,∞)
we mean a function x ∈ C([t1−ρ,∞),R), such that (a(t)x(t)−P (t)x(t−τ)) is
continuously differentiable on [t1,∞) and such that equation (1.1) is satisfied
for t ≥ t1.

Let t1 ≥ t0 be a given point, let φ ∈ C([t1 − ρ, t1],R) be a given initial
function. By using the method of steps one can see that equation (1.1) has
a unique solution x ∈ C([t1 − ρ,∞),R) such that

x(t) = φ(t) for t ∈ [t1 − ρ, t1]. (1.4)

As usual, we say that the equation (1.1) is oscillatory if every solution
of (1.1) is oscillatory, i.e., for every initial point t1 ≥ t0 and for every
initial function φ ∈ C([t1 − ρ, t1],R) the unique solution of equations (1.1)
and (1.4) has arbitrarily large zeros. Otherwise the solution is called non-
oscillatory. The oscillation of various functional differential equations has
been investigated by several authors. For some contributions we refer to the
monographs [1, 2, 3, 9, 15, 21].

The first systematic work about oscillation of neutral delay differential
equations is given by Zahariev and Bainov [32]. For the oscillation of equa-
tion (1.1) when P (t) and Q(t) are constants, a(t) = 1 and f(x) = x, we refer
to the articles by Ladas and Sficas [20], Grammatikopoulos et al. [10] and
Zhang [33] and the references cited therein. For P (t) equal to a constant,
a(t) = 1 and f(x) = x we refer to the articles by Grammatikopoulos, Grove
and Ladas [12] Zhang [33] and Saker and Elabbasy [24]. Grammatikopouo-
los et al. [11] considered the neutral delay differential equation (1.1) when
a(t) = 1 and f(x) = x and presented some finite sufficient conditions for
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oscillation of all solutions when P (t) takes some values in the interval [0, 1].
Chuanxi and Ladas [7] and Kubiaczyk and Saker [19] considered the neutral
delay differential equation (1.1) when a(t) = 1 and f(x) = x and established
new sufficient conditions for oscillation of all solutions under less restrictive
hypotheses on P (t). All the above mentioned papers except [24] given the
oscillation conditions for equation (1.1) when P (t) ≤ 1 under the condition∫ ∞

t0

Q(s)ds =∞. (1.5)

In the case when (1.5) does not hold (in this case equation (1.1) is called has
integrally small coefficients) Yu, Wang and Chuanxi [28] considered equation
(1.1) when P (t) ≡ 1 and relaxed the condition (1.5) to the condition∫ ∞

t0

sQ(s)
∫ ∞
s

Q(u)du ds =∞. (1.6)

In fact, Chen, Yu and Huang [6] observed that for the equation (1.1), it is
sufficient to have a point t∗ ≥ t0 so that

P (t∗ + kτ) ≤ 1 k = 0, 1, 2, . . . (1.7)

without the assumptions (1.5) and (1.6) and proved a comparison theorem
for oscillation of equation (1.1) with the absence of positive solutions of
the corresponding delay differential inequality. They succeeded in getting
oscillation theorem which involve joint behavior of P and Q (for example
see [6, Theorems 3 and 5]) and using the condition

P (t− σ)Q(t) ≤ Q(t− τ) (1.8)

to transfer the equation (1.1) to the inequality
d

dt
[y(t)− y(t− τ)] +Q(t)y(t− σ) ≤ 0, t ≥ t0, (1.9)

and using the results in Yu, Wang and Chuanxi [28] with the condition
(1.6) in the proofs of the main results, and obtained some finite sufficient
conditions for oscillation of all solutions. However, most of the results in
the literature involve conditions placed separately on Q mimicking the con-
ditions on Q sufficient for oscillation of (1.1) and placing conditions on P
which allow extension of arguments used in the case where P (t) ≡ 1 as
in Yu, Wang and Chuanxi [28]. Recently Li and Saker [22] considered the
equation (1.1) when a(t) = 1 and given some finite sufficient conditions for
oscillation of all solutions and applied these results to the logistic neutral
delay differential equations. For further oscillation results when (1.5) does
not hold we refer the reader to the articles by Yu [26, 27] and Yu et al. [29,
30, 31].

Our aim in this paper in Section 2 is to give some new integral sufficient
conditions for oscillation of all solutions of equation (1.1) and show that
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the combined growth of P and Q without the condition (1.8) in the linear
case can give oscillation even when (1.5) and (1.6) fail. Our results extend
and improve some well known results for the oscillation of (1.1), and im-
prove some theorems about oscillation of the linear neutral delay differential
equations. In Section 3 some examples are considered to illustrate our main
results and in Section 4 we apply our results to the neutral logistic equa-
tion with variable coefficients to give some oscillation criteria for all positive
solutions about its positive steady state.

In the sequel, when we write a functional inequality we will assume that
it holds for all sufficient large values of t.

Before stating our main results we need the following lemma.

Lemma 1.1. Assume that (1.2), (1.3) hold, and there exist t∗ ≥ t0 such
that

P (t∗ + iτ)
a(t∗ + (i− 1)τ)

≤ 1 for i = 0, 1, 2, . . . . (1.10)

Let x(t) be an eventually positive solution of equation (1.1), and set

y(t) = a(t)x(t)− P (t)x(t− τ). (1.11)

Then we have eventually

y(t) > 0. (1.12)

Proof. Let t1 ≥ t0 be such that x(t)>0, x(t− σ) > 0 and x(t− τ) > 0 for
t ≥ t1. Then by (1.1) and (1.11) we have

y′(t) = −Q(t)f(x(t− σ)) < 0 for t ≥ t1
which implies that y(t) is nonincreasing on [t1,∞) and does not equal a
constant eventually. Hence if (1.12) does not hold, then eventually

y(t) < 0, t ≥ t1.
Therefore there exist t2 ≥ t1 and M>0 such that

y(t) < −M, t ≥ t2.
Set z(t) = a(t)x(t)>0, then

z(t) < −M +
P (t)

a(t− τ)
z(t− τ), t ≥ t2. (1.13)

Now we chose a positive integer i to be such that t∗ + iτ > t2. Then by
(1.10) and (1.13) we get

z(t∗ + iτ) ≤ −M(i+ 1) + z(t∗)→ −∞ as i→∞
which contradicts the fact that z(t) is eventually positive. Then (1.12) holds.
The proof is complete.
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2. Main results

In this section we will establish some sufficient conditions for oscillation
of all solutions of equation (1.1).

Theorem 2.1. Assume that (1.2), (1.3) and (1.10) hold,

0 < d≤ lim inf
t→∞

∫ t+σ

t

Q1(s)
a(s− σ)

ds for t ≥ t0, (2.1)

and ∫ ∞
t0

Q1(t)
a(t− σ)

exp
[∫ t+σ

t

Q1(s)
a(s− σ)

ds

]
dt =∞ (2.2)

where Q1(t) = Q(t)/(β + ε) for some small positive constant ε. Then every
solution of equation (1.1) oscillates.

Proof. Assume, by the way of contradiction, that equation (1.1) has an
eventually nonoscillatory solution. Without loss of generality we assume
that equation (1.1) has an eventually positive solution x(t) (the case that
x(t) is negative is similar and will be omitted). Set x(t) > 0 and x(t−σ) > 0,
for t ≥ t0. From (1.3) since the limit exists, we can assume that there exists
Tε sufficiently large such that for t ≥ Tε, 0<x(t−σ) and x(t− σ)/(β + ε) ≤
f(x(t − σ)) ≤ x(t− σ)/(β − ε). Set y(t) as in (1.11), then from equation
(1.1) and Lemma 1.1, y(t) is a positive function and satisfies the inequalities:

y′(t) + Q(t)
x(t− σ)
β + ε

≤ 0, y′(t) + Q(t)
x(t− σ)
β − ε

≥ 0, t ≥ Tε. (2.3)

Then from (1.11) and (2.3) we have

y′(t) ≤ − Q1(t)
a(t− σ)

y(t− σ)− Q1(t)P (t− σ)
a(t− σ)

x(t− τ − σ)

≤ − Q1(t)
a(t− σ)

y(t− σ) +
Q1(t)

Q1(t− τ)
P (t− σ)
a(t− σ)

y′(t− τ), t ≥ Tε.

Hence y(t) is positive and satisfies the inequality

y′(t) − Q1(t)
Q1(t− τ)

P (t− σ)
a(t− σ)

y′(t − τ) +
Q1(t)
a(t− σ)

y(t − σ) ≤ 0. (2.4)

Set

λ(t) = −y
′(t)
y(t)

. (2.5)
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Then (2.4) reduces to

λ(t) ≥λ(t− τ)
Q1(t)
a(t− σ)

P (t− σ)
Q1(t− τ)

exp
(∫ t

t−τ
λ(s)ds

)
+

Q1(t)
a(t− σ)

exp
(∫ t

t−σ
λ(s)ds

)
. (2.6)

It is obvious that λ(t) > 0 for t ≥ t0. From (2.6) it is clear that

λ(t) ≥ Q(t) exp
(∫ t

t−σ
λ(s)ds

)
with Q(t) = Q1(t)/[a(t− σ)]. Let A(t) = exp

(∫ t+σ
t Q(s)ds

)
, then

λ(t) ≥ Q(t) exp
[

1
A(t)

A(t)
∫ t

t−σ
λ(s)ds

]
. (2.7)

By using the inequality

ex/r ≥ 1 +
x

r2 for x ≥ 0, r ≥ 1 (2.8)

we have from the inequality (2.7) that

A(t)λ(t)−Q(t)
∫ t

t−σ
λ(s)ds ≥ Q(t)A(t).

Then for N > T ,∫ N

T
λ(t)A(t)dt −

∫ N

T
Q(t)

∫ t

t−σ
λ(s)ds dt ≥

∫ N

T
Q(t)A(t)dt. (2.9)

By interchanging the order of integration, we find that∫ N

T
Q(t)

(∫ t

t−σ
λ(s)ds

)
dt ≥

∫ N−σ

T
λ(t)

(∫ t+σ

t
Q(s)ds

)
dt

Hence ∫ N

T
λ(t)A(t)dt−

∫ N−σ

T
λ(t)

(∫ t+σ

t
Q(s)ds

)
dt

≥
∫ N

T
λ(t)A(t)dt−

∫ N

T
Q(t)

∫ t

t−σ
λ(s)ds dt. (2.10)

From (2.9) and (2.10), it follows that∫ N

T
λ(t)A(t)dt+

∫ T

N−σ
λ(t)

(∫ t+σ

t
Q(s)ds

)
dt ≥

∫ N

T
Q(t)A(t)dt.

On the other hand from the definition of λ(t), then from (2.6) y(t) is positive
function and satisfies the delay differential inequality

y′(t) +Q(t)y(t− σ) ≤ 0. (2.11)
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Integrating the last inequality from t to t+ σ we have

y(t+ σ)− y(t) +
∫ t+σ

t
Q(s)y(s− σ)ds ≤ 0.

Then

y(t) >
∫ t+σ

t
Q(s)y(s− σ1)ds > y(t)

∫ t+σ

t
Q(s)ds

which implies that

d ≤
∫ t+σ

t
Q(s)ds < 1 and ed ≤ A(t) < e. (2.12)

Therefore

A(t) >
∫ t+σ

t
Q(s)ds.

Then∫ N

T
λ(t)A(t)dt +

∫ T

N−σ
λ(t)A(t)dt ≥

∫ N

T
Q(t)A(t)dt. (2.13)

Then from (2.12) and (2.13) we have∫ N

N−σ
λ(t)dt ≥ 1

e

∫ N

T
Q(t)A(t)dt

or

log
y(N − σ)
y(N)

≥ 1
e

∫ N

T
Q(t)A(t)dt. (2.14)

In view of (2.2) we have

lim
t→∞

y(t− σ)
y(t)

=∞. (2.15)

Because of d≤lim inft→∞
∫ t+σ
t Q(s)ds there exists a sequence {tk}, tk →∞

as k →∞ and there exist ζk ∈ (tk, tk + σ) for every k such that∫ ζk

tk

Q(s)ds ≥ d

2
and

∫ tk+σ

ζk

Q(s)ds ≥ d

2
. (2.16)

Integrating both sides of the inequality (2.11) over the intervals [tk, ζk] and
[ζk, tk + σ], we have

y(ζk)− y(tk) +
∫ ζk

tk

Q(s)y(s− σ)ds ≤ 0 (2.17)

and

y(tk + σ)− y(ζk) +
∫ tk+σ

ζk

Q(s)y(s− σ)ds ≤ 0. (2.18)
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From (2.16), (2.17) and (2.18), we have

−y(tk) +
d

2
y(ζk − σ) ≤ 0 and − y(ζk) +

d

2
y(tk) ≤ 0.

Then
y(ζk − σ)
y(ζk)

≤
(

2
d

)2

which contradicts (2.15). Therefore, every solution of equation (1.1) oscil-
lates.

The following theorems are improved Theorem 2.1 which indicate that
the oscillation conditions of all solutions of equation (1.1) depend on P and
Q.

Theorem 2.2. Assume that (1.2), (1.3) and (1.10) hold,

0 < d≤lim inf
t→∞

∫ t+σ

t
Q1(s)ds for t ≥ t0, (2.19)

and ∫ ∞
t0

Q1(t) exp
(∫ t+σ

t
Q1(s)ds

)
dt =∞. (2.20)

Then every solution of equation (1.1) oscillates, where

Q1(t) =
Q1(t)P (t− σ)

a(t− σ)a(t− τ − σ)
.

Proof. Without loss of generality, we assume that equation (1.1) has an
eventually positive solution x(t). Then from Theorem 2.1 then y(t)>0 and
its generalized equation is given by (2.6). From (2.6) one can see that λ(t) ≥
Q1(t)/[a(t− σ)], then λ(t − τ) ≥ Q1(t− τ)/[a(t− τ − σ)], substituting in
(2.6) we have

λ(t) ≥ Q1(t)P (t− σ)
a(t− σ)a(t− τ − σ)

exp
(∫ t

t−τ
λ(s)ds)

)
+

Q1(t)
a(t− σ)

exp
(∫ t

t−σ
λ(s)ds

)
. (2.21)

It is obvious that λ(t) > 0 for t ≥ t0 and then

λ(t) ≥ Q1(t)P (t− σ)
a(t− σ)a(t− τ − σ)

exp
(∫ t

t−τ
λ(s)ds

)
. (2.22)

The remainder of the proof is similar to the proof of Theorem 2.1 and will
be omitted.
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Theorem 2.3. Assume that (1.2), (1.3) and (1.10) hold, τ ≥ σ,

d≤lim inf
t→∞

∫ t+σ

t
Q2(s)ds,∫ ∞

t0

Q2(t) exp
(∫ t+σ

t
Q2(s)ds

)
dt =∞, (2.23)

then every solution of equation (1.1) oscillates, where

Q2(t) =
1

a(t− σ)

[
Q1(t)P (t− σ)
a(t− τ − σ)

+Q1(t)
]
.

Proof. The proof is similar to the proof of Theorem 2.1 from the inequality
(2.6) and will be omitted.

Theorem 2.4. Assume that (1.2), (1.3) and (1.10) hold and τ ≥ σ,

d≤lim inf
t→∞

∫ t+σ

t
Q3(s)ds,∫ ∞

t0

Q3(t) exp
(∫ t+σ

t
Q3(s)ds

)
dt =∞. (2.24)

then every solution of equation (1.1) oscillates, where

Q3(t) =
Q1(t)P (t− σ)P (t− τ − σ)
a(t− τ − σ)a(t− 2τ − σ)

+
Q1(t)
a(t− σ)

.

Proof. Without loss of generality, we assume that equation (1.1) has an
eventually positive solution x(t). As in Theorem 2.1 from equation (2.6)
it is obvious that λ(t) > 0 for t ≥ t0, and λ(t) ≥ Q1(t)/[a(t− σ)]. Hence
λ(t− τ) ≥ Q1(t− τ)/[a(t− τ − σ)] and

λ(t) ≥ Q1(t)P (t− σ)
a(t− σ)a(t− τ − σ)

exp
(∫ t

t−τ
λ(s)ds

)
+

Q1(t)
a(t− σ)

exp
(∫ t

t−σ
λ(s)ds

)
(2.25)

which guarantees that

λ(t) ≥ Q1(t)P (t− σ)
a(t− σ)a(t− τ − σ)

and then

λ(t− τ) ≥ Q1(t− τ)P (t− τ − σ)
a(t− τ − σ)a(t− 2τ − σ)

.
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From (2.6) we have

λ(t) ≥Q1(t)P (t− σ)P (t− τ − σ)
a(t− τ − σ)a(t− 2τ − σ)

exp
(∫ t

t−τ
λ(s)ds

)
+

Q1(t)
a(t− σ)

exp
(∫ t

t−σ
λ(s)ds

)
(2.26)

as τ ≥ σ we obtain

λ(t) ≥
(
Q1(t)P (t− σ)P (t− τ − σ)
a(t− τ − σ)a(t− 2τ − σ)

+
Q1(t)
a(t− σ)

)
exp

(∫ t

t−σ
λ(s)ds

)
. (2.27)

The remainder of the proof is similar to the proof of Theorem 2.1 and will
be omitted.

Theorem 2.5. Assume that (1.2), (1.3) and (1.10) hold,

1
e
<

∫ t+σ1

t
Q(s)ds

and ∫ ∞
t0

Q(t) log
(
e

∫ t+σ1

t
Q(s)ds

)
dt =∞.

Then every solution of equation (1.1) oscillates.

Proof. The proof is similar to the proof of Theorem 2.1 by choosing

A(t) = log
{
e

∫ t+σ1

t
Q(s)ds

}
,

and will be omitted.

Theorem 2.6. Assume that (1.2), (1.3) and (1.10) hold,

1
e
≤
∫ t+σ1

t
Q(s)ds

and ∫ ∞
t0

Q(t)
{

exp
(∫ t+σ1

t
Q(s)ds− 1

e

)
ds− 1

}
dt =∞.

Then every solution of equation (1.1) oscillates.
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Proof. The proof is similar to the proof of Theorem 2.1 by choosing

A(t) =
{

exp
(∫ t+σ1

t
Q(s)ds− 1

e

)
ds− 1

}
and will be omitted.

In fact, if we take

Q1(t) =
Q1(t)P (t− σ)

a(t− σ)a(t− τ − σ)
,

Q2(t) =
1

a(t− σ)
[
Q1(t)P (t− σ)
a(t− τ − σ)

+Q1(t)],

Q3(t) =
Q1(t)P (t− σ)P (t− τ − σ)
a(t− τ − σ)a(t− 2τ − σ)

+
Q1(t)
a(t− σ)

,

then respectively we have the following new sufficient conditions for oscilla-
tion of all solutions of equation (1.1).

Theorem 2.7. Assume that (1.2), (1.3) and (1.10) hold,

1
e
<

∫ t+τ

t
Q1(s)ds

and ∫ ∞
t0

Q1(t) log
(
e

∫ t+τ

t
Q1(s)ds

)
dt =∞.

Then every solution of equation (1.1) oscillates.

Theorem 2.8. Assume that (1.2), (1.3) and (1.10) hold,

1
e
≤
∫ t+σ

t
Q1(s)ds

and ∫ ∞
t0

Q1(t)
{

exp
(∫ t+σ

t
Q1(s)ds− 1

e

)
ds− 1

}
dt =∞.

Then every solution of equation (1.1) oscillates.

Theorem 2.9. Assume that (1.2), (1.3) and (1.10) hold,

1
e
<

∫ t+σ

t
Q2(s)ds

and ∫ ∞
t0

Q2(t) log
(
e

∫ t+σ

t
Q2(s)ds

)
dt =∞.

Then every solution of equation (1.1) oscillates.
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Theorem 2.10. Assume that (1.2), (1.3) and (1.10) hold,

1
e
≤
∫ t+σ

t
Q2(s)ds

and ∫ ∞
t0

Q2(t)
{

exp
(∫ t+σ

t
Q2(s)ds− 1

e

)
ds− 1

}
dt =∞.

Then every solution of equation (1.1) oscillates.

Theorem 2.11. Assume that (1.2), (1.3) and (1.10) hold,

1
e
<

∫ t+σ

t
Q3(s)ds

and ∫ ∞
t0

Q3(t) log
(
e

∫ t+σ

t
Q3(s)ds

)
dt =∞.

Then every solution of equation (1.1) oscillates.

Theorem 2.12. Assume that (1.2), (1.3) and (1.10) hold,

1
e
≤
∫ t+σ

t
Q3(s)ds

and ∫ ∞
t0

Q3(t)
{

exp
(∫ t+σ

t
Q3(s)ds− 1

e

)
ds− 1

}
dt =∞.

Then every solution of equation (1.1) oscillates.

Remark 2.1. Our results can be extended to the more the general equation

dn

dtn

a(t)x(t)−
m∑
j=1

Pj(t)x(t− τj)

+
n∑
i=1

Qi(t)f(x(t− σi)) = 0, t ≥ t0.

Due to limited space, their statements are omitted here.
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3. Examples

In this section we introduce some examples to illustrate our results.

Example 3.1. Consider the neutral delay differential equation[
x(t)− (

3
2

+ sin t)x(t− π)
]′

+
3
2

(
(
√

2 +
1
e

)
2
π

+ cos t
)

(ex(t−π/2)−1) = 0,

t ≥ 0 (3.1)

Here σ = π/2 and
f(u) = eu − 1

with β = 1 and ε = 1/2, then

Q1(t) = (
√

2 +
1
e

)
2
π

+ cos t > 0 for t ≥ 0

and∫ t

t−π/2
Q1(s)ds =

∫ t

t−π/2

(
(
√

2 +
1
e

)
2
π

+ cos s
)
ds =

√
2 +

1
e

+ sin t+ cos t.

Hence

lim inf
t→∞

∫ t

t−π/2
Q1(s)ds =

1
e
.

Then according to Theorem 3.3 in [22] equation (3.1) cannot has an oscil-
latory solution, but one can prove by Theorem 2.1 that every solution of
equation (3.1) oscillates.

Example 3.2. Consider the neutral delay differential equation[
x(t)− (

3
2

+ sin t)x(t− π)
]′

+
3
2

0.6
απ +

√
2

(2α+ cos t)(ex(t−π/2) − 1) = 0,

t ≥ 0 (3.2)

withσ = π/2,
f(u) = eu − 1

with β = 1, ε = 1/2, a(t) = 1, and α =
√

2(0.6e+ 1)/[π(0.6e− 1)]

Q1(t) =
0.6

απ +
√

2
(2α+ cos t) > 0 for t ≥ 0

and ∫ t

t−π/2
Q1(s)ds =

∫ t

t−π/2

0.6
απ +

√
2

(2α+ cos s)ds.

Hence

lim inf
t→∞

∫ t

t−π/2
Q1(s)ds =

1
e



274 S. H. SAKER and I. KUBIACZYK

and

lim sup
t→∞

∫ t

t−π/2
Q1(s)ds = 0.6.

Then Theorem 3.3 in [22] is failed to apply on the equation (3.2), but one
can see by Theorem 2.1 that every solution of equation (3.2) oscillates.

Example 3.3. Consider the neutral delay differential equation[
x(t)− (

3
2

+ sin t)x(t− π)
]′

+
3
2

(
1
e

+
1

t+ 1

)
(1− e−x(t−1)) = 0,

t ≥ 0 (3.3)

with σ = 1,
f(u) = 1− e−u

with β = 1, ε = 1/2, and a(t) = 1,

Q1(t) =
(

1
e

+
1

t+ 1

)
for t ≥ 0 and∫ t

t−1
Q1(s)ds =

∫ t

t−1

(
1
e

+
1

s+ 1

)
ds = log

t+ 1
t

+
1
e
.

Hence

lim inf
t→∞

∫ t

t−1
Q1(s)ds =

1
e
.

For T>1 we have∫ T

1
Q1(t) exp

(∫ t+1

t
Q1(s)ds

)
dt=

∫ T

1

(
1
e

+
1

t+ 1

)
exp

(
log

t+ 2
t+ 1

+ 1
)
dt

≥ e
∫ T

1

(
1
e

+
1

t+ 1

)(
log

t+ 2
t+ 1

+ 1
)
dt→∞

as T →∞ where ex ≥ ex for all real x. Then by Theorem 2.1 every solution
of equation (3.3) oscillates.

4. Oscillation in non-autonomous neutral delay logistic equation

The scalar autonomous ordinary differential equation

N ′(t) = rN(t)
[
1− N(t)

K

]
is known as the logistic equation in mathematical ecology and it is a proto-
type in the modelling in the dynamics of single-species population systems
whose biomass or density is denoted by a differentiable function N(t). The
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constant r, is called the growth rate and K, is called the carrying capacity
of the habitat. Hutchinson [17] suggested the following modification

N ′(t) = rN(t)
[
1− N(t− τ)

K

]
. (4.1)

Equation (4.1) is commonly known as the “delay equation” and has been
extensively investigated by numerous authors (see for example Wright [25],
Kakutani and Markus [18]). Gyori [14] considered the neutral delay logistic
equation with constant coefficients of the form,

N ′(t) = N(t)
[
r(1− N(t− σ)

K
) + cN ′(t− τ)

]
(4.2)

and established oscillation criteria for all positive solutions.
The effects of varying environment are often important in dynamical na-

ture of populations, then we consider the non-autonomous neutral delay
equation

N ′(t) = N(t)
[
r(t)(1− N(t− σ)

K
) + cN ′(t− τ)

]
(4.3)

where

r ∈ C[[t0,∞),R+], K, τ, σ, c ∈ (0,∞) (4.4)

and r(t) is the growth rate function, K is the carrying capacity of the
environment and c is the growth rate associated with the growth rate at
time t− τ .

With equation (4.3) one associate an initial condition of the form,

N(t) = φ(t) for − γ ≤ t ≤ 0, φ ∈ C[[−τ, 0],R+] and φ(0) > 0 (4.5)

where γ = max{τ, σ}, then by the method of steps, the initial value problem
(4.3) and (4.5) has a unique solution N(t) which is valid for t ≥ 0. We
will only consider those solutions N(t) which are positive. Note that such
solution exist because if φ(0) > 0, then N(t)>0 for t ≥ 0. In [22] Li
and Saker presented some finite sufficient conditions for oscillation of all
positive solutions of equation (4.3) about K when 0<c(t)<1. In this section
we introduce some new infinite sufficient conditions for oscillation of all
positive solution of equation (4.3) when c(t) = c is a constant by applying
one of the above theorems.

Theorem 4.1. Assume that (4.4) holds, 0 < c < 1,

0 < lim inf
t→∞

∫ t+σ

t
r(s)ds
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and ∫ ∞
t0

r(t) log
[
e

∫ t+σ

t
r(s)ds

]
dt =∞. (4.6)

Then every solution of equation (4.3) oscillates.

Proof. The change of variables

N(t) = Kex(t)

reduces equation (4.3) to the delay equation

d

dt
[x(t)− cx(t− τ)] + r(t)[ex(t−σ) − 1] = 0 (4.7)

Clearly, N(t) oscillates about K, if and only if x(t) oscillates about zero.
From (4.7) we have

d

dt
[x(t)− cx(t− τ)] + r(t)f(x(t− σ)) = 0 (4.8)

with

f(u) = eu − 1. (4.9)

It is clear that

f ∈ C[R,R], uf(u) > 0 for u 6= 0, lim
u→0

u

f(u)
= 1. (4.10)

Then by Theorem 2.1 and the condition (4.6) every solution of equation
(4.7) oscillates. Then every positive solution of equation (4.3) oscillates
about K.

One can use equation (4.7) and the above theorem to give several new
sufficient conditions for oscillation of all positive solutions of equation (4.3)
about K. The details are left to the reader.
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