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Abstract. In the paper the existence and continuous dependence of
a kind of minimax solution to the dual Hamilton-Jacobi equations is
proved. The main difficulties which appear here are a special type of
the boundary conditions and the transversality conditions which that
solution must satisfy. That type of problems come from optimal control
and game theory.

1. Introduction

Theories of fields of extremals and dynamic programming are fundamen-
tal methods in investigating sufficient optimality conditions for nonlinear
classical and modern, variational and control problems. In papers [7] and
[8] the dual theory of field of extremals and dual dynamic programming
method are described. Both methods require new tools, new equations to
the study. One of them is a dual dynamic Hamilton-Jacobi equation with
a specific type of boundary condition (see [8]). We recall the main ideas
of that method. To this effect let us start with the classical approach to
dynamic programminig and denote by TX ⊂ Rn+1 a set covered by graphs
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of trajectories of the field of extremals - concourse of flights. If one considers
the optimal control problem of Bolza

minimize J(x, u) =
∫ T

0
L(t, x(t), u(t))dt+ l(x(T )) (1)

subject to
:
x(t) = f(t, x(t), u(t)) in [0, T ], (2)

u(t) ∈ U ⊂ Rm, (3)

x(0) = c, c ∈ Rn,
where L : [0, T ]×Rn ×Rm → R, f : [0, T ]×Rn ×Rm → Rn and l : Rn → R
then one defines the value function as

S(t, x) = inf
{∫ T

t
L(τ, x(τ), u(τ))dt+ l(x(T ))

}
(4)

where the infimum is taken over admissible pairs x(τ), u(τ), τ ∈ [t, T ],
whose trajectories start at (t, x) ∈ TX and graphs are contained in TX.
By [7] the existence of value function (4) is determined by the existence of
a concourse of flights (field of extremals). Futher it was concluded that if
S(t, x) is differentiable then it satisfies the partial differential equation

St(t, x) +H(t, x, Sx(t, x)) = 0, (5)

where H(t, x, y) = yf(t, x, u(t, x)) +L(t, x, u(t, x)) and u(t, x) is an optimal
feedback control, and the partial differential equation of dynamic program-
ming

min {St(t, x) + Sx(t, x)f(t, x, u) + L(t, x, u) : u ∈ U} = 0. (6)

It is clear from that description of the value function that even if we make
strong assumptions on the data of the problem (1)–(3) we can not expect
that generaly the value function appears to be continuous. This is why
in eighties and nineties have appeared many generalizations of solutions to
(5) or (6). The most general are viscosity solutions to (5) or (6) (see e.g.
[4], [10], [1], [3]). However even in that case the value function has to be
at least lower semicontinuous [1], [3] (under very strong assumptions on
the data). In many practical control problems these generalizations seem
to be enough, but if we want to consider the above problem depended,
additionaly, on second parameters (control) and consider “minmax” type
problems (which appear e.g. in game theory see also [10], [6] and [9]) then
requiring that the value function is at least lower semicontinuous may turn
out to be to strong. Thus, in our opinion, we need still to search for new
methods to study (4). In [7] the author suggested the second nonclassical
approach to dynamic programming; the domain of exploration was carried
out from the (t, x) — space to the space of multipliers ((t, y0, y)-space).
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Then another function was defined — the dual value function — SD(t, p) in
a set P ⊂ Rn+2 of the dual space (t, y0, y) = (t, p), y0 ≤ 0,

SD(t, p) = inf
{
−y0

∫ T

t
L(τ, x(τ), u(τ))dt− y0l(x(T ))

}
(7)

where the inferior is taken over pairs (x(τ), u(τ)), τ ∈ [t, T ] satisfying (2),
(3), whose trajectories start at (t, x(t, p)) (x(t, p) will be defined below) and
their graphs are contained TX. By [7] the existence of Sd(t, p) is determined
by the existence of a concourse of flights. Next a new function was defined:

V (t, p) = −SD(t, p)− x(t, p)y = Vy0(t, p)y0 + Vy(t, p)y, (8)

(−SD(t, p) = Vy0(t, p)y0, −x(t, p) = Vy(t, p)), (t, p) ∈ (0, T ) × R− × Rn,
which satisfies the partial differential equation

Vt(t, p)+H(t,−Vy(t, p), p) = 0, (t, p) = (t, y0, y) ∈ (0, T )×R−×Rn, (9)

where H(t, v, p) = y0L(t, v, u(t, p)) + yf(t, v, u(t, p)) and u(t, p) is a dual
optimal feedback control, R− =

{
y0 ∈ R : y0 ≤ 0

}
, and the dual partial

differential equation programming

max
{
Vt(t, p) + yf(t,−Vy(t, p), u) + y0L(t,−Vy(t, p), u) : u ∈ U

}
.

We require that the function V satisfies a special type of the boundary
condition (see [8, Theorem 3.1])

y0Vy0(T, p) = y0l(−Vy(T, p)). (10)

Conversely, if a function V satisfies (9), (8), (10) then SD(t, p), calculated
from (7), is a dual value function for problem (1), (2), (3) (see [8]). More-
over the original value function satisfies the relation: −y0S(t, x(t, p)) =
−y0Vy0(t, p) with x(t, p) = −Vy(t, p), (t, p) ∈ P . It is clear that even if
V (t, p) is of C1 then S(t, x) need not be continuous.

The above dual problem can be solved in the form described only if we
are looking for classical solutions i.e. solutions being functions of C1 (having
continuous partial derivatives). However the existence of classical solutions
require very strong assumptions on the Hamiltonian H, which, in applica-
tions, e.g. optimal control theory or differential games are almost never
satisfied. That is why we need a new type of solutions, namely general-
ized solutions. In the literature one meets many generalized solutions of
the classical Cauchy initial problem for the Hamilton-Jacobi equation (see
e.g. [1], [2], [3], [10], [4], [5]). Our construction of a generalized solution —
a kind of minimax solution — for the dual problem and the proof of the
existence of solution are based, in its idea, on the book of [10], where the
primal problem is considered and the construction of the minimax solutions
for (5) are given.



78 A. NOWAKOWSKI

The aim of the paper is to prove the existence and continuous dependence
of a kind of generalized solution for dual problem (8)–(10). We will require
that V (t, p) is continuous only. Thus the original value function need not
be even lower semicontinuous. Moreover we impose different assumption on
our Hamiltonian than it is usually done (see (H1)–(H4) and [10], [1], [3]).

2. The definition of generalized solutions

In order to formulate a generalized solution we need several notions and
notations. Let

Xc = {x ∈ Rn : |x| = 1} , B = {x ∈ Rn : |x| ≤ 1} .

Let us consider Hamiltonian H : [0, T ] × Rn × Rn+1 → R of the variables
(t, x, p) satisfying the following hypotheses:
H1 For each x ∈ Rn the function (t, p) → H(t, x, p) is continuous in

G = (0, T )× Rn+1.
H2 For each bounded set E ⊂ G, there exists a number Λ > 0 such that,

for all (t, p′) ∈ E, (t, p′′) ∈ E, x ∈ Xc the following inequality holds:∣∣H(t, x, p′)−H(t, x, p′′)
∣∣ ≤ Λ

∣∣p′ − p′′∣∣ .
H3 For each (t, p) ∈ G, the Lipschitz condition with respect to x is satis-

fied:

sup
x′∈B,x′′∈B

[∣∣H(t, x′, p)−H(t, x′′, p)
∣∣− L(t, p)

∣∣x′ − x′′∣∣] ≤ 0,

where (t, p) → L(t, p) is continuous in G and subject to the following
conditions with some constant k > 0:

L(t, p) ≤ k(1 + |p|), (t, p) ∈ G.

H4 For each (t, p) ∈ G, the function x → H(t, x, p) is positively homo-
geneous, i.e.

H(t, ax, p) = aH(t, x, p), for a > 0.

The hypothesis (H4) will get rid of in Section 4, but the first construc-
tion of generalized solution is more convenient to be carried out with this
assumption. Let us observe that hypotheses (H1)–(H4) imply, that the
function (t, x, p) → H(t, x, p) is continuous in G× Rn.

Let (t, p) ∈ G, r ∈ Rn, q ∈ Rn. Define sets:

F (t, p) =
{
f ∈ Rn+1 : f = (0,

:
y), |f | ≤

√
2L(t, p)

}
,

Fg(t, q, p) =
{
f ∈ F (t, p) : 〈− :y, q〉 ≥ H(t, q, p)

}
, (11)

Fd(t, r, p) =
{
f ∈ F (t, p) : 〈− :y, r〉 ≤ H(t, r, p)

}
. (12)
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We easily see, that Fd(t, r, p) 6= ∅, Fg(t, q, p) 6= ∅. We observe also, that
the sets Fg(t, q, p), Fp(t, r, p) are convex and compact, and the multivalued
mappings (t, p)→ Fg(t, q, p), (t, p)→ Fd(t, r, p) are continuous.

Let us consider the differential inclusions (
:
p(t) = (0,

:
y(t))

:
p(t) ∈ Fg(t, q, p(t)), (13)
:
p(t) ∈ Fd(t, r, p(t)). (14)

Take (t0, p0, q) ∈ [0, T ] × Rn+1 × Rn. By Yg(t0, p0, q) denote a set of
absolutely continuous functions t → p(t) : [0, T ] → Rn+1, satisfying differ-
ential inclusion (13), for almost each t ∈ [0, T ], and such that p(t0) = p0.
Analogously by Yd(t0, p0, r) denote a set of solutions to differential inclu-
sion (14) satisfying the condition p(t0) = p0. By a known theorem on
differential inclusion the sets Yg(t0, p0, q) and Yd(t0, p0, r) are nonempty and
compact in C([0, T ],Rn+1) — the space of continuous functions with the
norm ‖p(·)‖ = maxt∈[0,T ] |p(t)|.

Now we are able to define an upper and lower solutions to the problem
(9), (8), (10).

Definition 1. An upper solution to the problem (9), (8), (10) we shall call
a pair of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that for V (t, p) =
W (t, p)y0+ X(t, p)y, V (·, ·), is lower semicontinuous, X(T, ·) is continuous,
y0W (T, p) ≥ y0l(−X(T, p)), p ∈ Rn+1 and the inequality

sup
τ∈(t0,T ],q∈Xc

inf
p(·)∈Yg(t0,p0,q)

[V (τ, p(τ))− V (t0, p0)] ≤ 0, (15)

for (t0, p0) ∈ Ḡ, where Ḡ = [0, T ]× Rn+1, holds.

Definition 2. A lower solution to the problem (9), (8), (10) we shall call
a pair of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that for V (t, p) =
W (t, p)y0+ X(t, p)y, V (·, ·), is upper semicontinuous, X(T, ·) is continuous,
y0W (T, p) ≤ y0l(−X(T, p)), p ∈ Rn+1 and the inequality

inf
τ∈(t0,T ],r∈Xc

sup
p(·)∈Yd(t0,p0,r)

[V (τ, p(τ))− V (t0, p0)] ≥ 0, (16)

for (t0, y0) ∈ Ḡ, holds.

Definition 3. A minimax solution to the problem (9), (8), (10) we shall
call a pair of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that for V (t, p) =
W (t, p)y0+ X(t, p)y, V (·, ·), is continuous and which are simultaneously a
lower and an upper solution to that problem.

Since a minimax solution to the problem (9), (8), (10) is a pair of func-
tions W (t, p), X(t, p), (t, p) ∈ Ḡ we should understand what each of these
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functions meant for primal problem i.e. for equation (5). In the case of (5)
we look for a function S(t, x) being solution to (5) (classical or generalized)
in a given fixed domain Ω where the equation (5) is considered. In the case
of (9), (8), (10) we also have a domain Ḡ, but, in a dual space, so this do-
main is to some extend dual to Ω. However our dual solution of (9), (8), (10)
should also give a solution to (5) and as we can see from the introduction
(see also Section 2.1 and [7]) that just the fuction X(t, p) is corresponding
for relation between sets Ω and Ḡ i.e.: Ḡ 3 (t, p)→ (t,X(t, p)) ∈ Ω. There-
fore, if a such fuction X(t, p) exists then we should consider it as a fixed in
all deliberations concerning (9) (compare proof of Lemma 4, Corollary 5,
Remark 1 and so on. Hence, we propose the following definition of uniqness
for problem (9), (8), (10).

Definition 3’ . A minimax solution to the problem (9), (8), (10) is unique
if for a given X(t, p), (t, p) ∈ Ḡ there exists exactly one function W (t, p),
(t, p) ∈ Ḡ such that the pair W (t, p), X(t, p), (t, p) ∈ Ḡ, is a minimax
solution to the problem (9), (8), (10).

The sets of upper and lower solutions we shall denote by Solg, Sold,
respectively. If (W,X) ∈ Solg then the lower semicontinuous functional
p(·)→ V (τ, p(τ)) attains its minimum on the compact set Yg(t0, p0, q). That
is why the inf in formula (15) can be replaced by the min. Analogously in
formula (16) one can insert the max instead of the sup. Notice also that
in view of the homogeneous assumption (H4) the restrictions q ∈ Xc and
r ∈ Xc one can get rid of putting there q ∈ Rn, r ∈ Rn.

From the definitions of the sets (12) and (11) we easily obtain the follow-
ing relations:

Fg(t, q, p) ∩ Fd(t, r, p) 6= ∅,
max
q∈Xc

min
f∈Fg(t,q,p),f=(0,

:
y)
〈− :y, x〉 = H(t, x, p), (17)

min
r∈Xc

max
f∈Fd(t,r,p),f=(0,

:
y)
〈− :y, x〉 = H(t, x, p). (18)

2.1. Relation of minimax solution to the classical one.
In this section we show that a classical global solution of (9), (8), (10) (if

it exists) is a minimax solution in the sense of the Definition 3.
Let V (t, p) be a global of C1 solution to (9), (8), (10). First we show that

it is an upper solution to that problem. Let us put X(t, p) = Vy(t, p) and
rewrite (9) to the equation

Vt(t, p) +H(t,−X(t, p), p) = 0. (19)
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Let (t, p) ∈ G, q ∈ Xc and define the set

F 0(t, q, p) =
{
f0 ∈ Fg(t, q, p) : f0 = (0,

:
y0),

〈− :y0,−X(t, p)〉 = min
f∈Fg(t,q,p),f=(0,

:
y)
〈− :y,−Vy(t, p)〉

}
.

In view of (17)

〈− :y0,−X(t, p)〉 ≤H(t,−X(t, p), p),

for f0 ∈ Fg(t, q, p), f0 = (0,
:
y0). (20)

From the definition of the set F 0 it is obvious that F 0 is nonempty, convex,
compact subset of Fg. Since both multivalued mapping (t, p) → Fg(t, q, p)
and (t, p)→ X(t, p), are continuous the multivalued map (t, p)→ F 0(t, q, p)
is upper semicontinuous. Let us take any point (t0, p0) ∈ [0, T )×Rn+1 and
denote by Y 0(t0, p0, q) a set of solutions to the differential inclusion

:
p(t) ∈ F 0(t, q, p(t)), p(t0) = p0.

Of course, Y 0(t0, p0, q) 6= ∅ and Y 0(t0, p0, q) ⊂ Yg(t0, p0, q).
Let p(·) ∈ Y 0(t0, p0, q) and define t → V (t, p(t)) : [0, T ] → R1. This

function is absolutely continuous and its derivative (almost everywhere in
[0, T ]) satisfies, in view of (19) and (20) the estimation (we have in mind
that y0 = constant)

dV (t, p(t))/dt = ∂V (t, p(t))/∂t+ 〈X(t, p(t)),
:
y(t)〉 ≤ 0.

The latter means that for all t0, p0, τ, q, τ ∈ [t0, T ], p0 ∈ Rn+1, q ∈ Xc, we
have V (τ, p(τ)) ≤ V (t0, p(t0)), where p(·) ∈ Y 0(t0, p0, q) ⊂ Yg(t0, p0, q). The
function V satisfies also conditions (8), (10) with W (t, p) = Vy0(t, p), thus
the pair (W,X) is an upper solution to (9), (8), (10). Analogously one may
show that the pair (W,X) is a lower solution to (9), (8), (10) and hence it
is minimax solution.

Now we prove that at each point where the function V of the minimax
solution (W,X) (V (t.p) = W (t, p)y0 + X(t, p)y) is differentiable it satisfies
(9).

First consider an upper solution to (9), (8), (10). Let (W,X) ∈ Solg,
(t0, p0) ∈ G. Assume that V is differentiable at (t0, p0). Take δ ∈ (0, T − t0]
and q ∈ Xc. From (15) we infer that there is a solution pδ(·) ∈ Yg(t0, p0, q)
such that

V (t0 + δ, pδ(t0 + δ))− V (t0, p0) ≤ 0. (21)

From the continuity of (t, p)→ Fg(t, q, p) we get

pδ(t0 + δ) = p0 + (fδ + gδ)δ,

where fδ ∈ Fg(t0, q, p0), |gδ| → 0 if δ → 0.
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Since the set Fg(t0, q, p0) is compact, there is a sequence δk ∈ (0, T − t0],
k = 1, 2, ..., such that

δk → 0 and fδk → f∗ ∈ Fg(t0, q, p0), when k →∞. (22)

From the differentiability of V at (t0, p0), taking into account (21), we have

V (t0 + δk, pδk(t0 + δk))− V (t0, p0)
δk

= ∂V (t0, p0)/∂t+ 〈X(t0, p0), fδk + gδk〉+ ak ≤ 0,

where ak → 0 when k → ∞, and we assume that X(t0, p0) = Vy(t0, p0). If
we take a limit (when k →∞) in the left hand side of the last equality and
take into account (22) we obtain

∂V (t0, p0)/∂t+ min
f∈Fg(t0,q,p0),f=(0,

:
y)
〈X(t0, p0),

:
y〉

≤ ∂V (t0, p0)/∂t+ 〈−X(t0, p0),−f∗〉 ≤ 0.

The last inequality holds for all q ∈ Xc, hence we conclude that

∂V (t0, p0)/∂t+H(t0,−Vy(t0, p0), p0)

= ∂V (t0, p0)/∂t+ max
q∈Xc

min
f∈Fg(t0,q,p0),f=(0,

:
y)
〈−X(t0, p0),− :y〉 ≤ 0. (23)

Thus we come to the conclusion that at each point (t0, p0) ∈ G at which
an upper solution is differentiable it must satisfy inequality (23). Analo-
gously one can show the converse inequality for a lower solution (W,X).
Therefore we have gotten that once the function V of a minimax solution
is differentiable at some point it satisfies the equation (9) at this point.

2.2. Invariability of the definition of minimax solutions.
In the definitions of the sets Fg, Fd (see (12) and (11)) a certain indefi-

niteness is admitted, e.g. the definition of the function L(t, p) is not unique.
We show below that some indefiniteness does not influence the Definitions
1, 2, 3. Moreover, instead of maps (t, p)→ Fg(t, q, p), (t, p)→ Fd(t, r, p) we
can consider any maps Fg, Fd satisfying conditions written below.

Let P and Q be nonempty sets in Rn. Consider multivalued maps:

(t, q, p)→ Fg(t, q, p) ⊂ Rn+1, (t, p, q) ∈ G×Q,
(t, r, p)→ Fd(t, r, p) ⊂ Rn+1, (t, p, r) ∈ G× P.

Assume the following hypotheses:
H’1 For each (t, p, q, r) ∈ G×Q× P the sets Fg(t, q, p) and Fd(t, r, p) are

nonempty, convex and compact; for any t ∈ (0, T ), r ∈ P , q ∈ Q and
f ∈ Fg(t, q, p) ∪ Fd(t, r, p) the following estimation

|f | ≤ (1 + |p|)c, c > 0 — any constant, (24)
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holds.
H’2 For each (q, r) ∈ Q×P multivalued maps (t, p)→ Fg(t, q, p), (t, p)→

Fd(t, r, p) are upper semicontinuous.
H’3 For each (t, p) ∈ G and x ∈ Rn

sup
q∈Q

min
f∈Fg(t,q,p),f=(0,

:
y)
〈− :y, x〉 = H(t, x, p), (25)

inf
r∈P

max
f∈Fd(t,r,p),f=(0,

:
y)
〈− :y, x〉 = H(t, x, p). (26)

From the Banach-Hahn theorem we get immediately

Fg(t, q, p) ∩ Fd(t, r, p) 6= ∅, for (t, p, q, r) ∈ G×Q× P.

The set of all Fg (respectively Fd) satisfying (H’1)–(H’3) will be denoted
by Fg(H) (respectively Fd(H)). If a Hamiltonian satisfies (H1)–(H3) then
Fg(H) 6= ∅ and Fd(H) 6= ∅. In particular, multivalued maps Fg, Fd defined
in (12) and (11) satisfy hypotheses (H’1)–(H’3).

Let us take any Fg ∈ Fg(H). We can thus use in differential inclusion
(13) that Fg. What means, that for any Fg ∈ Fg(H) we are able to define a
set Solg(Fg) consisting of all pairs of functions W (t, p), X(t, p), (t, p) ∈ Ḡ,
such that V (·, ·), V (t, p) = W (t, p)y0+ X(t, p)y, is lower semicontinuous,
X(T, ·) is continuous, W (T, p)y0 ≥ y0l(−X(T, p)), p = (y0, y) ∈ Rn+1, and
that V satisfies

sup
τ∈(t0,T ],q∈Q

inf
p(·)∈Yg(t0,p0,q)

V (τ, p(τ)) ≤ V (t0, p0), (27)

for (t0, p0) ∈ [0, T ]× Rn+1.
Analogously for any Fd ∈ Fd(H) we are able to define a set Sold(Fd)

consisting of all pair of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that
V (·, ·), V (t, p) = W (t, p)y0+ X(t, p)y, is upper semicontinuous, X(T, ·) is
continuous, W (T, p)y0 ≤ y0l(−X(T, p)), p = (y0, y) ∈ Rn+1 and that V
satisfies

inf
τ∈(t0,T ],r∈P

sup
p(·)∈Yd(t0,p0,r)

V (τ, p(τ)) ≥ V (t0, p0), (28)

for (t0, p0) ∈ [0, T ]× Rn+1.
In the next section we proof, that for any pair (Fg, Fd) ∈ Fg(H)×Fd(H)

the intersection Solg(Fg)∩ Sold(Fd) contains exactly one pair of functions
(W,X). Moreover this pair does not depend on choice of Fg ∈ Fg(H) and
Fd ∈ Fd(H). The latter means, in order to define a minimax solution of
(9), (8), (10), we may use any Fg ∈ Fg(H), Fd ∈ Fd(H).
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3. Existence and uniqueness of minimax solution

The proof of existence and uniqueness of minimax solutions will be di-
vided into two parts. First, we shall consider minimum upper and maximum
lower solutions. We prove that they exist and that minimum upper solution
is less than or equal to maximum lower solution. Next we prove that any
lower solution is less than or equal to any upper solution. These will allow
us to infer the existence and uniqueness of solutions to our problem.

3.1. Lower envelope of upper solutions.
Let us take Fg ∈ Fg(H) and Fd ∈ Fd(H). Denote by Φg the set of pairs

of functions (W,X); W : Ḡ → [−∞,∞), X : Ḡ → Rn, X(T, ·) — continu-
ous, W satisfies the inequality W (T, p)y0 ≥ y0l(−X(T, p)), p ∈ Rn+1 and
V (t, p) = W (t, p)y0+X(t, p)y the condition (15), by Φd it will be denoted the
set of pairs of functions (W,X); W : Ḡ→ (−∞,∞], X : Ḡ→ Rn, X(T, ·) —
continuous, W satisfies the inequality W (T, p)y0 ≤ y0l(−X(T, p)), p ∈ Rn+1

and V (t, p) = W (t, p)y0 +X(t, p)y the condition (16).
The functions considered admit the values −∞ and +∞. Thus we as-

sume: if V (t0, p0) = +∞ then in the condition (27) V (τ, p(τ)) ≤ V (t0, p0)
for all values of V (τ, p(τ)) ∈ (−∞,∞], if V (t0, p0) = −∞ then in the con-
dition (28) V (τ, p(τ)) ≥ V (t0, p0) for all values of V (τ, p(τ)) ∈ [−∞,∞).
Note also that, we do not require that the function V (t, p) = W (t, p)y0 +
X(t, p)y (W,X) ∈ Φg ((W,X) ∈ Φd) is lower (upper) semicontinuous. Hence
Solg(Fg) ⊂ Φg and Sold(Fd) ⊂ Φd.

Set

Dg(t0, p0, τ, q) = {p(τ) : p(·) ∈ Yg(t0, p0, q)} , (29)

Dd(t0, p0, τ, r) = {p(τ) : p(·) ∈ Yd(t0, p0, r)} , (30)

where (t0, p0) ∈ [0, T ) × Rn+1, τ ∈ [t0, T ], r ∈ P , q ∈ Q, Yg(t0, p0, q) and
Yd(t0, p0, r) are defined above.

The set of solutions of p(·) : [t∗, T ]→ Rn+1 of the differential inclusion

:
p(t) ∈ F (t, p(t)) (31)

will be denoted by Y (t∗, p∗), here F (t, p) =
{
f ∈ Rn+1 : f = (0,

:
y), |f | ≤

(1 + |p|)c
}

, (see (24)), (t∗, p∗) ∈ [0, T ) × Rn+1 — a given point, and p(·) ∈
Y (t∗, p∗) satisfies the initial condition p(t∗) = p∗. Denote by D(t∗, p∗) a set
covered by the graphs of trajectories of p(·) ∈ Y (t∗, p∗). The five lemmas
below will be enough to infer that Φg ∩ Φd 6= ∅.
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Lemma 1. For any pair (W,X) ∈ Φg, q∗ ∈ Q and (t0, p0) ∈ Ḡ, for
V (t, p) = W (t, p)y0+ X(t, p)y the following estimation

V (t0, p0) ≥ v−(t0, p0, q∗, X)

= min
{
X(T, p)y + y0l(−X(T, p)) : p ∈ Dg(t0, p0, T, q∗)

}
(32)

holds.

Proof. Let us put τ = T in (27), then we have

V (t0, p0) ≥ inf {V (T, p(T )) : p(·) ∈ Yg(t0, p0, q∗)}
= inf {V (T, p) : p ∈ Dg(t0, p0, T, q∗)}
≥ min

{
y0l(−X(T, p)) +X(T, p)y : p ∈ Dg(t0, p0, T, q∗)

}
= v−(t0, p0, q∗, X).

The last inequality follows from the fact that W (T, p) ≥ y0l(−X(T, p)). We
know that the set Dg(t0, p0, T, q∗) is compact in Rn+1, and if t0 = T , then
Dg(t0, p0, T, q∗) = {p0}, thus

v−(T, p, q∗, X) = X(T, p)y + y0l(−X(T, p)), p ∈ Rn+1. (33)

The function p→ X(T, p)y+ y0l(−X(T, p)) is lower semicontinuous, there-
fore it attains its minimum on Dg(t0, p0, T, q∗). Hence the proof of lemma
is ended.

Let θ ∈ [0, T ], r ∈ P , (W∗, X∗) ∈ Φg, V∗(t, p) = W∗(t, p)y0 + X∗(t, p)y.
For p0 ∈ Rn+1, define

V ∗(t0, p0)=

{
V∗(t0, p0) if θ<t0≤T,
sup {V∗(θ, p) : p ∈ Dd(t0, p0, θ, r)} if 0≤ t0≤θ, (34)

W ∗(t0, p0)y0
0 = V ∗(t0, p0)−X∗(t0, p0)y0. (35)

Lemma 2. The pair (W ∗, X∗) ∈ Φg.

Proof. Since (W∗, X∗) satisfies W∗(T, p) ≥ y0l(−X∗(T, p)), p ∈ Rn+1, the
pair (W ∗, X∗) satisfies it too. From (34) we see that V ∗(t0, p0) ∈ (−∞,∞],
(t0, p0) ∈ Ḡ. We show that for V ∗ the condition (27) is satisfied, i.e. for any
ε > 0, t0 ∈ [0, T ), p0 ∈ Rn+1, τ ∈ [t0, T ], q ∈ Q there is p(·) ∈ Yg(t0, p0, q)
such that

V ∗(τ, p(τ)) ≤ V ∗(t0, p0) + ε. (36)

Let us consider three cases:
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1. Let t0 ∈ [θ, T ). V∗ satisfies (27), therefore for θ < t0 < T the function
V ∗ satisfies that condition too. If t0 = θ, then Dd(t0, p0, θ, r) = {p0} and
V ∗(t0, p0) = V∗(t0, p0). Hence V ∗ satisfies (27) for θ ≤ t0 < T .

2. Let now t0 ∈ [0, θ) and τ ∈ [t0, θ]. As the multivalued map (t, p) →
Fg(t, q, p) ∩ Fd(t, r, p) has nonempty, convex and compact values, therefore
Yg(t0, p0, q) ∩ Yd(t0, p0, r) 6= ∅.

Take p(·) ∈ Yg(t0, p0, q)∩ Yd(t0, p0, r). From the definition of the set (30)
we get

p(τ) ∈ Dd(t0, p0, τ, r), Dd(τ, p(τ), θ, r) ⊂ Dd(t0, p0, θ, r).

This is why, in view of (34), we have

V ∗(τ, p(τ)) = sup {V∗(θ, p) : p ∈ Dd(τ, p(τ), θ, r) }
≤ V ∗(t0, p0) = sup {V∗(θ, p) : p ∈ Dd(t0, p0, θ, r) } .

Thus the condition (36) holds (for ε = 0).
3. Let now t0 ∈ [0, θ) and τ ∈ (θ, T ]. As we proved in the cases 1. and

2., there is a p∗(·) ∈ Yg(t0, p0, q) and p∗(·) ∈ Yg(θ, p∗(θ), q), such that

V ∗(θ, p∗(θ)) ≤ V ∗(t0, p0), V ∗(τ, p∗(τ)) ≤ V ∗(θ, p∗(θ)) + ε.

Put

p(t) =

{
p∗(t), 0 ≤ t ≤ θ,
p∗(t), θ < t ≤ T.

We obtain p(·) ∈ Yg(t0, p0, q) thus the condition (36) holds and the proof of
the lemma is finished.

Lemma 3. The set Φg is nonempty and for any function X : Ḡ → Rn,
X(T, ·) — conntinuous, Φg contains the pair of functions (W+, X), where
W+(t, p)y0 = v+(t, p, r∗, X)−X(t, p)y and (t, p)→ v+(t, p, r∗, X) : Ḡ→ R,
is defined by the formula

v+(t0, p0, r∗, X) = max
{
X(T, p)y + y0l(−X(T, p)) : p ∈ Dd(t0, p0, T, r∗)

}
,

where (t0, p0) ∈ Ḡ, r∗ any point from P .

Proof. If t0 = T , then Dd(t0, p0, T, r∗) = {p0}. Therefore

v+(T, p, r∗, X) = X(T, p)y + y0l(−X(T, p)), p ∈ Rn+1. (37)

Repeating the arguments from the proof of Lemma 2 (the case 2.) we obtain
that the function v+ satisfies (27). Hence we have proved the lemma.
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Lemma 4. Let

V0(t, p,X) = inf
{
V (t, p) : V (t, p) = W (t, p)y0 +X(t, p)y, (W,X) ∈ Φg

}
,

(t, p) ∈ Ḡ. (38)

Then for each (W,X) ∈ Φg the pair (W0(X), X) ∈ Φg with W0(t, p,X)y0 =
V0(t, p,X) − X(t, p)y and (W0(X), X) ∈ Φd, and the following relations:

V0(T, p,X) = X(T, p)y + y0l(−X(T, p)), (39)

v−(t, p, q∗, X) ≤ V0(t, p,X) ≤ v+(t, p, r∗, X), (40)

for t ∈ [0, T ], p ∈ Rn+1, q∗ ∈ Q, r∗ ∈ P , holds.

Proof. Relations (39), (40) we obtain at once by Lemmas 1, 3 and their
proofs. We must still prove that the pairs (W0(X), X) satisfies (27), and
the condition (28).

To this effect let (t0, p0, q) ∈ [0, T ] × Rn+1 × Q, τ ∈ [t0, T ], ε > 0. By
the definition of inferior there exists a (V,X) ∈ Φg such that V (t0, p0) ≤
V0(t0, p0, X) + ε/2. The condition (27), which the function V satisfies, im-
plies that V (τ, p(τ)) ≤ V (t0, p0) + ε/2, where p(·) is an element of the
set Yg(t0, p0, q). From (38) we also have the estimation V0(τ, p(τ), X) ≤
V (τ, p(τ)). Therefore there exists a solution p(·) ∈ Yg(t0, p0, q) such that
V0(τ, p(τ), X) ≤ V0(t0, p0, X) + ε, i.e. the function V0(X) satisfies the con-
dition (27).

Take now (t0, p0, r) ∈ [0, T ]× Rn+1 × P , θ ∈ [t0, T ], define a function V ∗

and W ∗ by the formulae (34) and (35), in which we assume V∗ = V0(X).
According to the lemma 2 and the first part of its proof we have (W ∗, X) ∈
Φg. Hence and from (38) we obtain V ∗(t0, p0) ≥ V0(t0, p0, X). Taking into
account (34), in which we assume V∗ = V0(X), the last estimation may be
rewritten in the form:

V ∗(t0, p0) = sup {V0(θ, p,X) : p ∈ Dd(t0, p0, θ, r) }
= sup {V0(θ, p(θ), X) : p(·) ∈ Yd(t0, p0, r) } ≥ V0(t0, p0, X).

The inequality obtained denotes that the function V0 satisfies (28). There-
fore Lemma 4 is proved.

A direct consequence of the above lemma is the following corollary.

Corollary 5. Let V0(X) and W0(X) be defined as in Lemma 4. Then the
pair (W0(X), X) ∈ Φg ∩ Φd.

Remark 1. Let us notice that the function V0 and, in consequence and
W0, are determined by X in a unique way. If we take different X we may
obtain different V0 and W0.
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Let us recall that in the definition of the sets Φd and Φg we do not
assume semicontinuity of the function V . Now we introduce two operators
of closure: from above and below, and in consequence we construct an upper
and a lower solution.

Let Z : Ḡ→ R be any function. Put

Z−(t, p) = lim inf
(s,z)→(t,p)

Z(s, z), Z+(t, p) = lim sup
(s,z)→(t,p)

Z(s, z). (41)

Of course the functions Z−, Z+ are lower and upper semicontinuous, re-
spectively.

Lemma 6. Let (W,X) ∈ Φg and V (t, p) = W (t, p)y0 + X(t, p)y < ∞ for
(t, p) ∈ Ḡ, then for W−(t, p) = V−(t, p)y0 − X(t, p)y (V− is closure of V ),
(W−, X) ∈ Solg. Let (W,X) ∈ Φdand V (t, p) = W (t, p)y0 +X(t, p)y > −∞
for (t, p) ∈ Ḡ, then for W+(t, p) = V+(t, p)y0 − X(t, p)y (V+ is closure of
V ), (W+, X) ∈ Sold.

Proof. Take any (W,X) ∈ Φg with V (t, p) = W (t, p)y0 +X(t, p)y <∞ for
(t, p) ∈ Ḡ. From (41) we have that V−(t, p) ≤ V (t, p) <∞. From Lemma 1
and (41) we have V−(t, p) ≥ v−(t, p, q∗, X) > −∞, thus V−(t, p) ∈ (−∞,∞),
for (t, p) ∈ Ḡ.

We show that V−(T, p∗) ≥ X(T, p∗)y∗ + y0
∗l(−X(T, p∗)), p∗ ∈ Rn+1. By

the definition of the lower limit there exists a sequence (tk, pk) ∈ Ḡ, (k =
1, 2, ...) such that (tk, pk) → (T, p∗), if k → ∞. As (W,X) ∈ Φg, so V
satisfies (27). Let us chose q ∈ Q and corresponding to it the solution
pk(·) ∈ Yg(tk, pk, q), such that

V (T, pk(T )) ≤ V (tk, pk) + 1/k.

Let us recall that V (T, pk(T )) ≥ X(T, pk(T ))yk(T )+y0k(T )l(−X(T, pk(T ))).
Let us calculate a limit when k →∞ in the last inequality. Taking into ac-
count that pk(T )→ p∗, that the functions X(T, ·) and l are continuous, we
obtain V−(T, p∗) ≥ X(T, p∗)y∗ + y0

∗l(−X(T, p∗)).
Next we show that V− satisfies (27). Let (t0, p0, q) ∈ [0, T ) × Rn+1 × Q,

τ ∈ [t0, T ]. Choose a sequence (tk, pk) ∈ Ḡ, (k = 1, 2, ...) such that

(tk, pk)→ (t0, p0), V (tk, pk)→ V−(t0, p0), k →∞. (42)

The function V satisfies (27), hence there exists a solution pk(·) ∈ Yg(tk, pk, q),
such that

V (τ, pk(τ)) ≤ V (tk, pk) + 1/k. (43)

From the sequence
{
pk(·)

}
we can chose a subsequence convergent uni-

formly to some function, which we denote by p∗(·). This function belongs
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to Yg(t0, p0, q). For a convenience we assume that
{
pk(·)

}
is just that sub-

sequence, i.e. pk(·) → p∗(·), if k → ∞. By the definition of the lower
limit

lim inf
k→∞

V (τ, pk(τ)) ≥ V−(τ, p∗(τ)).

Taking limits in (42), (43) with k →∞, we get

V−(τ, p∗(τ)) ≤ lim inf
k→∞

V (τ, pk(τ)) ≤ lim
k→∞

[V (tk, pk) + 1/k] = V−(t0, p0),

where p∗(·) ∈ Yg(t0, p0, q). Thus V− satisfies (27).
From the above argumentation we see that the pair (W−, X) is an upper

solution of our dual problem.
Analogously one can prove the second part of the lemma.
From Lemmas 4 and 6 we get that (W0−(X), X) ∈ Solg and (W0+(X), X) ∈

Sold. By the definition of lower and upper semicontinuity we have V0−(t, p,X)
≤ V0+(t, p,X) for (t, p) ∈ Ḡ. Hence one obtains the following lemma.

Lemma 7. There exists a pair ((Wg, X), (Wd, X)) ∈ Solg×Sold, such that
the corresponding functions Vg(t, p) = Wg(t, p)y0+ X(t, p)y and Vd(t, p) =
Wd(t, p)y0+ X(t, p)y satisfy the inequality

Vg(t, p) ≤ Vd(t, p) for (t, p) ∈ Ḡ.

3.2. The existence and uniqueness of the solution.
Let ((Wg, Xg), (Wd, Xd)) ∈ Solg × Sold. Since (t, p) → Vg(t, p) =

Wg(t, p)y0 + Xg(t, p)y is lower semicontinuous and (t, p) → Vd(t, p) =
Wd(t, p)y0 + Xd(t, p)y is upper semicontinuous, and the sets Yg(t0, p0, q),
Yd(t0, p0, r) are compact in C([t0, T ],Rn+1), therefore the conditions (27),
(28) we may replace with the following conditions:

sup
q∈Q

min
p(·)∈Yg(t0,p0,q)

Vg(τ, p(τ)) ≤ Vg(t0, p0), (44)

inf
r∈P

max
p(·)∈Yd(t0,p0,r)

Vd(τ, p(τ)) ≥ Vd(t0, p0). (45)

The existence and uniqueness of the solution will follow from Lemmas 7 and
8 proved below.

Lemma 8. For each Fg ∈ Fg(H), Fd ∈ Fd(H) and each ((Wg, X), (Wd, X))
∈ Solg(Fg)× Sold(Fd) (with the same X) and (t0, p0) ∈ Ḡ the following in-
equality

Vg(t0, p0) ≥ Vd(t0, p0) (46)

holds.
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Proof. We shall investigate the sets

Wa = {(pg(·), pd(·)) ∈ Y (t0, p0)× Y (t0, p0) :

〈s(t), :s(t)〉 ≤ Λ |s(t)|2 + a for a.e. t ∈ [t0, T ]
}
, (47)

where s(t) = yd(t) − yg(t), (we have in mind that the first coordinate of
pg and pd is constant function of t and equal to y0

0, p0 = (y0
0, y0)) a — a

positive number, Λ — Lipschitz constant from (H2) with

E = {(t, p∗) ∈ [t0, T ]× Rn :

there exists p(·) ∈ Y (t0, p0), such that p(t) = p∗} . (48)

Let us put

Ma(t) = {(pg(·), pd(·)) ∈Wa : (49)

Vg(t0, p0) ≥ Vg(t, pg(t)), Vd(t0, p0) ≤ Vd(t, pd(t))} ,
ta = sup {t ∈ [t0, T ] : Ma(t) 6= ∅} . (50)

Notice that Wa is a compact set, and the functions Vg, Vd are lower and
upper semicontinuous, respectively. This is why superior in (50) is attained.

We prove that for any a > 0 the equality

ta = T (51)

holds.
First we show that the inequality (46) follows from (51). To this effect let

us consider a sequence (pkg(·), pkd(·)) ∈ Mak(T ), k = 1, 2, . . . , where ak → 0,
when k →∞. By (49) we get

Vg(t0, p0) ≥Vg(T, pkg(T ))

≥X(T, pkg(T ))ykg (T ) + y0k
g (T )l(−X(T, pkg(T )),

Vd(t0, p0) ≤Vd(T, pkd(T ))

≤X(T, pkd(T ))ykd(T ) + y0k
d (T )l(−X(T, ykd(T )). (52)

Without loss of generality we can assume that pkg(·)→ p∗g(·), pkd(·)→ p∗d(·),
when k → ∞. From the definition of Wa we get that p∗g(·) = p∗d(·). Thus
taking a limit in (52) with k →∞, we obtain (46).

Therefore to end the proof we must show that (51) holds. On the contrary,
let us assume that ta < T . Let t0 = ta, (p0

g(·), p0
d(·)) ∈ Ma(t0). Set p0

g =
(y0

0, yg0) = p0
g(t

0), p0
d = (y0

0, yd0) = p0
d(t

0), s0 = yd0 − yg0. From (49) we
obtain the inequality

Vg(t0, p0) ≥ Vg(t0, p0
g), Vd(t0, p0) ≤ Vd(t0, p0

d). (53)



MINIMAX SOLUTIONS OF THE DUAL HAMILTON-JACOBI EQUATION 91

Using (H’3), let us choose ra ∈ P and qa ∈ Q such that

〈s0,
:
yg〉 ≥ H(t0,−s0, p0

g)− a/4, fg ∈ Fg(t0, qa, p0
g), fg = (0,

:
yg),

〈s0,
:
yd〉 ≤ H(t0,−s0, p0

d)− a/4, fd ∈ Fd(t0, ra, p0
d), fd = (0,

:
yd).

As the maps (t, p)→ Fg(t, qa, p), (t, p)→ Fd(t, ra, p) are upper semicontin-
uous and Hamiltonian H is continuous, thus there exists δ > 0 such that
for almost all t ∈ [t0, t0 + δ] and for all pg(·) = (y0

0, yg(·)) ∈ Yg(t0, p0
g, qa),

pd(·) = (y0
0, yd(·)) ∈ Yd(t0, p0

d, ra) the inequalities

〈s(t), :yg(t)〉 ≥H(t,−s(t), pg(t))− a/2,
〈s(t), :yd(t)〉 ≤H(t,−s(t), pd(t)) + a/2

holds, where s(t) = yd(t)−yg(t). Let us notice that (t, pd(t)) ∈ E, (t, pg(t)) ∈
E, t0 ≤ t ≤ t0 + δ. From (H2) and (H4) we obtain

〈s(t), :s(t)〉 = 〈s(t), :yd(t)〉 − 〈s(t),
:
yg(t)〉

≤ H(t,−s(t), pd(t))−H(t,−s(t), pg(t)) + a

≤ Λ |s(t)|2 + a.

(44) and (45) imply that there exist p′g(·) ∈ Yg(t0, p0
g, qa) and p′d(·) ∈

Yd(t0, p0
d, ra) such that

Vg(t0, p0) ≥ Vg(t0, p0
g) ≥ Vg(t0 + δ, p′g(t

0 + δ)),

Vd(t0, p0) ≤ Vd(t0, p0
d) ≤ Vd(t0 + δ, p′d(t

0 + δ)).

Let us put

p”g(t) =


pg0(t), t0 ≤ t < t0,

p′g(t), t0 ≤ t < t0 + δ

p′g(t
0 + δ), t0 + δ ≤ t ≤ T,

p”d(t) =


pd0(t), t0 ≤ t < t0,

p′d(t), t0 ≤ t < t0 + δ

p′d(t
0 + δ), t0 + δ ≤ t ≤ T.

From the construction above we infer that (p”g(·), p”d(·)) ∈Ma(t0 +δ) (here
t0 = ta). In this way we come to a contradiction with the assumption ta < T
— see the definition of ta (50). The proof of the lemma is finished.

The Lemmas 7 and 8 show that Solg(Fg) ∩ Sold(Fd) 6= ∅. Corollary
5 and Remark 1 assert that this set contains only one element if we fix a
function X(t, p). Thus, that intersection for a fixed function X(t, p) contains
exactly one pair (W,X). Moreover that pair does not depend on a choice
of Fg ∈ Fg(H) and Fd ∈ Fd(H), if we take the same X.
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Indeed, let F ig ∈ Fg(H) and F id ∈ Fd(H), (Wi, X) ∈ Solg(F ig) ∩ Sold(F id)
(i = 1, 2). Since (W1, X) ∈ Solg(F 1

g ) and (W2, X) ∈ Sold(F 2
d ), therefore

by Lemma 8 we have V1 ≥ V2 (V1(t, p) = W1(t, p)y0 + X(t, p)y, V2(t, p) =
W2(t, p)y0+X(t, p)y). On the other hand (W1, X) ∈ Sold(F 1

d ) and (W2, X) ∈
Solg(F 2

g ), that is V1 ≤ V2. Hence V1 = V2.
Thus, we have proved the following theorem.

Theorem 9. Let l : Rn → R be a continuous function and Hamiltonian
H satisfies hypotheses (H1)–(H4). Then there exists exactly one minimax
solution of the dual problem (in the sense of Definition 3′) i.e. a pair of
functions (W,X) : Ḡ→ Rn+1 (together with V (t, p) = W (t, p)y0 +X(t, p)y)
such that for any Fg ∈ Fg(H) and Fd ∈ Fd(H) the following equality

Solg(Fg) ∩ Sold(Fd) = {(W,X)}
holds.

4. Minimax solutions for nonhomogeneous Hamiltonians

The dual problem (9), (8), (10) of Hamilton-Jacobi equation we shall call
nonhomogenous if the hypothesis (H4) is not satisfied. In this section we
show that the definition as well the proof of the existence and uniqueness of
minimax solution for homogenous Hamiltonian can be translated into the
nonhomogenous Hamiltonian.

4.1. Relations between nonhomogenous and homogenous Hamil-
tonians.

Let us consider the dual problem for a nonhomogenous Hamiltonian

Vt(t, p) +H(t,−Vy(t, p), p) = 0, (t, p) ∈ (0, T )× Rn+1, (54)

but we require that the function V satisfies transversality condition

V (t, p) = Vy0(t, p)y0 + Vy(t, p)y, (t, p) ∈ (0, T )× R− × Rn (55)

and a special type of the boundary condition

y0Vy0(T, p) = y0l(−Vy(T, p)). (56)

For that problem we can formulate the corresponding to it a dual problem
for homogenous Hamiltonian

V̄t(t, p, z) + H̄(t,−V̄y(t, p), p, ∂V̄ (t, p, z)/∂z) = 0, (57)

(t, p) ∈ (0, T )× Rn+1, z ∈ R,
V̄ (t, p, z) = V̄y0(t, p, z)y0 + V̄y(t, p)y, (58)

(t, p, z) ∈ (0, T )× Rn+1 × R,



MINIMAX SOLUTIONS OF THE DUAL HAMILTON-JACOBI EQUATION 93

y0V̄y0(T, p, z) = y0l(−V̄y(T, p)) + z. (59)

The solutions of the problems (54), (55), (56) and (57), (58), (59) are related
by the equalities y0V̄y0(t, p, z) = y0Vy0(t, p)+z, V̄y(t, p) = Vy(t, p), (t, p, z) ∈
[0, T ] × Rn+1 × R. For each t ∈ [0, T ], x ∈ Rn, p ∈ Rn+1, b ∈ R, the
Hamiltonian in the problem (57), (58), (59) is defined as follows

H(t, x, p, b) =

{
|b|H(t, x/b, p) if b 6= 0,
limb→0 bH(t, x/b, p) if b = 0.

(60)

We assume that there exists a limit in the right hand side of (60). In
the problem (57), (58), (59) a new variable z is introduced however the
Hamiltonian (60) does not depend upon that variable. The definition of H
implies that it is positively homogeneous in x̄ = (x, b), i.e.

H(t, ax, p, ab) =aH(t, x, p, b) for a > 0, (61)

t ∈ [0, T ], p ∈ Rn+1, (x, b) ∈ Rn+1.

Simultaneously we have

H(t, x, p, 1) = H(t, x, p) (62)

for the same t, x, p.
Let V (t, p) be a solution of the problem (54), (55), (56). Then from (62)

we infer that y0V̄y0(t, p, z) = y0Vy0(t, p)+z, V̄y(t, p) = Vy(t, p) together with
V̄ (t, p, z) defined by (58) is a solution of the problem (57), (58), (59). On
the other hand, let the function of the form y0V̄y0(t, p, z) = y0Vy0(t, p) + z,
V̄y(t, p) = Vy(t, p) together with V̄ (t, p, z) defined by (58) be a solution of
the problem (57), (58), (59). Then the function V (t, p) defined by (55) is a
solution of the problem (54), (55), (56). The latter means that the solutions
of the homogeneous and the nonhomogenous dual problem are connected
with the relation described above. Of course the relation described is true for
the classical solutions only, however it provides, a possibility of such relation.
In the next two sections we show that it holds for minimax solutions too.

4.2. The assumptions.
Now we formulate the hypotheses which allow us to prove the exis-

tence and uniqueness theorem for minimax solutions to nonhomogenous
Hamilton-Jacobi problem. Of course, we assume that l : Rn → R is cur-
rently continuous too. The hypotheses imposed below on the Hamiltonian
are of such a type such that in auxiliary problem with homogeneous Hamil-
tonian H the hypotheses (H1)–(H4) were satisfied.

Therefore we assume on H:
H1’ For each x ∈ Rn the function (t, p)→ H(t, x, p) is continuous in G.
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H2’ For each (t, p) ∈ [0, T ] × Rn+1 and x ∈ S = {x ∈ Rn : |x| = 1} there
exists a limit

lim
b↓0

bH(t, x/b, p) = H0(t, x, p),

and for any x ∈ S the function (t, p)→ H0(t, x, p) is continuous on
[0, T ]× Rn+1.

H3’ For any bounded set D ⊂ [0, T ] × Rn+1 there exists a number Λ
such that for all (t, p′) ∈ D, (t, p′′) ∈ D, (x, b) ∈ S+ = {(x, b) ∈
Rn × (0,∞) : |x|2 + b2 = 1} the following estimation

b
∣∣H(t, x/b, p′)−H(t, x/b, p′′)

∣∣ ≤ Λ
∣∣p′ − p′′∣∣

holds.
H4’ For each (t, p) ∈ [0, T ] × Rn+1, (x′, b′) ∈ B+ = {(x, b) ∈ Rn ×

(0,∞) : |x|2 + b2 ≤ 1}, (x′′, b′′) ∈ B+ the following estimation∣∣b′H(t, x′/b′, p)− b′′H(t, x′′/b′′, p)
∣∣ ≤ K(t, p)(

∣∣x′ − x′′∣∣2+(b′−b′′)2)1/2.

holds, where (t, p)→ K(t, p) is continuous on [0, T ]×Rn+1, and there
exists a k > 0, such that

K(t, p) ≤ k(1 + |p|), (t, p) ∈ [0, T ]× Rn+1.

If we take H̄ defined by (60) and satisfying (H1’)–(H4’), then it has the
following properties:
H̄1 For each (x, b) ∈ S̄ = {(x, b) ∈ Rn × R : |x|2 + b2 = 1} the function

(t, p)→ H̄(t, x, p, b) is continuous on [0, T ]× Rn+1.
H̄2 For any bounded set D ⊂ [0, T ] × Rn+1 there exists a number Λ

such that for all (t, p′) ∈ D, (t, p′′) ∈ D, (x, b) ∈ S̄ the following
estimation ∣∣H̄(t, x, p′, b)− H̄(t, x, p′′, b)

∣∣ ≤ Λ
∣∣p′ − p′′∣∣

holds.
H̄3 For each (t, p) ∈ [0, T ]×Rn+1, (x′, b′) ∈ B̄ = {(x, b) ∈ Rn ×R : |x|2 +

b2 ≤ 1}, (x′′, b′′) ∈ B̄ the following inequality∣∣H̄(t, x′, p, b′)− H̄(t, x′′, p, b′′)
∣∣ ≤ K(t, p)(

∣∣x′ − x′′∣∣2 + (b′ − b′′)2)1/2

holds, where the function (t, p) → K(t, p) is continuous on [0, T ] ×
Rn+1, and there exists a k > 0, such that the estimation

K(t, p) ≤ k(1 + |p|), (t, p) ∈ [0, T ]× Rn+1

holds.
H̄4 For each (t, p) ∈ [0, T ] × Rn+1 the function (x, b) → H̄(t, x, p, b) is

positively homogeneous, i.e. the condition (61) is satisfied.
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4.3. Upper, lower and minimax solutions of nonhomogenous dual
problem.

Let us consider the dual problem (57), (58), (59) with Hamiltonian H̄
satisfying (H̄1)–(H̄4). If we compare (H̄1)–(H̄4) with (H1)–(H4) we easily
see that in the new case we can apply the Theorem 9 in view of which there
exists exactly one minimax solution of the problem (57), (58), (59), i.e. we
have the following theorem.

Theorem 10. Let Hamiltonian H satisfy hypotheses (H1’)–(H4’) or Hamil-
tonian H̄ satisfies (H̄1)–(H̄4), and let l : Rn → R be continuous. Then there
exists exactly one pair of functions (W̄ , X̄) : Ḡ→ Rn+1 being (together with
V̄ (t, p, z) = W̄ (t, p, z)y0+ X̄(t, p)y) a minimax solution of the dual problem
(57), (58), (59). Furthermore for this solution we have the relations

V̄ (t, p, z) = V̄ (t, p, 0) + z, (t, p) ∈ [0, T ]× Rn+1, z ∈ R. (63)

The proof of the theorem is based on the Lemma 11, proved below. We
will need the following multivalued mapping:

(t, p, q)→ F̄g(t, q, p) ⊂ Rn+1 × R, (t, p, r)→ F̄d(t, r, p) ⊂ Rn+1 × R,

where (t, p) ∈ [0, T ]× Rn+1, q ∈ Q, r ∈ P .
Define them as follows:

F̄ (t, p) =
{

(f, g) ∈ Rn+1 ×R : f = (0,
:
y), |f |2 + g2 ≤ 2K2(t, p)

}
,

F̄g(t, x, p, b) =
{

(f, g) ∈ F̄ (t, p) :

f = (0,
:
y), 〈− :y, x〉+ bg ≥ H̄(t, x, p, b)

}
, (64)

F̄d(t, x, p, b) =
{

(f, g) ∈ F̄ (t, p) :

f = (0,
:
y), 〈− :y, x〉+ bg ≤ H̄(t, x, p, b)

}
, (65)

where (t, p) ∈ [0, T ]×Rn+1, (x, b) = q = r ∈ Rn×R = Q = P, and K(t, p) is
the same as in (H4’). We easily see that F̄g and F̄d satisfy the conditions:

1. For each (t, p, q, r) ∈ G × Q × P the sets F̄g(t, q, p) and F̄d(t, r, p)
are nonempty, convex and compact in Rn+1 × R; for each t ∈ (0, T ),
r ∈ P , q ∈ Q and (f, g) ∈ F̄g(t, q, p)∪F̄d(t, r, p) we have the inequality(

|f |2 + g2
)1/2

≤ (1 + |p|)c, c > 0 — some constant. (66)

2. For each (q, r) ∈ Q×P the multivalued mappings (t, p)→ F̄g(t, q, p),
(t, p)→ F̄d(t, r, p) are upper semicontinuous.
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3. For any (t, p) ∈ G and (x, b) ∈ Rn × R we have equalities

sup
q∈Q

min
(0,

:
y,g)∈F̄g(t,q,p)

{
〈− :y, x〉+ bg

}
= H̄(t, x, p, b), (67)

inf
r∈P

max
(0,

:
y,g)∈F̄d(t,r,p)

{
〈− :y, x〉+ bg

}
= H̄(t, x, p, b). (68)

A set of all mappings F̄g and F̄d satisfying conditions 1.–3. will be denoted
by Fg(H̄),Fd(H̄), respectively. Of course Fg(H̄) 6= ∅ and Fd(H̄) 6= ∅.

Take any F̄g ∈ Fg(H̄) and F̄d ∈ Fd(H̄). Let us consider differential
inclusions

dp̄(t)/dt ∈ F̄g(t, q, p(t)), (69)

dp̄(t)/dt ∈ F̄d(t, r, p(t)), (70)

|dp̄(t)/dt| ≤ (1 + |p(t)|) c. (71)

Here p̄(t) = (p(t), z(t)) ∈ Rn+1 × R, t ∈ [t0, T ], |p̄(t)| =
(
|p(t)|2 + z2(t)

)1/2
.

The set of all solutions of (69) (respectively (70) and (71)), satisfying the
initial condition p̄(t0) = (p0, z0), will be denoted by Ȳg(t0, p0, z0, q) (respec-
tively Ȳd(t0, p0, z0, r) and Ȳ (t0, p0, z0)).

By Sol0g(F̄g) denote the set of all pairs of functions (W̄g, X̄g) : [0, T ] ×
Rn+1 × R→ R× Rn, which satisfy the inequalities

W̄g(T, p, z)y0 ≥ y0l(−X̄(T, p)) + z,

sup
τ∈(t0,T ],q∈Q

inf
p̄(·)∈Ȳg(t0,p0,z0,q)

V̄g(τ, p(τ), z(τ)) ≤ V̄g(t0, p0, z0),

where V̄g(t, p, z) = W̄g(t, p, z)y0 + X̄g(t, p)y, t0 ∈ [0, T ), p0 ∈ Rn+1 and
V̄g(·, ·, ·) is lower semicontinuous and X̄g(T, ·) is continuous. Analogously
we define Sol0d(F̄d). According to the theorem 9 there exists exactly one
pair of functions (a minimax solution of dual problem (57), (58), (59))
(W̄ , X̄) : [0, T ] × Rn+1 × R → R × Rn such that for any F̄g ∈ Fg(H̄) and
F̄d ∈ Fd(H̄) we have equality

Sol0g(F̄g) ∩ Sol0d(F̄d) =
{

(W̄ , X̄)
}
. (72)

Lemma 11. Let F̄g ∈ Fg(H̄) and F̄d ∈ Fd(H̄). For each pair (W̄g, X̄) ∈
Sol0g(F̄g) and (W̄d, X̄) ∈ Sol0d(F̄d) (with the same X̄) we have, for
V̄g(t, p, z) = W̄g(t, p, z)y0+X̄(t, p)y and V̄d(t, p, z) = W̄d(t, p, z)y0+X̄(t, p)y,
the inequalities

V̄g(t, p, 0) + z ≥ V̄d(t, p, z), (t, p) ∈ Ḡ and z ∈ R, (73)

V̄d(t, p, 0) + z ≤ V̄g(t, p, z), (t, p) ∈ Ḡ and z ∈ R. (74)
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Proof. We prove the inequality (73). To this effect we use the constructions
introduced in the proof of the lemma 8. Let us consider the set

Wa =
{

(p̄g(·), p̄d(·)) ∈ Ȳ (t0, p0, 0)× Ȳ (t0, p0, z0) :

〈s̄(t), ds̄(t)/dt〉 ≤ Λ |s̄(t)|2 + a for a.e. t ∈ [t0, T ]
}
, (75)

where p̄g(t) = (pg(t), zg(t)), p̄d(t) = (pd(t), zd(t)), s̄(t) = (yd(t) − yg(t),
zd(t)− zg(t)− z0). Notice that s̄(t0) = (0, 0) ∈ Rn × R. Set

Ma(t) =
{

(p̄g(·), p̄d(·)) ∈Wa :

V̄g(t0, p0, 0) ≥ V̄g(t, pg(t), zg(t)),
V̄d(t0, p0, z0) ≤ V̄d(t, pd(t), zd(t))

}
(76)

ta = sup {t ∈ [t0, T ] : Ma(t) 6= ∅} .

Analogously as in Lemma 8 we prove that ta = T . On the contrary, let
us assume ta < T . Let t0 = ta, (p̄0

g(·), p̄0
d(·)) ∈ Ma(t0). Put

(
y0

0, yg0, z
0
g

)
=(

p0
g, z

0
g

)
= p̄0

g(t
0),
(
y0

0, yd0, z
0
d

)
=
(
p0
d, z

0
d

)
= p̄0

d(t
0), s̄0 =

(
s0, b0

)
= (yd0, z

0
d)−

(yg0, z0
g). From (76) we obtain the inequalities

V̄g(t0, p0, 0) ≥ V̄g(t0, p0
g, z

0
g), V̄d(t0, p0, z0) ≤ V̄d(t0, p0

d, z
0
d). (77)

Taking into account Property 3. let us choose ra ∈ P , and qa ∈ Q such that
(we have in mind that fg = (0,

:
yg) and fd = (0,

:
yd))

〈s0,
:
yg〉+ b0gg ≥ H̄(t0,−s0, p0

g, b
0)− a/4, (fg, gg) ∈ F̄g(t0, qa, p0

g),

〈s0,
:
yd〉+ b0gd ≤ H̄(t0,−s0, p0

d, b
0) + a/4, (fd, gd) ∈ F̄d(t0, ra, p0

d).

Since the mappings (t, p)→ F̄g(t, qa, p), (t, p)→ F̄d(t, ra, p) are upper semi-
continuous, and Hamiltonian H̄ is continuous with respect to its all vari-
ables, there exists a δ > 0 such that for almost all t ∈ [t0, t0 + δ] and
for all (y0

0, yg(·), zg(·)) = p̄g(·) ∈ Ȳg(t0, p0
g, qa, z

0
g), (y0

0, yd(·), zd(·)) = p̄d(·) ∈
Ȳd(t0, p0

d, ra, z
0
d) the following inequalities

〈s(t), :yg(t)〉+ b(t)
:
zg(t) ≥ H̄(t,−s(t), pg(t), b(t))− a/2,

〈s(t), :yd(t)〉+ b(t)
:
zd(t) ≤ H̄(t,−s(t), pd(t), b(t)) + a/2,

hold, where s(t) = yd(t) − yg(t), b(t) = zd(t) − zg(t), pg(t) = (y0
0, yg(t)),

pd(t) = (y0
0, yd(t)). Notice that (t, pd(t)) ∈ E, (t, pg(t)) ∈ E, t0 ≤ t ≤ t0 + δ.

By (H̄2) and (H̄4) we further get

〈s̄(t), ds̄(t)/dt〉 = 〈s(t), :yd(t)〉 − 〈s(t),
:
yg(t)〉+ b(t)

( :
zd(t)−

:
zg(t)

)
≤ H̄(t,−s(t), pd(t), b(t))− H̄(t,−s(t), pg(t), b(t)) + a

≤ Λ |s̄(t)| |s(t)|+ a ≤ Λ |s̄(t)|2 + a,

where s̄(t) = (s(t), b(t)).
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Next similarly as in the proof of the Lemma 8 define the pair (p̄”g(·),
p̄”d(·)) ∈ Ma(t0 + δ). Then we come to a contradiction with the definition
of the ta, hence ta = T .

By the definition of Ma(t) and the equality ta = T we have

V̄g(t0, p0, 0) ≥V̄g(T, pkg(T ), zkg (T ))

≥X̄(T, pkg)y
k
g + yk0

g l(−X̄(T, pkg(T )) + zkg (T ),

V̄d(t0, p0, z0) ≤V̄d(T, pkd(T ), zkd(T ))

≤X̄(T, pkd)y
k
d + yk0

d l(−X̄(T, pkd(T )) + zkd(T ),

where
(
p̄kg(·), p̄kd(·)

)
∈ Mak(T ), ak → 0, when k → ∞. We can assume,

without loss the generality that p̄kg(·) → p̄∗g(·) and p̄kd(·) → p̄∗d(·) when k →
∞. In turn, by the definition of Wa, we have

p∗g(t) = p∗d(t), z∗g(t) + z0 = z∗d(t), t0 ≤ t ≤ T.

Hence, we conclude

V̄g(t0, p0, 0) + z0 ≥X̄(T, p∗g)y
∗
g + y∗0g l(−X̄(T, p∗g(T ))) + z∗g(T ) + z0

=X̄(T, p∗d)y
∗
d + y∗0d l(−X̄d(T, p∗d(T ))) + z∗d(T )

≥V̄d(t0, p0, z0).

Therefore the first inequality in the assertion of the lemma is proved.
Analogously one can prove the second one in (74). The lemma is proved.

The inequalities (74), (73) and (72) imply the equality (63) and therefore
the Theorem 2 is proved.

Let us come back to our problem (9), (8), (10) with the nonhomogeneous
Hamiltonian H. We shall call a minimax solution of that problem a pair of
functions (W,X) such that for V (t, p) = W (t, p)y0 +X(t, p)y

V (t, p) = V̄ (t, p, 0), X(t, p) = X̄(t, p), (t, p) ∈ [0, T ]× Rn+1,

where (W̄ , X̄) ( V̄ (t, p, z) = W̄ (t, p, z)y0 +X̄(t, p)y ) is the minimax solution
of the dual problem (57), (58), (59).

Define now an upper and a lower solution of the problem (9), (8), (10)
with the nonhomogeneous Hamiltonian.

Definition 4. Let F̄g ∈ Fg(H̄). By Solg(F̄g) denote the set of all pairs
of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that V (·, ·) (V (t, p) =
W (t, p)y0 + X(t, p)y) is lower semicontinuous and X(T, ·) is continuous,
V (T, p) ≥ X(T, p)y+ y0l(−X(T, p)), p ∈ Rn+1 and the following condition

sup
τ∈(t0,T ],q∈Rn

inf
p̄(·)∈Ȳg(t0,p0,0,q)

[V (τ, p(τ)) + z(τ)] ≤ V (t0, p0), (78)
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is satisfied for (t0, p0) ∈ [0, T ] × Rn+1 . An upper solution of (9), (8), (10)
we shall call each pair of functions (W,X) ∈ Solg(F̄g).

Definition 5. Let F̄d ∈ Fd(H̄). By Sold(F̄d) denote the set of all pairs
of functions W (t, p), X(t, p), (t, p) ∈ Ḡ, such that V (·, ·) (V (t, p) =
W (t, p)y0 + X(t, p)y) is upper semicontinuous and X(T, ·) is continuous,
V (T, p) ≤ X(T, p)y+ y0l(−X(T, p)), p ∈ Rn+1 and the following condition

inf
τ∈(t0,T ],r∈Rn

sup
p̄(·)∈Ȳd(t0,p0,0,r)

[V (τ, p(τ)) + z(τ)] ≥ V (t0, p0), (79)

is satisfied for (t0, p0) ∈ [0, T ]× Rn+1. A lower solution of (9), (8), (10) we
shall call each pair of functions (V,X) ∈ Sold(F̄d).

Definition 6. A minimax solution to the problem (9), (8), (10) (with non-
homogeneous Hamiltonian) we shall call a pair of functions W (t, p), X(t, p),
(t, p) ∈ Ḡ, such that V (·, ·) (V (t, p) = W (t, p)y0 +X(t, p)y) and X(T, ·) are
continuous and which are simultanously an upper and lower solution to that
problem, i.e. (W,X) ∈ Solg(F̄g) ∩ Sold(F̄d).

As a consequence of the relations between the minimax solutions for non-
homogeneous and homogeneous our dual problem from Theorem 9 follows
the main theorem of the paper.

Theorem 12. Let l : Rn → R be a continuous and Hamiltonian H satisfies
(H1’)–(H4’). Then there exists exactly one pair of functions (W,X) : Ḡ→
Rn+1 (together V (t, p) = W (t, p)y0 + X(t, p)y a minimax solution to dual
problem with nonhomogeneous Hamiltonian) such that for any F̄g ∈ Fg(H̄)
and F̄d ∈ Fd(H̄) we have the equality

Solg(F̄g) ∩ Sold(F̄d) = {(W,X)} .

5. Example

Let us consider a function Ĥ : R→ R which satisfies the hypotheses (H3)
and (H4) with respect to x. Define the Hamiltoniam

H(t, x, p) = −1
2

(y0)2

y
Ĥ(x)

in a set [0, T ]×R× P , where P =
{

(y0, y) ∈ R2 : y0 ≤ 0, y > 0
}

. Then our
dual Hamilton-Jacobi equation has the form

Vt(t,
1
2
p)− 1

2
(y0)2

y
Ĥ(−Vy(t,

1
2
p)) = 0, (t, p) ∈ (0, T )× P. (*)
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We assume that V satisfies the boundary condition: y0Vy0(T, p/2)
= y0TĤ(−a/2) for some constant a and all p ∈ P . We easily check that
the function

V (t,
1
2
p) =

1
4
ay2 +

1
4

(y0)2tĤ(−1
2
a) (**)

satisfies (*), the boundary condition: y0Vy0(T, p/2) = y0TĤ(−a/2) and
(8). We see that (**) is a classical solution of (*) and so by Section 2.1 it is
also a generalized solution of (*). Therefore we obtained that some class of
nonlinear equations have a solution given by formula (**).

6. Dependence on parameters

In the last section we shall consider a problem of dependence on param-
eters and the correctness of minimax solutions.

To this effect let lk : Rn → R, k = 1, 2, ..., be a sequence of continuous
functions which is uniformly convergent to l∗ : Rn → R, on any compact set
M ⊂ Rn. Let Hk : G × Rn → R, k = 1, 2, ..., be a sequence of Hamiltoni-
ans satisfying (H1’)–(H4’). We assume that the sequence of Hamiltonians
Hk is convergent (when k → ∞) to some Hamiltonian H∗ in the following
sense: for each x ∈ Rn the sequence Hk(·, x, ·) : G → R and Kk : G → R,
k = 1, 2, ..., is convergent uniformly on any compact D ⊂ Rn to functions
H∗(·, x, ·), K∗ respectively, where Kk, K∗ are functions related to Hk, H∗,
as in (H4’).

Theorem 13. Let lk and Hk, k = 1, 2, ..., be the above described sequences
of functions convergent to l∗, H∗, respectively. Let (Wk, Xk) : Ḡ → Rn+1,
k = 1, 2, ..., be a sequence of minimax solutions of the dual problems

Vt(t, p)+Hk(t,−Vy(t, p), p)=0, (t, p)∈(0, T )× R− × Rn, (80)

V (t, p) = Vy0(t, p)y0 + Vy(t, p)y, (t, p) ∈ (0, T )× R− × Rn, (81)

y0Vy0(T, p) = y0lk(−Vy(T, p)), (82)

such that the sequence {Xk(T, ·)} is uniformly convergent on any compact
set. Then the sequences Vk, Xk(T, ·), k = 1, 2, ..., (Vk(t, p) = Wk(t, p)y0 +
Xk(t, p)y) are convergent uniformly, on any compact set D ⊂ Ḡ, to limit
functions V∗, X∗, (Xk(·, ·) → X∗(·, ·) pointwise). The limit pair of func-
tions W∗, X∗ (W∗(t, p)y0 = V∗(t, p)− X∗(t, p)y) is a minimax solution to
the problem

Vt(t, p)+H∗(t,−Vy(t, p), p)=0, (t, p)∈(0, T )× R− × Rn, (83)

V (t, p) = Vy0(t, p)y0 + Vy(t, p)y, (t, p) ∈ (0, T )× R− × Rn, (84)

y0Vy0(T, p) = y0l∗(−Vy(T, p)). (85)
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Proof. By our assumptions the functions lk and Xk(T, ·) are uniformly
bounded on any bounded set C ⊂ Rn. This is why (we argue analogously
as in the proof of Lemma 1) the functions Vk are uniformly bounded below
on any bonded set D ⊂ Ḡ, too.

For (t, p) ∈ Ḡ, ε > 0, K-natural number, let us put

Z−(t, p,K,XK , ε) = inf {Vk(s, z) :

Vk(T, p) ≥ XK(T, p)y + y0lK(−XK(T, p)),

k ≥ K, |t− s|+ |p− z| ≤ ε, (s, z) ∈ Ḡ
}
,

V−(t, p) = lim
K→∞,ε→0

Z−(t, p,K,XK , ε). (86)

Since the functions Vk, k = 1, 2, ..., are uniformly bounded below on bounded
set, therefore the function Z− is of finite values. Define a function X∗(t, p) as
any function for which we have equality X∗(t, p)y = lim infk→∞Xk(t, p)y,
(t, p) ∈ Ḡ. We easily check (repeating the proof of Lemma 6) that V−
is lower semicontinuous and that V−(T, p) ≥ X∗(T, p)y + y0l∗(−X∗(T, p),
(T, p) ∈ Ḡ, and that V− satisfies (78). As a consequence of that we ob-
tain that the pair (W−, X∗) (W−(t, p)y0 = V−(t, p)−X∗(t, p)y) is an upper
solution of the problem (83), (84), (85).

Analogously we define a lower solution to (83), (84), (85): for (t, p) ∈ Ḡ,
ε > 0, K-natural number, let us put

Z+(t, p,K,XK , ε) = sup {Vk(s, z) : (87)

Vk(T, p) ≤ XK(T, p)y + y0lK(−XK(T, p)),

k ≥ K, |t− s|+ |p− z| ≤ ε, (s, z) ∈ Ḡ
}
,

V+(t, p) = lim
K→∞,ε→0

Z+(t, p,K,XK , ε). (88)

We also check that the pair (W+, X∗) (W+(t, p)y0 = V+(t, p)− X∗(t, p)y) is
a lower solution to (83), (84), (85).

As any upper and any lower solutions are related by inequality Vg ≥ Vd,
therefore V−(t, p) ≥ V+(t, p), (t, p) ∈ Ḡ. On the other hand from (86) and
(88) we have V−(t, p) ≤ V+(t, p). Both inequalities imply

V∗(t, p) = V−(t, p) = V+(t, p), (t, p) ∈ Ḡ.

Of course the pair (W∗, X∗) (W∗(t, p)y0 = V∗(t, p)−X(t, p)y) is a minimax
solution to (83), (84), (85). By the definition of V− and V+ we obtain that
the sequence Vk, k = 1, 2, ..., is convergent and its limit (together with
(W∗, X∗)) is a minimax solution to (83), (84), (85).
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[7] Nowakowski, A., Field theories in the modern calculus of variations, Trans. Amer.
Math. Soc. 309 (1988), 725–752.

[8] Nowakowski, A., The dual dynamic programming, Proc. Amer. Math. Soc. 116
(1992), 1089–1096.

[9] Sobieski, S., Dual Approach to Game Theory, PhD thesis, Univ.  Lódź, Faculty of
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