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Abstract. We provide a generalization of a well known Krasnosel’skii
theorem on continuity of the Nemytskii operator for functions taking
values in separable Banach spaces. We follow the results obtained in [6]
for the finite dimensional case.

1. Introduction

In [8] a short and elementary proof of the following Krasnosel’skii theorem
on continuity of the Nemytskii operator is given

Theorem 1.1 ([9]). Let Ω ⊂ Rk be a Lebesgue measurable set. Let f :
Ω× Rn → Rm be a Caratheodory function, i.e. a function measurable with
respect to the first variable and continuous with respect to the second one.
Let p1, p2 ∈ [1,∞]. Assume there exist a constant a > 0 and a function
b ∈ Lp2 [Ω;R] such that for a.e. t ∈ Ω and for all x ∈ Rn we have

‖f (t, x)‖Rm ≤ a ‖x‖
p1/p2
Rn + b (t) .

Then the Nemytskii operator F

F : Lp1 [Ω;Rn] 3 x (·) 7→ f (·, x (·)) ∈ Lp2 [Ω;Rm]
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is continuous.

The same result is contained in [1]. Both proofs are based on Lemma
IV.9, [4], although that in [8] is an indirect one.

The above theorem and some other results treat only the finite dimen-
sional case. While in applications to abstract Hamiltonian systems [5], con-
tinuity of the following operator F has to be shown

F : Lp1 [0, T ;X1] 3 x (·) 7→ f (·, x (·)) ∈ Lp2 [0, T ;X2]

Here X1, X2 are separable Hilbert spaces. The integral we understand in
the sense of Bochner [7], [14]. Since the continuity of the above operator
is not proved in [5] we provide an abstract version of Theorem 1.1. This
theorem may also be used for example when applying a dual variational
method, derived for ODE in [13], to showing the existence of solutions to a
certain type of evolution equations.

Let (M,B,m) be a measure space and let m (M) <∞. Let Xi be separa-
ble Banach spaces for i = 1, 2. Let p1, p2 ∈ [1,∞). We consider the spaces
of B-measurable mappings x : M → Xi such that∫

M
‖x (s)‖piXi dm <∞,

i = 1, 2 which we denote by Lpi [M ;Xi]. It is well known that for separa-
ble spaces all the definitions of measurability are equivalent. The abstract
version of the Krasnosel’skii theorem reads:

Theorem 1.2. Let f : M × X1 → X2 be a Caratheodory function, i.e.
a function measurable with respect to the first variable for all x ∈ X1 and
continuous with respect to the second one for a.e. t ∈M . Assume there exist
a constant a > 0 and a function b ∈ Lp2 [M ;R] such that for a.e. t ∈M and
for all x ∈ X1 we have

‖f (t, x)‖X2
≤ a ‖x‖p1/p2

X1
+ b (t) , (1.1)

Then the Nemytskii operator F

F : Lp1 [M ;X1] 3 x (·) 7→ f (·, x (·)) ∈ Lp2 [M ;X2]

is continuous.

The condition given in the above theorem is only a sufficient one. In
case of finite dimensional spaces necessary conditions for continuity of the
Nemytskii operator also exist, compare [2].

The paper is organized as follows. In Section 2 we prove the Krasnosel’skii
theorem and generalize Theorem 1.2 [8], to the case which we consider. In
Section 3 we provide an application.
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2. Proof of the Krasnosel’skii theorem and some generalization

In order to prove Theorem 1.2 we shall need the following

Lemma 2.1 ([7]). Let {xn} be a sequence of elements of Lp [M ;X] strongly
converging to x in Lp [M ;X], where 1 ≤ p <∞, X is a Banach space. Then
there exists a subsequence {xnk} ∈ Lp [M ;X] such that limk→∞ xnk (t) =
x (t) for a.e. t ∈M . Moreover there exists a function g ∈ Lp [M ;R] satisfy-
ing the following condition

‖xnk (t)‖X ≤ g (t) for a.e. t ∈M. (2.1)

The above lemma as it is stated here is not to be found in [7] but it
follows directly from the proof of Theorem 3.7.7 [7].

Now we are in the position to prove the Krasnosel’skii theorem.

Proof. Suppose that xn → x in Lp1 [M ;X1] and that f (·, xn (·)) does not
converge in Lp2 [M ;X2] to f (·, x (·)), i.e. there exists an ε > 0, such that
for all N there exist an nk ≥ N for which∫

M
‖f (t, x (t))− f (t, xnk (t))‖p2

X2
dm > ε. (2.2)

By (2.1) we may find a subsequence {xnk} of {xnk}— still denoted by {xnk}
— such that xnk (t)→ x (t) a.e. on M and for which there exists a function
g ∈ Lp1 [M ;R] satisfying the condition

‖xnk (t)‖X1
≤ g (t) for a.e. t ∈M.

By continuity of f with respect to the second variable we obtain that
f (t, xnk (t)) → f (t, x (t)) for k → ∞ for a.e. t ∈ M. Using several times
inequality |a+ b|p ≤ 2p−1 (|a|p + |b|p), p ≥ 1, we obtain for a.e. t ∈ M by
(1.1) that

‖f (t, x (t))− f (t, xnk (t))‖p2
X2
≤ 2p2−1

(
‖f (t, x (t))‖p2

X2
+ ‖f (t, xnk (t))‖p2

X2

)
≤ 2p2−1

((
a ‖x (t)‖p1/p2

X1
+ b (t)

)p2
+
(
a ‖xnk (t)‖p1/p2

X1
+ b (t)

)p2
)

≤ 22p2−2
(
ap2
(
‖x (t)‖p1

X1
+ ‖xnk (t)‖p1

X1

)
+ 2bp2 (t)

)
≤ 22p2−2

(
ap2
(
‖x (t)‖p1

X1
+ gp1 (t)

)
+ 2bp2 (t) .

)
Of course the function

M 3 t 7→ 22p2−2
(
ap2
(
‖x (t)‖p1

X1
+ gp1 (t)

)
+ 2bp2 (t)

)
∈ R
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belongs to L1 [M ;R]. Now by Lebesgue dominated convergence theorem we
obtain

lim
k→∞

∫
M
‖f (t, x (t))− f (t, xnk (t))‖p2

X2
dm = 0,

which contradicts (2.2).

The above theorem may be generalized as in [8]. Let Si for i = 1, 2, ..., n
denote the spaces of measurable functions on M taking values in Xi, where
Xi is a separable Banach space . Let Li, for i = 1, 2, ..., n, be such a subspace
of Si that every sequence in Li contains a subsequence converging a.e. (cf.
Lemma 2.1). Moreover assume that f : M×X1× ...×Xn is a Caratheodory
function. Define L to be a subspace of the product L1 × ...× Ln.

Theorem 2.2. If for any sequence
{(
x1
k, x

2
k, ..., x

n
k

)}∞
k=1 in L there exist

a subsequence
{(
x1
ki
, x2

ki
, ..., xnki

)}∞
i=1

and a function h ∈ Lp [M ;X], where
1 ≤ p <∞, such that∥∥f (t, x1

ki
, x2

ki
, ..., xnki

)∥∥
X
≤ ‖h (t)‖X , for i ∈ N and a.e. t ∈M,

than the Nemytskii operator

F : L 3
(
x1, x2, ..., xn

)
7−→ f

(
·, x1 (·) , x2 (·) , ..., xn (·)

)
∈ Lp [M ;X] ,

is well defined and continuous on L.

Proof. The indirect proof repeats that of the Krasnosel’skii Theorem 1.2
using the assumed existence of an almost everywhere convergent subse-
quence.

3. Application

In variational and optimal control problems an essential role is played
by the theorem on the existence and continuity of the Fréchet derivative
of integral functional, see [11], [12] and references therein. Since the case
of functionals appearing in abstract O.D.E is considered in [5], we provide
an example of such a functional which is of use when variational methods
are applied in investigating evolution equations. As an easy corollary of
Theorem 1.2 the continuity of the Fréchet derivative of the action functional
form [5] may be proved.

Let Ω ⊂ Rk be an open set with a smooth boundary ∂Ω. Let ki be a
nonnegative integer and consider for i = 1, 2, ..., n the following spaces

W 1,ki (0, T ) =
{
x ∈ Lpi

[
0, T ;Hki+2 (Ω)

]
,
:
x ∈ Lpi

[
0, T ;Hki (Ω)

]}
,
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where the derivative we understand in the weak of the space Hki (Ω) and
Hki (Ω) is the standard Sobolev space, [3], [6]. The norm on W 1,pi (0, T )
reads

‖x‖ = pi

√∫ T

0
‖x (t)‖pi

Hki+2(Ω)
dt+

∫ T

0

∥∥ :x (t)
∥∥pi
Hki (Ω) dt.

Here pi ≥ 2 for i = 1, 2, ..., n. The function x ∈ W 1,ki (0, T ) is continuous
as a function x : [0, T ] → Hki+1 (Ω) and its maximum norm satisfies the
following estimation with the constant Ci = C (T, ki,Ω)

max
0≤t≤T

‖x (t)‖Hki+1(Ω) ≤ Ci
(∫ T

0
‖x (t)‖2Hki+2(Ω) dt+

∫ T

0

∥∥ :x (t)
∥∥2
Hki (Ω) dt

)
Put W = W 1,p1 ×W 1,p2 × ...×W 1,pn . Let qi and pi be conjugate expo-

nents for i = 1, ..., n. Put X = Πn
i=1H

ki+2 (Ω)×Πn
i=1H

ki (Ω) and denote its
elements by

(
x,
:
x
)
.

In what follows we denote

R+
0 = [0,+∞), R+ = (0,+∞).

Theorem 3.1. Let g : [0, T ] × X → R be a Lebesgue measurable function
in t for every

(
x,
:
x
)
∈ X and continuous and continuously differentiable

with respect to the last 2n variables for a.e. t ∈ [0, T ]. Assume there ex-
ist a continuous function a ∈ C (Rn,R+), a function b ∈ L1

[
0, T,R+

0
]
,

functions ci ∈ Lqi
[
0, T ;R+

0
]
, i = 1, ..., n, such that the following conditions

are satisfied for a (‖x1‖ , .., ‖xn‖) = a
(
‖x1‖Hk1+1(Ω) , .., ‖xn‖Hkn+1(Ω)

)
for

i = 1, 2, ..., n

g
(
t, x,

:
x
)
≤ a (‖x1‖ , .., ‖xn‖)

(
b (t) +

n∑
i=1

∥∥ :x∥∥pi
Hki (Ω)

)
(3.1)∥∥∇xig (t, x, :x)∥∥Hki (Ω)

≤ a (‖x1‖ , .., ‖xn‖)

b (t) +
n∑
j=1

∥∥ :xj∥∥pj
Hkj (Ω)

 (3.2)

∥∥∇ :
xi
g
(
t, x,

:
x
)∥∥
Hki (Ω)

≤ a (‖x1‖ , .., ‖xn‖)

ci (t) +
n∑
j 6=i

∥∥ :xj∥∥pj/qi
Hkj (Ω)

+
∥∥ :xi∥∥pi−1

Hki (Ω)

 .
(3.3)

Then the functional

F : W 3 x→
∫ T

0
g
(
t, x,

:
x
)
dt ∈ R
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is continuously Fréchet differentiable. Moreover the Fréchet differential
W 3 h→ F

′
(x)h ∈ R is given by the formula

F
′
(x)h =

n∑
i=1

∫ T

0

〈
∇xig

(
t, x (t) ,

:
x (t)

)
, hi (t)

〉
Hki (Ω)

+
〈
∇ :
xi
g
(
t, x (t) ,

:
x (t)

)
,
:
hi (t)

〉
Hki (Ω)

dt. (3.4)

Proof. Let us first observe that by (3.1) it follows that functional F is well
defined. We shall first show that for every direction h ∈ W there exists a
directional derivative. Let λ ∈ R and let G (λ) = g

(
t, x (t) + λh (t) ,

:
x (t) +

λ
:
h (t)

)
. G : R→ R is a differentiable function. For λ ∈ [−1, 1] we obtain

d

dλ
G (λ) =

n∑
i=1

〈
∇xig

(
t, x (t) + λh (t) ,

:
x (t) + λ

:
h (t)

)
, hi (t)

〉
Hki (Ω)

+
n∑
i=1

〈
∇ :
xi
g
(
t, x (t) + λh (t) ,

:
x (t) + λ

:
h (t)

)
,
:
hi (t)

〉
Hki (Ω)

.

Using (3.2), (3.3) we get∣∣∣∣ ddλG (λ)
∣∣∣∣ ≤ a (‖x1 + λh1 (t)‖ , . . . , ‖xn + λhn (t)‖)

×

 n∑
i=1

b (t) +
n∑
j=1

∥∥∥ :xj (t) + λ
:
hj (t)

∥∥∥pj
Hkj (Ω)

 ‖hi (t)‖Hki (Ω)

+
n∑
i=1

ci (t) +
n∑
j 6=i

∥∥∥ :xj + λ
:
hj (t)

∥∥∥ pjqi
Hkj (Ω)

+
∥∥ :xi∥∥pi−1

Hki (Ω)

∥∥∥ :hi (t)
∥∥∥
Hki (Ω)


By continuity of a : Rn → R+ and continuity of x, h : [0, T ] → Hki+1 (Ω)
we obtain that

max
(t,λ)∈[0,T ]×[−1,1]

a
(
‖x1 (t) + λh1 (t)‖Hk1+1(Ω) , ..., ‖xn (t) + λhn (t)‖Hkn+1(Ω)

)
= c.

Application of inequalities |a+ b|p ≤ 2p−1 (|a|p + |b|p) and |λ| ≤ 1 yields∣∣∣∣ ddλG (λ)
∣∣∣∣ ≤c{ n∑

i=1

(
b (t) +

n∑
j=1

2pi−1

(∥∥ :xj (t)
∥∥pj
Hkj (Ω)

+
∥∥∥ :hj (t)

∥∥∥pj
Hkj (Ω)

)
‖hi (t)‖Hki (Ω)

)
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+
n∑
i=1

(
ci (t) +

n∑
j 6=i

2pj/qi−1
(∥∥ :xj∥∥pj/qi

Hkj (Ω)
+
∥∥∥ :hj (t)

∥∥∥pj/qi
Hkj (Ω)

)

+
∥∥ :xi∥∥pi−1

Hki (Ω)

)∥∥∥ :hi (t)
∥∥∥
Hki (Ω)

}
.

We show that the right hand side of the above inequality is integrable.
Indeed, for every i a function

t→
(
b (t) +

n∑
j=1

2pj−1
∥∥ :xj (t)

∥∥pj
Hkj (Ω)

‖hj (t)‖
Hkj (Ω)

+
∥∥∥ :hj (t)

∥∥∥pj
Hkj (Ω)

‖hi (t)‖Hki (Ω)

)
is in L1 [0, T ;R], which follows by the estimation ‖hi (t)‖Hki+1(Ω) ≤ ‖hi‖∞ ≤
‖hi‖2W 1,pi = ci <∞. The integrability of a function

t→ ci (t) +
( n∑
j 6=i

2pj/qi−1
(∥∥ :xj (t)

∥∥pj/qi
Hkj (Ω)

+
∥∥∥ :hj (t)

∥∥∥pj/qi
Hkj (Ω)

)

+
∥∥ :xi (t)

∥∥pi−1
Hki(Ω)

)∥∥∥ :hi (t)
∥∥∥
Hki (Ω)

follows by Hölder’s inequality for every i.
In consequence Leibniz formula of differentiation under integral sign ap-

plies. By (3.2), (3.3) we obtain for i = 1, 2, ..., n

∇xig
(
·, x (·) , :x (·)

)
∈ L1

[
0, T ;Hki (Ω)

]
,

∇ :
xi
g
(
·, x (·) , :x (·)

)
∈ Lqi

[
0, T ;Hki (Ω)

]
We also have

n∑
i=1

∫ T

0

(〈
∇xig

(
t, x (t) ,

:
x (t)

)
, hi (t)

〉
Hki (Ω)

+
〈
∇ :
xi
g
(
t, x (t) ,

:
x (t)

)
,
:
hi (t)

〉
Hki (Ω)

)
dt

≤
n∑
i=1

ci ‖hi‖∞ +
n∑
i=1

di

∥∥∥ :hi∥∥∥
Lpi [0,T ;Hki (Ω)]

≤
n∑
i=1

(ci + di) ‖hi‖W 1,pi [0,T ;Hki (Ω)] .

Hence a directional derivative in the direction h is given by the formula
(3.4).



146 M. GALEWSKI

It remains to show that the mapping F
′

: W → (W )∗ is continuous. It
suffice to demonstrate that mappings

W 3 x 7→ ∇xig
(
·, x (·) , :x (·)

)
∈ L1

[
0, T ;Hki (Ω)

]
, (3.5)

W 3 x 7→ ∇ :
xi
g
(
·, x (·) , :x (·)

)
∈ Lqi

[
0, T ;Hki (Ω)

]
(3.6)

are continuous for i = 1, 2, ..., n. We use Theorem 2.2. Let us observe
that strong convergence of xn in W 1,ki means strong convergence in C[0, T ;
Hki+1(Ω)] and that sequences

:
xn are strongly convergent in Lpi

[
0, T ;Hki (Ω)

]
for i = 1, 2, ..., n. Put

L1 = Lp1
[
0, T ;Hk1 (Ω)

]
, L2 = C

[
0, T ;Hk1+1 (Ω)

]
, . . . ,

L2n−1 = Lpn
[
0, T ;Hkn+1 (Ω)

]
, L2n = C

[
0, T ;Hkn (Ω)

]
and L = L1 × ...× L2n. By (3.2), (3.3), Lemma 2.1 we obtain by Theorem
2.2 that mappings (3.5) and (3.6) are continuous.
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