
Journal of Applied Analysis

Vol. 9, No. 2 (2003), pp. 163–185

EXISTENCE OF GLOBAL WEAK SOLUTIONS
FOR COUPLED THERMOELASTICITY WITH
BARBER’S HEAT EXCHANGE CONDITION

M. BIEŃ
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Abstract. The existence of global weak solutions for coupled thermoe-
lasticity with the nonlinear contact boundary condition and Barber’s
heat exchange condition is proved via the Faedo-Galerkin, monotonic-
ity and compactness methods. Some a priori bounds obtained with
Gronwalls inequality in connection with the embedding and trace the-
orems lead to accomplishing a generalization of our previous study [5].
The heat-exchange coefficient associated with Barber’s heat exchange
condition is dependent only on the normal displacement. This depen-
dence is described by a bounded Lipschitz function. Moreover, this
study is some extension of works due to Andrews et al. [3] and Elliot
et al. [12].
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1. Introduction and the result

1.1. Formulation of the problem.
In this paper we are concerned with the existence of global weak solu-

tions to the problem describing the evolution of N -dimensional thermoelas-
tic body occupying a bounded domain Ω ⊂ RN (N = 2 or 3) with boundary
∂Ω. Some part of the boundary may be brought into contact with an elas-
tic obstacle. Moreover, this portion of the boundary is subject to the heat
exchange, which results in the so-called Barber’s heat exchange condition.
The problem under consideration consists of:
• the equations of coupled thermoelasticity (cf. Section 2)

ρr∂
2
t U − divσ = ρrb in Q, (1.1)

α∂tθ + divq = −ηdiv(∂tU) + ρrr in Q; (1.2)

• the initial conditions

U(·, 0) = U0 and ∂tU(·, 0) = U1 on Ω and θ(·, 0) = θ0 on Ω; (1.3)

• the boundary conditions

U = g on Γd × [0, T ], σν = F on Γf × [0, T ], (1.4)

σν = −p0(·)(Uν − gν)ξ+ and στ = 0 on Γc × [0, T ], (1.5)

θ = θa on Γd × [0, T ],

q · ν = β(x,Uν − gν)(θ − θa) on Γ′d : ×[0, T ].
(1.6)

Here Q := Ω×]0, T [ with ∂Ω =: Γ =: Γd ∪ Γf ∪ Γc and Γ′d := Γ \ Γd. The
functions

U : Q→ RN and θ : Q→ [0,∞[
stand for the vector field of displacements and the scalar field of the absolute
temperature, respectively. The quantities

b : Q→ RN and r : Q→ R
are the vector fields of external body forces and the distributed heat source
in the body, respectively; σ : Q → RN2

denotes the stress tensor, which is
furnished by the Duhamel-Neumann relations

σjk = Ajklmεlm(U)− γ(θ − θr)δjk =: Σjk(U, θ − θr) (γ > 0)

with the strain tensor

εlm(U) :=
1
2

(Ul,m + Um,l)

and with the coefficients

Ajklm := λδjkδlm + µ (δjlδkm + δjmδkl) ,
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where θr denotes the uniform reference temperature. (The rule of the usual
summation convention is applied here and in the further part of the paper.)
Symbols δjk (j, k = 1, . . . , N) stands for the Kronecker delta, λ > 0 and µ >
0 are Lamé’s constants, q : Q→ RN means the heat flux which is postulated
by a constitutive relation of the form (see Section 2 for its justification)

q := −κ∇θ − k∇∂tθ

with the coefficient of thermal conductivity of the body κ and some non-
negative parameter k. Then ν : Γ → RN is the field of the outward unit
vectors normal to the boundary Γ, and Uν(x′, t) = Uj(x′, t) · νj(x′) is the
displacement normal to the boundary at time t with the boundary point x′;

σν = σjk · νjνk

is the normal component of σ on Γ;

στ = (σjk · νk − σννj)Nj=1 ∈ Span
{
τ 1(x′), . . . , τN−1(x′)

}
is the tangential vector, where the vectors: ν(x′), τ 1(x′), . . . , τN−1(x′) form
an orthonormal set of the normal and tangential vectors at every point
x′ ∈ Γ with τ j : Γ→ RN . Next

F : Γf × [0, T ]→ RN and p0 : Γc → [0,∞[

stand for the traction and the pressure, respectively, ξ ≥ 1, θa denotes
the ambient outside temperature, β : Ω × R → R+ := [0,∞[ is a function
defining the heat-exchange coefficient along boundary Γf ∪ Γc such that

β(x, s) :=

{
βf (x) for x ∈ Γf ,
βc(s) for x ∈ Γc

with βf : Ω → R+ and βc : R → R+. Function g : Γ → RN stands for the
gap between the boundary of the body and the boundary of the obstacle,
gν(x′) = gk(x′) · νk(x′) is the displacement normal to the boundary Γ with
the frontier point x′, ρr denotes the reference mass density of the body,
α = ρrcV , where cV is the specific heat of the body at constant volume;
ε, γ and η are some positive constants; π+ := max{π, 0} for any function
π. Finally, ∂t, ∇, div and ∆ denote the t-derivative, the gradient operator,
the divergence operator and the Laplacian operator, respectively. With the
exception of U and θ all the quantities occurring in (1.1)–(1.5) are given.

Let ḡ denote the extension of g (cf. [26], [16]). Then we may define new
functions by

u := U − ḡ and ϑ := θ − θr. (1.7)
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Substituting (1.7) into (1.1)–(1.5) leads to the following problem

ρr∂
2
t u− divΣ(u, ϑ) = h in Q, (1.8)

α∂tϑ− κ∆ϑ− k∆∂tϑ = −ηdiv∂tu+ ω in Q, (1.9)
u(·, 0) = u0 and ∂tu(·, 0) = u1 on Ω and ϑ(·, 0) = ϑ0 on Ω (1.10)
u = 0 on Γd × [0, T ], Σ(u, ϑ)ν = f on Γf × [0, T ], (1.11)

Σν(u, ϑ) = −p0(·)(uν)ξ+ and Στ (u, ϑ) = 0 on Γc × [0, T ], (1.12)
ϑ = 0 on Γd × [0, T ],
κ∂νϑ+k∂ν∂tϑ=−β(x, uν)ϑ+ζ(x, uν) on Γ′d×[0, T ], (1.13)

where

h := ρrb+ Σ(ḡ, 0), ζ(x, uν) := (ϑa− ϑr)β(x, uν)and ω = ρrr. (1.14)

Systematic studies aimed at obtaining a basic understanding of what goes
on in the thermoelastic body during heating or cooling has not been com-
pleted yet, but some progress in the field of coupled thermoelasticity with
Barber’s heat exchange condition has been made by generalizing works [3]
and [12] due to Andrews et al. and Elliot et al., respectively, and our previ-
ous investigation [5]. This generalization consists in introducing the mixed
non-linear boundary condition for the temperature instead of the Dirichlet
one in [5]. Such a boundary condition better suits the phenomena occurring
in these processes, because the Dirichlet boundary condition for the tem-
perature is peculiar to the paradoxical phenomenon which is connected with
coupled thermoelasticity under contact boundary conditions (cf. [11]) and
does not appear fully acceptable from the physical point of view. Although
such a modification is sufficient to show existence of global weak solutions
to the problem, which may be seen from a priori estimates in Section 3,
it gives rise to some difficulties to be surmounted before regularity of the
solution may be accomplished. This drawback is removed by introducing
the short memory term −k∇∂tϑ into the heat flux. Such an introduction
is, to a certain extent, in agreement with the modified law of Fourier (cf.
Section 2).

The important point to note here is the form of solutions to that problem
for the one space dimensional case of linear thermoelasticity (cf. [12], [3]).
First, in the work [12] due to Elliot and Tang, the method of compensated
compactness is used to prove that their problem admits at least one pair of
solutions to a dynamic contact problem in thermoelasticity with Barber’s
heat exchange condition. Second, in the paper [3] due to Andrews et al., the
thermoelastic contact with Barber’s heat exchange condition is investigated,
where the acceleration of the rod is assumed to be equal to zero. The novelty
in all these considerations is the appearance of the non-linear function β
occurring in Barber’s heat exchange condition. The function β defines the
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heat-exchange coefficient that, in its full generality, depends on the normal
displacement uν ; the reader is referred to [3] and references therein for the
characterization of this coefficient. The function β may be treated as a
multivalued one [3] or as a single-valued one [11]. Although there has been
much recent interest in a question of finding the solution to a dynamic
contact problem [12], [3] for these two cases, all of these studies deal with
the one space dimensional problem of linear thermoelasticity. Our study
concerning that kind of problems is carried over to the space dimension
greater than one, i.e., N = 2 or 3. We succeeded in finding a global weak
solution to that problem in the case where the data satisfy some relevant
assumptions. Moreover, these solutions are proved to be regular.

1.2. Notations.
We employ the usual notation for the standard functional spaces that will

be used throughout the paper (see [1], [2] or/and [25]). The symbol Lq(Ω),
1 ≤ q ≤ ∞, denotes the usual Lebesgue space of real valued functions with
norm ‖ · ‖q,Ω, in particular ‖ · ‖:=‖ · ‖2,Ω. Moreover, Wm,q(Ω) stand
for the usual Sobolev spaces with norm ‖ · ‖Wm,q(Ω). In particular, we
recall Hm(Ω) := Wm,2(Ω). The inner products on L2(Ω) and L2(Γ) are
denoted by (·, ·)Ω ≡ (·, ·) and 〈·, ·〉Γ, respectively. We recall the Hilbert
space H(∆,Ω) := {u ∈ H1(Ω): ∆u ∈ L2(Ω)} with the norm [20]

‖ u ‖H(∆,Ω):=
(
‖ u ‖2H1(Ω) + ‖ ∆u ‖2

)1/2
.

The mappings γ0 : H1(Ω) → H1/2(Γ) and γ1 : H(∆,Ω) → H−1/2(Γ) are
the trace maps such that

γ0(u) = u|Γ, γ1(u) =
(
∂u

∂ν

)
|Γ

for all u ∈ D(Ω̄).

Moreover, the generalized Green’s formula∫
Ω

(−∆u)wdx =
∫

Ω
∇u · ∇wdx− 〈γ1(u), γ0(w)〉H−1/2(Γ)×H1/2(Γ)

holds for all u ∈ H(∆,Ω) and w ∈ H1(Ω).
For further consideration we need to introduce the Hilbert space

V :=
{
w ∈ H1(Ω): γ0(w) = 0 on Γd

}
as the closure in H1(Ω) of

{
w ∈ C1(Ω̄) : w = 0 on Γd

}
which is valid for a

bounded domain Ω ⊂ RN whose boundary Γ is Lipschitzian (cf. [16]). We
may endow the space V with the norm defined by

‖ w ‖V =
(∫

Ω

(
| ∇w |2 + | w |2

)
dx

)1/2

.
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The space V is a closed linear subspace of H1(Ω). The topological dual of
V is denoted by V ∗ . The symbol 〈·, ·〉V stands for the duality pairing on
V ∗ × V and ‖ · ‖V ∗ denotes the V ∗ norm.

1.3. Assumptions on the given data.
We make the following assumptions on the given data to prove the desired

result:
• (A1) the boundary Γ =: Γd ∪ Γf ∪ Γc is Lipschitzian and piecewise
C1, where each Γj (j = d, f, c) is a measurable subset of Γ such that
measN−1{Γd} 6= 0 and Γ̄d ∩ Γf ∩ Γc = ∅;
• (A2) the functions βc ∈ C1(R,R+) and βf ∈ C(Γf , R+) satisfy the

following conditions:

0 < mβ ≤ βc(s); βf (x) ≤Mβ <∞ for s ∈ R, x ∈ Γf
and for some mβ ≤Mβ (1.15)

| βc(s1)− βc(s2) |≤ lβ | s1 − s2 | for s1, s2 ∈ R
and for some 0 < lβ <∞; (1.16)

• (A3) u0 ∈ V N , u1 ∈ L2(Ω)N and ϑ0 ∈ L2(Ω);
• (A4) the functions g and ϑa are assumed to be constant on Γc and Γ,

respectively;
• (A5) h ∈ L∞(0, T ;V ∗N ), ∂th ∈ L2(0, T ;V ∗N ) and ω ∈ L2(0, T ;V ∗);
• (A6) the exponent ξ in the contact boundary condition (1.5) satisfies

the following relations:

ξ ≥ 1 and ξ = q1(q − 1)/q

where

q, q1 ∈

{
[1,∞[ for N = 2
[1, 4] for N = 3;

• (A7) f ∈ L∞
(
0, T ;Lp(Γf )N

)
, ∂tf ∈ L2

(
0, T ;Lp(Γf )N

)
with p =

1 + 1/ξ;
• (A8) the function p0(·) ∈ L∞(Γc) is merely required to take on non-

negative values.

1.4. Weak formulation of the problem.
In order to state the problem in the variational form we need to introduce

the bilinear form a : V × V → R by

a(u, ϕ) :=
∫

Ω
Aijklεkl(u)εij(ϕ)dx =

∫
Ω
Aijkluk,lϕi,jdx (1.17)
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where the symbol ,k denotes differentiation with respect to xk and the sym-
metry of the fourth order elasticity tensor A has been used; this tensor
satisfies the condition:

∃(αa > 0)∀ ((ξij)N×N : ξij = ξji)Aijklξijξkl ≥ αa | ξ |2 . (1.18)

Moreover, we will need to consider the following surface integral:∫
Γ
σjkνkϕj dΓ =

∫
Γf
fjϕj dΓ +

∫
Γc

(σνϕν + στϕτ ) dΓ

=
∫

Γf
fjϕj dΓ−

∫
Γc

[p0(uν)ξ+]ϕν dΓ

=〈f, ϕ〉Γf − 〈P (u(t)) , ϕ〉Γc
for any ϕ ∈ V , where P : V → V ∗ is a non-linear map.

We are now in a position to state the problem in the variational form. It
reads

〈ρ∂2
t u− divσ − h, ϕ〉V = 0 for any ϕ ∈ V,

which is equivalent to

〈ρ∂2
t u, ϕ〉V +a(u, ϕ)−γ(θ, divϕ)Ω−〈f, ϕ〉Γf + 〈P (u(t)) , ϕ〉Γc = 〈h, ϕ〉V

for any ϕ ∈ V .
By Korn’s inequality in the form∫

Ω
| ∇u |2 dx ≤ K

∫
Ω
| ε(u) |2 dx for any u ∈ H1(Ω)N , (1.19)

which holds for the domains with piecewise C1 boundaries, and a result in
Morrey’s monograph (cf. [21, p. 82])

‖ w ‖2≤ Cm(‖ ∇w ‖2 + |
∫

Γd
wdx |) for any w ∈ H1(Ω), (1.20)

which is valid for the Γd with positive measure measN−1(Γd) > 0 and some
constant Cm which is independent of w, we may deduce the coercivity of
the form a, i.e.

a(w,w) ≥ ma ‖ w ‖2V , w ∈ V with ma =
αa min(1, Cm)

2KCm
. (1.21)

Moreover, the continuity of form a is expressed by

a(u,w) ≤Ma ‖ u ‖V ‖ w ‖V , for u,w ∈ V. (1.22)

It should be noticed that for the Hilbert triplet

V ⊂ H ⊂ V ∗

the embeddings are compact. The first inclusion is a consequence of (1.20),
whereas its compactness is ensured by the compact embedding theorem [14],
[16]. The second inclusion may be proved in a standard way.
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1.5. Main result.

Definition 1.1. A pair (u, θ) is a global weak solution to problem (1.8)–
(1.13) if and only if the functions

u ∈ L∞(0, T ;V N ) for which ∂tu ∈ L∞
(
0, T ;L2(Ω)N

)
and

∂2
t u ∈ L∞

(
0, T ;V ∗N

)
and

ϑ ∈ L∞(0, T ;V )

satisfy the following integral identities∫ T

0

{
ρr〈∂2

t u, ϕ〉V + a(u, ϕ)− γ(ϑ,divϕ)Ω − 〈f, ϕ〉Γf

+〈P (u(t)) , ϕ〉Γc − 〈h, ϕ〉V } dt = 0,
(1.23)

∫ T

0
[−(αϑ+ ηdivu, ∂tψ) + κ(∇ϑ,∇ψ)− k(∇ϑ,∇∂tψ)− 〈ω, ψ〉V ] dt

+
∫ T

0

∫
Γ′d

[β(·, uν)ϑ− ζ(·, uν)]ψ dAdt

=
∫

Ω
[αϑ0(x) + ηdiv (u0(x))]ψ(x, 0) dx

+ k

∫
Ω
∇ϑ0(·) · ∇∂tψ(·, 0) dx

(1.24)

for any ϕ ∈ L2(0, T ;V N ) and any ψ ∈ H1(0, T ;V ) with ϕ(·, T ) = 0 and
ψ(·, T ) = 0 for all 0 < T <∞, respectively.

Our main results are existence and regularity theorems for global in time
weak solutions to problem (1.8)–(1.13).

Theorem 1.2. Assume (A1)–(A8). Then problem (1.8)–(1.13) admits a
global weak solution in the sense of Definition 1.1.

Remark 1.1. It is worth mentioning that the case where the number k
vanishes is considered in [4], therefore we will avoid discussing it here.

Theorem 1.3. Let the assumptions of Theorem 1.2 with ξ = 1 are satisfied.
Moreover, we additionally assume that there are positive constants β1 and
ζ1 such that

| βs(x, s) |≤ β1 and | ζs(x, s) |≤ ζ1 for all (x, s) ∈ Ω× R
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and that
:
ω(·, ·) ∈ L2(0, T ;V ∗),

:
h(·, ·) ∈ L∞(0, T ;V ∗),

:
f(·, ·) ∈ L∞ (0, T ;Lp(Γf )) ,

ḧ(·, ·) ∈ L2(0, T ;V ∗), f̈(·, ·) ∈ L2 (0, T ;Lp(Γf )) ,

ü(·, 0) ∈ H and
:
ϑ(·, 0) ∈ L2(Ω),

where p is defined in (A7). Then problem (1.8)–(1.13) admits a global regular
solution.

1.6. Plan of the remaining sections.
Section 2 provides some justification for the postulated constitutive re-

lations occurring in the posed problem. In Section 3 a priori estimates of
solutions to the problem are derived. Section 4 contains the proof of Theo-
rem 1.2.

2. Basic equations

2.1. Motion of the body.
Let χ : Ω × [0, T [→ RN be a function defining the motion of the ther-

moelastic body. We recall that U(X, t) := χ(X, t) −X stands for the field
of displacements and the deformation is given by F (X, t) = ∇χ(X, t) =
∇U(X, t)− I, where I denotes the unit tensor. Then the equations of ther-
moelasticity reads as follows (cf. [6], [9] and [23]):

ρrÜ − divσ = ρrb in Q, (2.1)

ρr
:
e+ divq = σ ·

:
F + ρrr in Q, (2.2)

where σ denotes the first Piola-Kirchhoff stress tensor, e is the internal
energy per unit mass and the heat flux q is calculated in the reference con-
figuration, r is the internal heat supply per unit mass. The divergence op-
erator div

∑N
k=1 ∂/∂Xk acts in the reference configuration, the superposed

dot stands for the material time derivative.
In order for the thermodynamic process (U(·, ·), θ(·, ·)) to be compatible

with the second law of thermodynamics, it is necessary and sufficient that
the local dissipation inequality

ρr
:
ψ + ρrs

:
θ − σ ·

:
F +

q · g
θ
≤ 0 (2.3)

holds on its domain, where g := ∇θ is the temperature gradient in the
reference configuration. This inequality is consequence of the Clausius-
Duhem inequality for the entropy production

ρr
:
s ≥ div

(
−q
θ

)
+
ρrr

θ
, (2.4)
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where s stands for the specific entropy per unit mass, the specific free energy
function

ψ = e− sθ, (2.5)

and the first law of thermodynamics (2.2).

2.2. Restrictions imposed on thermoelastic materials by the sec-
ond law of thermodynamics.

We now postulate the following constitutive relations:
ψ = Ψ(F, θ, g), s = S(F, θ, g), σ = Σ(F, θ, g),

q = Q(F, θ, g,
:
g) = QI(F, θ, g)− κ1(θ)

:
g,

(2.6)

where the heat flux q has been split up into two terms: the classical one
and the following −κ1(θ)

:
g. The latter heat flux has been derived from

investigations within the framework of Statistical Mechanics in [7] and then
it has been revised in [8].

Making use of (2.3) and (2.6) we can derive the following inequality:

(ρr∂FΨ(F, θ, g)− Σ(F, θ, g)) ·
:
F + (ρr∂θΨ(F, θ, g) + ρrS(F, θ, g))

:
θ

+
(
ρr∂gΨ(F, θ, g)− κ1(θ)g

θ

)
· :g +

QI(F, θ, g) · g
θ

≤ 0. (2.7)

Lemma 2.1. The local dissipation inequality (2.3) is satisfied for all admis-
sible thermodynamic processes if and only if the following three statements:

1) Ψ(F, θ, g) =
1
ρr

(
ΨI(F, θ) + κ1(θ)

g · g
2θ

)
;

2) Σ is determined through the stress relation
Σ(F, θ) = ∂FΨI(F, θ)
and S through the entropy relation
S(F, θ, g) = −∂θΨ(F, θ, g);

3) QI obeys the heat conduction inequality
QI(F, θ, g) · g ≤ 0

hold on its domain.

Proof. The sufficiency of 1)–3) follows from (2.7), whereas the necessity of
the conditions can be showed in the same way as in [6], which completes
the proof.

We now want to eliminate the energy e in (2.2). To this end, we differ-
entiate (2.5) with respect to time to get

:
e =

:
ψ + θ

:
s+ s

:
θ
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while 1) and 2) in the Lemma 2.1 imply that
:
ψ =

1
ρr

Σ ·
:
F − S

:
θ +

κ1(θ)
ρrθ

g · :g.

Hence, the last two equalities lead to

ρr
:
e = ρrθ

:
s+ Σ ·

:
F +

κ1(θ)
θ

g · :g. (2.8)

By (2.2) and (2.8),

ρrθ
:
s+

κ1(θ)
θ

g · :g + divq = ρrr. (2.9)

But
:
s = ∂FS(F, θ, g) ·

:
F + ∂θS(F, θ, g)

:
θ− 1

ρr

∂

∂θ

[
κ1(θ)
θ

]
g · :g. (2.10)

By Lemma 2.1 and Ψ being of class C2 in its domain, one may infer what
follows

1
ρr
∂θΣ(F, θ) = −∂FS(F, θ, g). (2.11)

Taking account of (2.11) and both statements 1) and 2) from Lemma 2.1
into (2.10) we get

ρrθ
:
s =− θ

{
∂θΣ(F, θ) ·

:
F +

[
∂2
θΨI(F, θ) +

d2

dθ2

(
κ1(θ)
θ

)
g · g

2

]
:
θ

+
d

dθ

[
κ1(θ)
θ

]
g · :g

}
. (2.12)

Inserting (2.12) into (2.9) leads to the required equation

− θ
{
∂θΣ(F, θ) ·

:
F +

[
∂2
θΨI(F, θ) +

d2

dθ2

(
κ1(θ)
θ

)
g · g

2

]
:
θ

}
− 2κ′1(θ)g · :g

+
2κ1(θ)
θ

g · :g − div (κ0(θ)∇θ)− κ1(θ)div
:
g = ρrr, (2.13)

where the superposed prime in κ′1 stands for the derivative of κ1.

2.3. Derivation of the linear theory.
In order to derive the linear theory of generalized thermoelasticity, it

is convenient to put restrictions on κ1. We form them into the following
Cauchy problem:

κ′1(θ) =
κ1(θ)
θ

, κ1(θr) = κ1r, (2.14)

where κ1r is a given nonnegative number. Its solution is of the form

κ1(θ) = κrθ with κr = κ1r/θr. (2.15)
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On substituting (2.15) into (2.13) we arrive at the reduced equation

− θb∂θΣ(F, θ) ·
:
F + ∂2

θΨI(F, θ)
:
θc − div (κ0(θ)∇θ)− κrθdiv

:
g

= ρrr. (2.16)

We are now in a position to determine the linear approximation to this
system under the following assumptions: the material in question is isotropic;
the displacement gradient and its rate of change are small; the tempera-
ture field nearly equals a given uniform temperature θr called the reference
temperature; the temperature rate and temperature gradient are small; the
function κ0 : [0,∞[→]0,∞[ representing the heat conductivity is equal to a
positive constant κ; i.e.,

| ∇U |, | ∇
:
U |, | θ − θr |, |

:
θ |, | g |≤ δr

θr ≡ const and κ0(θ) = κ > 0. (2.17)

We can now proceed analogously to the procedure carried over in [6] to
derive the basic equations of linearized thermoelasticity theory:

ρrÜ − divΣ = ρrb

α
:
θ + divq = −η · tr

:
E + ρrr

(2.18)

where

Σ = 2µE + λ(trE)I − γ(θ − θr)I,

E =
1
2
(
∇U +∇UT

)
, q = −κ∇θ − k∇

:
θ,

γ = αe(3λ+ 2µ), η = θrγ, k = θrκr,

(2.19)

with αe being the coefficient of thermal expansion, the superscript T denot-
ing the transposition and the symbol tr standing for the trace of a matrix.
According to (2.18) and (2.19) we were able to justify that the problem
posed in Section 1 is consistent with the second law of thermodynamics. As
is seen from the considerations carried out above, the classical Fourier law
has been modified by a term describing heat conduction with short thermal
memory (see [8], [22]). Such a modification turns out to be helpful to get a
more regular solution to the problem posed in the previous section, which
may be seen from a priori estimates in the next section. It is worth while
mentioning here that only the case where k vanishes is investigated in the
thesis [4]. Another approach dealing with generalized thermal conductivity
is researched by J. Ignaczak in [15]. In his paper the heat flux is defined by
the ordinary differential equation of first order of the form

τ0
:
q + q = −κ∇ϑ
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where τ0 > 0 is a thermal relaxation time. That assumption changes the
type of the energy equation into the hyperbolic one instead of the parabolic
one.

3. A priori bounds

In this section two a priori estimates for the solutions to problem (1.8)–
(1.13) are derived. The first estimate is a main tool for proving existence of
global weak solutions, whereas the second one is convenient to show their
regularity. To this end let us define

P0 (u(·, t)) :=
2

ξ + 1

∫
Γc
p0(·)(uν)ξ+1

+ dΓ. (3.1)

Lemma 3.1. Let the hypotheses of Theorem 1.2 be fulfilled. If (u, ϑ) is a
sufficiently smooth solution to problem (1.8)–(1.13), then for all 0 < T <∞
the first a priori estimate

η

2

[
γ

η
min(α, k) ‖ ϑ(·, t) ‖2V +ρr ‖ ∂tu(·, t) ‖2 +

ma

2
‖ u(·, t) ‖2V +P0 (u(·, t))

]
+ κγ

∫ t

0
‖ ∇ϑ(·, s) ‖2 ds+ γmβ

∫ t

0

∫
Γ′d

| ϑ(·, s) |2 dΓ ds ≤ K1 (3.2)

holds, where positive constant K1 depends only on the given data. Moreover,
the second a priori estimate

η

2

[
γ

η
min(α, k) ‖

:
ϑ(·, t) ‖2V +ρr ‖ ∂t

:
u(·, t) ‖2 +

ma

2
‖ :u(·, t) ‖2V +P0

( :
u(·, t)

)]
+ κγ

∫ t

0
‖ ∇

:
ϑ(·, s) ‖2 ds+ γmβ

∫ t

0

∫
Γ′d

|
:
ϑ(·, s) |2 dΓ ds ≤ K2 (3.3)

is valid with positive constant K2 depending on the given data provided
that the assumptions of Theorem 1.3 are fulfilled and (u, ϑ) is a sufficiently
smooth solution to (1.8)–(1.13).

Proof. Multiplying (1.8) and (1.9) by η∂tu and γϑ, respectively, then inte-
grating the resulting identities over Ω, and, in turn, adding up the recently
obtained equalities we find

η

2
d

dt

[
γ

η

(
α ‖ ϑ(·, t) ‖2 +k ‖ ∇ϑ(·, t) ‖2

)
+ ρr ‖ ∂tu(·, t) ‖2 +a (u(·, t), u(·, t))

+ P0 (u(·, t))
]

+ κγ ‖ ∇ϑ(·, t) ‖2 +γ
∫

Γ′d

β(x, uν) | ϑ |2 dA
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= η
d

dt

∫
Γf
f · u dA− η

∫
Γf
∂tf · u dA+ η

d

dt

∫
Ω
h · u dA− η

∫
Ω
∂th · u dx

+ γ

∫
Ω
ωϑdx+ γ

∫
Γ′d

ϑζ(x, uν) dA. (3.4)

Integrating (3.4) with respect to time over ]0, t[, using the coercivity and
continuity properties of a(·, ·) , applying the Hölder and Young inequalities
and taking into account the inequality coming from the trace theorem leads
to what follows:

η

2

[
γ

η
min(α, k) ‖ ϑ(·, t) ‖2V +ρr ‖ ∂tu(·, t) ‖2 +ma ‖ u(·, t) ‖2V +P0 (u(·, t))

]
+ κγ

∫ t

0
‖ ∇ϑ(·, s) ‖2 ds+ γmβ

∫ t

0

∫
Γ′d

| ϑ(·, s) |2 dΓ ds (3.5)

≤ c+
η

2δ2
‖ h(·, t) ‖2V ∗ +

η

2δ1
‖ f(·, t) ‖2Lp(Γf ) +

η
[
δ1C

2
e + δ2

]
2

‖ u(·, t) ‖2V

+
η

2

∫ t

0

[
‖ ∂sh(·, s) ‖2V ∗ + ‖ ∂sf(·, s) ‖2Lp(Γf ) +

(
1 + C2

e

)
‖ u(·, s) ‖2V

]
ds

+
γ

2

∫ t

0

[
‖ ω(·, s) ‖2V ∗ + ‖ ζ(x, uν) ‖2Lp(Γf ) +

(
1 + C2

e

)
‖ ϑ(·, s) ‖2V

]
ds

where δj (j = 1, 2) are positive parameters to be chosen, c is a constant
dependent on the data and Ce is a constant occurring in

‖ u(·, t) ‖2Lq(Γ)≤ C
2
e ‖ u(·, t) ‖2V

with q ∈ [1,∞[ for N = 2 or q ∈ [1, 4] for N = 3 (cf. [16, Chapter 6,
Theorems 6.4.1 and 6.4.2]), p = q/(q − 1). Let us choose δj (j = 1, 2) in
such a way that

δ1 =
ma

4C2
e

and δ2 =
ma

4
.

Then application of the Gronwall inequality to (3.5) furnishes the estimate
(3.2).

Means of achieving the inequality (3.3) are similar to those of obtaining
(3.2), so that we give only a sketch of its derivation. To this end, differentiate
(1.8) and (1.9) with respect to time, take the scalar product in LN (Ω) and
L(Ω) of the resulting equations with η∂t

:
u and γ

:
ϑ, respectively, and carry
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out the procedure as that at the beginning of this proof to get

η

2
d

dt

[
γ

η

(
α ‖

:
ϑ(·, t) ‖2 +k ‖ ∇

:
ϑ(·, t) ‖2

)
+ ρr ‖ ∂t

:
u(·, t) ‖2 +a

( :
u(·, t), :u(·, t)

)
+ P0

( :
u(·, t)

)]
+ κγ ‖ ∇

:
ϑ(·, t) ‖2 +γ

∫
Γ′d

β(·, uν) |
:
ϑ |2 dA

= η
d

dt

∫
Γf

:
f · :u dA− η

∫
Γf
∂t
:
f · :u dA+ η

d

dt

∫
Ω

:
h · :u dA− η

∫
Ω
∂t
:
h · :u dx

+ γ

∫
Ω

:
ω
:
ϑdx+ γ

∫
Γ′d

[
−βuν (x, uν)ϑ

:
ϑ
:
uν + ζuν (x, uν)

:
ϑ
:
uν

]
dA. (3.6)

Hence,

η

2

[
γ

η
min(α, k) ‖

:
ϑ(·, t) ‖2V +ρr ‖ ∂t

:
u(·, t) ‖2 +ma ‖

:
u(·, t) ‖2V +P0

( :
u(·, t)

)]
+ κγ

∫ t

0
‖ ∇

:
ϑ(·, s) ‖2 ds+ γmβ

∫ t

0

∫
Γ′d

|
:
ϑ(·, s) |2 dΓ ds

≤ c1 +
η

2δ4
‖
:
h(·, t) ‖2V ∗ +

η

2δ3
‖
:
f(·, t) ‖2Lp(Γf ) +

η
[
δ3C

2
e + δ4

]
2

‖ :u(·, t) ‖2V

+
η

2

∫ t

0

[
‖ ∂2

sh(·, s) ‖2V ∗ + ‖ ∂2
sf(·, s) ‖2Lp(Γf ) +

(
1 + C2

e

)
‖ :u(·, s) ‖2V

]
ds

+
γ

2

∫ t

0

[
‖ :ω(·, s) ‖2V ∗ +C2

e ‖
:
ϑ(·, s) ‖2V

]
ds (3.7)

+
γ

2

∫ t

0

[
ζ1 + β1 ‖ ϑ(·, s) ‖Lr1 (Γ′d)

] [
‖
:
ϑ(·, s) ‖2Lp1 (Γ′d) + ‖ :uν(·, s) ‖2Lq1 (Γ′d)

]
ds,

where p−1
1 + q−1

1 + r−1
1 = 1 (p1, q1, r1,≥ 1). We will use the following

inequality concerning the property of the trace operator

‖ ϑ(·, s) ‖Lr1 (Γ′d)≤ Ce ‖ ϑ(·, s) ‖V≤ Ce

√
2K1

γmin(α,K)

for all s ≥ 0 (3.8)

with 1 ≤ r1 < ∞ for N = 2 or r1 ∈ [1, 4] for N = 3, where the estimate
(3.2) was used. By (3.8) and by choosing δj (j = 3, 4) in such a way that

δ3 =
ma

4C2
e

and δ4 =
ma

4
,

and applying the Gronwall lemma we may arrive at (3.3), which is possible
under appropriate selections of p1, q1 and r1 in (3.7). This concludes the
proof of the lemma.
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4. Construction of a solution to the problem

In this section the existence of a solution to the problem posed in
Section 1 will be established by means of the Faedo-Galerkin method with
some a priori estimates and the compactness method.

Let {wk}∞k=1 and {ek}∞k=1 be a basis for V and for V N , respectively, such
that

(wj , wk)Ω + (∇wj ,∇wk)Ω = δjk,

(ej , ek)Ω = δjk.

We look for an approximate solution to problem (1.8)–(1.13) as a sequence
of pairs {un, ϑn}∞n=1 such that

un(x, t) :=
n∑
k=1

cnk(t)ek(x) (4.1)

ϑn(x, t) :=
n∑
k=1

dnk(t)wk(x) (4.2)

ρr
d2cnj (t)
dt2

+ a(un, ej)− γ(ϑn, divej)Ω

− 〈f, ej〉Γf + 〈P (un(t)) , ej〉Γc = 〈h, ej〉V
(4.3)

ddni (t)
dt

[
α(wi, wj)Ω + k(∇wi,∇wj)Ω

]
+ κ

(
∇ϑn,∇wj

)
Ω

+〈β(unν )ϑn−ζ(·, unν ), wj〉Γ′d+
(
ηdiv(∂tun)−ω,wj

)
Ω =0

(4.4)

cnj (0)=c0
j ,

d

dt
cnj (0)= c̄0

j , d
n
j (0)=d0

j (j=1, 2, . . . , n), (4.5)

where

u0(x) :=
∞∑
k=1

(u0, e
k)ek(x) =:

∞∑
k=1

c0
ke
k(x),

u1(x) :=
∞∑
k=1

(u1, e
k)ek(x) =:

∞∑
k=1

c̄0
ke
k(x),

ϑ0(x) :=
∞∑
k=1

(ϑ0, w
k)wk(x) =:

∞∑
k=1

d0
kw

k(x).

(4.6)

The existence of {un, ϑn}∞n=1 may be established by the standard argu-
ment of ordinary differential equations. Indeed, the implicit part of the



EXISTENCE OF GLOBAL WEAK SOLUTIONS 179

Galerkin equations (4.4) may be expressed by

An


:
d
n

1 (t)
...

:
d
n

n(t)

 =

F
n
1
(
t, cn(t),

:
c
n(t), dn(t)

)
...

Fnn
(
t, cn(t),

:
c
n(t), dn(t)

)
 (4.7)

where Fn : [0, T ]×R3n → R is globally Lipschitz continuous, and the entries
of the matrix An are defined by

anij :=
[
α(wi, wj)Ω + k(∇wi,∇wj)Ω

]n
i,j=1 . (4.8)

This matrix may be inverted because of

det(An) = det
([
α(wi, wj)Ω + k(∇wi,∇wj)Ω

]n
i,j=1

)
≥ min(α, k) (4.9)

by the orthogonality of wi and wj in H = L2(Ω), and ∇wi and ∇wj in HN .
By the Picard theorem, there exists t0 > 0 such that the initial problem
(4.3)–(4.5) has a unique solution on [0, t0[. We intend to show that in fact
the solution exists on [0, T ]. To this end, we carry out the same procedure
as that in Section 3 to derive the estimates for {un, ϑn}∞n=1 instead of (u, ϑ)
occurring in Lemma 3.1. First, we multiply (4.3) by dcnj (t)/dt and (4.4) by
dnj (t), respectively, and then sum up the resulting equalities with respect to
j ranging from 1 to n. Next we perform integration by parts to obtain the
identities
ρr
2
d

dt
‖ ∂tun ‖2 +a(un, ∂tun)− γ(ϑn, div∂tun)Ω

− 〈f, ∂tun〉Γf + 〈P (un(t)) , ∂tun〉Γc = 〈h, ∂tun〉V (4.10)
α

2
d

dt
‖ ϑn ‖2 +κ ‖ ∇ϑn ‖2 +

k

2
d

dt
‖ ∇ϑn ‖2

+〈β(·, unν )ϑn − ζ(·, unν ), ϑn〉L2(Γ′d)+(ηdiv(∂tun)−ω, ϑn)Ω =0.
(4.11)

We are now in a position to proceed as in Lemma 3.1 from Section 3 to
derive the desired estimates:

η

2

[
γ

η
min(α, k) ‖ ϑn(·, t) ‖2V +ρr ‖ ∂tun(·, t) ‖2 +

ma

2
‖ un(·, t) ‖2V

+ P0 (un(·, t))
]

+ κγ

∫ t

0
‖ ∇ϑn(·, s) ‖2 ds+ γmβ

∫ t

0
‖ ϑn(·, s) ‖22,Γ′d ds

≤ K1, (4.12)

where positive constant K1 depends only on the given data. By the Banach-
Alaoglu theorem (cf. [24], [27]), from these estimates it follows that there
exists a subsequence of {un, ϑn}∞n=1, also denoted by {un, ϑn}∞n=1, and a
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pair of functions (u, θ) such that

un −−−→
n→∞

u weak-star in L∞(0, T ;V N ), (4.13)

∂tu
n −−−→

n→∞
∂tu weak-star in L∞(0, T ;L2(Ω)N ), (4.14)

ϑn −−−→
n→∞

ϑ weak-star in L∞(0, T ;V ). (4.15)

Lemma 4.1.

(∂2
t u

n)1
n=1 is uniformly bounded in L∞(0, T ;V ∗N ). (4.16)

Proof. We start with the identity

ρr〈∂2
t u

n, ϕ〉V + a(un, ϕ)− γ (ϑn, divϕ)Ω − 〈f, ϕ〉Γf
+ 〈P (un(t)) , ϕ〉Γc = 〈h, ϕ〉V ,

(4.17)

where ϕ(x) :=
∑n

1 dke
k(x) with any dk ∈ RN (k = 1, 2, . . . ). Hence, we can

deduce the estimate

ρr〈∂2
t u

n, ϕ〉V ≤ a(un, ϕ) + γ | (ϑn, divϕ)Ω |
+ | 〈f, ϕ〉Γf | + | 〈P (un(t)) , ϕ〉Γc | + | 〈h, ϕ〉V |

≤Ma ‖ un(·, t) ‖V ‖ ϕ ‖V +C1+ξ
e ‖ p0 ‖∞‖ un(·, t) ‖ξV ‖ ϕ ‖V

+ γ ‖ ϑn(·, t) ‖‖ ϕ ‖V +Ce ‖ f(·, t) ‖Lp(Γf )‖ ϕ ‖V
+ ‖ h(·, t) ‖V ∗‖ ϕ ‖V≤ K3 ‖ ϕ ‖V

(4.18)

where the Hölder and embedding inequalities and the continuity of the bi-
linear form a(·, ·) were used; here constant K3 is independent of n. From
(4.18) and the definition of V ∗-norm it follows that

‖ ∂2
t u

n(·, t) ‖V ∗ := sup
‖ϕ‖V =1

〈∂2
t u

n, ϕ〉V
‖ ϕ ‖V

≤ K3

ρr
for a.a. t in [0, T ], (4.19)

which proves the lemma.

Lemma 4.2. There is a subsequence of (un)∞1 , still denoted by (un)∞1 , such
that

p0(·)(unν )ξ+ −−−→n→∞
p0(·)(uν)ξ+ weak-star in L∞ (0, T ;Lp(Γc)) . (4.20)
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Proof. Consider any ϕ ∈ L1(0, T ;V ). This function may be represented
as ϕ(x, t) =

∑∞
1 dl(t)el(x). By the Hölder inequality one may deduce the

uniform boundedness on [0, T ] of what follows

ϕ(·, t)→
∫

Γc
p0(·)(unν )ξ+ϕν dA

≤‖ p0(·) ‖L∞(Ω)‖ (unν )+ ‖Lξpξ(Γc)‖ ϕν ‖Lq(Γc)≤ c ‖ ϕ(·, t) ‖V (4.21)

for n = 1, 2, . . . , where p = q/(q − 1) with

q ∈

{
[1,∞[ for N = 2,
[1, 4] for N = 3

and c is a constant independent of n and t. Indeed, by the property of the
trace theorem, one may conclude the uniform boundedness of
‖ (unν (·, t))+ ‖Lξpξ(Γc) with respect to both n ∈ N and t ∈ [0, T ]:(∫

Γc
(unν (·, t))q1+ dΓ

)1/q1
≤
(∫

Γc
| un(·, t) |q1 dΓ

)1/q1

≤ C ‖ un(·, t) ‖V≤ Ce

√
4K1

maη
,

where

q1 ∈

{
[1,∞[ for N = 2,
[1, 4] for N = 3.

Therefore putting pξ = q1 results in ξ = q1(q − 1)/q. Hence the weak-
star convergence of some subsequence of (un)∞1 , still denoted by (un)∞1 , is
furnished

p0(·)(unν )ξ+ −−−→n→∞
χ weak-star in L∞ (0, T ;Lp(Γc)) (4.22)

with some χ in L∞ (0, T ;Lp(Γc)).
It remains to show the validity of the following equality

χ = p0(·)(uν)ξ+ a.e. on Γc × [0, T ]. (4.23)

The proof of (4.23) follows the same way as that in [5], therefore we give
only its sketch. By the trace theorem ([16, Chapter 6]) the trace mapping

γ : H1(Q) onto−−→ H1/2(∂Q) ⊂ Lρ(∂Q)

is compact provided that

ρ ∈ [1, 4[ for N = 2 or ρ ∈ [1, 3[ for N = 3.

From the estimates

‖ ∂tun(t) ‖L2(Ω) + ‖ un(t) ‖V≤ c, t ∈ [0, T ], (4.24)
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where constant c is independent of n, it follows that there exists a subse-
quence of (un)∞1 , also denoted by (un)∞1 , such that

‖ un − u ‖Lρ(∂Q)−−−→
n→∞

0 and un −−−→
n→∞

u a.e. on ∂Q. (4.25)

Hence it follows that

p0(·)(unν )ξ+ −−−→n→∞
p0(·)(uν)ξ+ a.e. on Γc × [0, T ].

Moreover, the boundedness of (un)∞1 in L∞ (0, T ;Lp(Γc)) implies its bound-
edness in Lp(Γc×]0, T [). Application of Lemma 1.6 in [19] conduces to the
convergence

p0(·)(unν )ξ+ −−−→
n→∞

p0(·)(uν)ξ+ weakly in Lp(Γc×]0, T ]). (4.26)

On the other hand, from (4.22) the convergence

p0(·)(unν )ξ+ −−−→n→∞
χ weakly in Lp(Γc×]0, T [) (4.27)

is ensured. But the uniqueness of weak limits in (4.26) and (4.27) leads to
the assertion of the lemma, which completes its proof.

Lemma 4.3. There exists a subsequence of {un, ϑn}∞n=1, also denoted by
{un, ϑn}∞n=1, such that the following identities∫ T

0

∫
Γ′d

[β(·, unν )ϑn − β(·, uν)ϑ]ψ dAdt −−−→
n→∞

0∫ T

0

∫
Γ′d

[ζ(·, unν )− ζ(·, uν)]ψ dAdt −−−→
n→∞

0
(4.28)

hold for any ψ ∈ H1(0, T ;V ).

Proof. We start with the following identities

In :=
∫ T

0

∫
Γ′d

[β(·, unν )ϑn − β(·, uν)ϑ]ψ dAdt

=
∫ T

0

∫
Γ′d

[β(·, uν)(ϑn − ϑ)ψ + (β(·, unν )− β(·, un))ϑnψ] dAdt

=: In1 + In2 .

The convergence of (Ink1 )∞k=1 to zero may be deduced from

ϑnk −−−→
k→∞

ϑ strongly in L2(Γ′d×]0, T [)

(see Lemma 3 in [13]) for some subsequence (nk)∞k=1

| Ink1 |≤‖ β(·, uν) ‖L∞(Γ′d×]0,T [)‖ ϑnk−ϑ ‖L2(Γ′d×]0,T [)‖ ψ ‖L2(Γ′d×]0,T [)−−−→
k→∞

0.
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Therefore, it remains to prove the convergence to zero of (Ink2 )∞k=1.
From (4.25) one may easily deduce that

‖ β(·, unkν )− β(·, uν) ‖Lρ(Γ′d)×]0,T [)

≤ lβ ‖ unk − u ‖Lρ(Γ′d×]0,T [)−−−→
k→∞

0. (4.29)

By the Hölder inequality and (4.29), we get what follows:

| Ink2 | ≤
∫ T

0
‖ β(·, unkν )− β(·, uν) ‖Lρ(Γ′d)‖ ϑnk ‖Ll(Γ′d)‖ ψ ‖Lm(Γ′d) dt

≤ C ess sup
t≤T

‖ ϑnk ‖V
∫ T

0
‖ β(·, unkν )− β(·, uν) ‖Lρ(Γ′d)‖ ψ ‖Lm(Γ′d) dt

≤ C1 ‖ unkν − uν ‖Lρ(Γ′d×]0,T [)‖ ψ ‖Lρ/(ρ−1)(0,T ;Lm(Γ′d))−−−→k→∞
0

where 1/ρ+1/l+1/m = 1 (ρ, l,m ≥ 1) and the inequality (cf. [18, Chapter
3, Section 3])

‖ w ‖Ll(Γ′d)≤ C ‖ w ‖V for any w ∈ V

with

l ∈ [1, 2(N − 1)/(N − 2)] for N > 2 or l ∈ [1,∞[ for N = 2

was used. But there are some numbers ρ, l,m ≥ 1 with 1/ρ+ 1/l+ 1/m = 1
aforementioned such that the convergence holds for ψ ∈ H1(0, T ;V ) with
‖ ψ ‖Lρ/(ρ−1)(0,T ;Lm(Γ′d))≤ c ‖ ψ ‖H1(0,T ;V ), which concludes the proof.

Proof of Theorem 1.2. We have to show that (u, θ) is a weak solution to
the problem (1.8)–(1.13). This is done by a standard procedure. Firstly we
shall prove the first identity in Definition 1.1. Multiplying (4.3) by dj(t) ∈ R
(j = 1, 2, . . . , t ∈ [0, T ]) with dj(T ) = 0, summing up over j from 1 to n
and then integrating by parts, we obtain∫ T

0

[
ρr〈∂2

t u
n, ϕ〉V + a(un, ϕ) + 〈P (un), ϕ〉Γc

−γ(ϑn, divϕ)Ω − 〈f, ϕ〉Γf − 〈h, ϕ〉V
]
dt = 0

(4.30)

where ϕ(x, t) :=
∑n

1 dk(t)e
k(x). By Lemmas 4.1 and 4.2 there exists a

subsequence of (un, ϑn), still denoted by (un, ϑn), such that (4.30) converges
to the first identity from Definition 1.1 as n tends to infinity.

We now pass on to the proof of the second identity in Definition 1.1. To
accomplish this, we multiply (4.4) by aj(t) ∈ R (j = 1, 2, . . . ), sum up over
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j from 1 to n and then integrate by parts to obtain∫ T

0
[−(αϑn + ηdivun, ∂tψ) + κ(∇ϑn,∇ψ)− k(∇ϑn,∇∂tψ)− 〈ω, ψ〉V ] dt

+
∫ T

0

∫
Γ′d

[β(·, unν )θn − ζ(·, unν )]ψ dAdt (4.31)

=
∫

Ω
(αϑ0(x) + η∇ · u0(x))ψ(x, 0)dx+ k

∫
Ω
∇ϑ0(·) · ∇∂tψ(·, 0)dx

for any ψ ∈ H1(0, T ;V ) with ψ(·, T ) = 0 for all 0 < T < ∞, respectively.
Thus, by Lemma 4.3 and (4.15), passing to the limit in (4.31) on a subse-
quence leads to (1.24), which completes the proof of Theorem 1.2.

Proof of Theorem 1.3. From what has already been proved and derived
it may be concluded that similar considerations as that in the proof of
Theorem 1.2 in connection with the estimate (3.3) from Lemma 3.1 apply
to the case of regularity (see [17] for the well-known idea of the method
applied in such a case), hence the proof is omitted.
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[5] Bień, M., Existence of global weak solutions for coupled thermoelasticity under non-
linear boundary conditions, Math. Methods Appl. Sci. 19 (1996), 1265–1277.

[6] Carlson, D. E., Linear thermoelasticity, in “Encyclopedia of Physics, Mechanics of
Solids II”, 6a/2, Springer, Berlin, 1972, 297–345.

[7] Cattaneo, C., Sulla conduzione del calore, Atti. Sem. Mat. Fis. Univ. Modena 3
(1948), 83–101.
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[13] Filo, J., Kačur, J., Local solutions of general nonlinear parabolic systems, Nonlinear
Anal. 24 (1995), 1597–1618.

[14] Friedman, A., Partial Differential Equations, Holt, Rinrhart and Winston, New York,
1969.

[15] Ignaczak, J., Generalized thermoelasticity and its applications, in “Thermal Stresses
III”, (ed. R. Hetnarski), Elsevier Science Publishers, Amsterdam, 1989, 279–354.

[16] Kufner, A., et al., Function Spaces, Noordhoff, Groningen, 1977.
[17] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow,

Gordon and Breach, New York, 1969.
[18] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural’ceva, N. N., Linear and Quasilinear

Equations of Parabolic Type, Transl. Math. Monographs 23 (1968), Amer. Math.
Soc. Providence, RI.
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