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Abstract. We study MB-representations of algebras and ideals when
they are relativized to a subset, and when one considers the operations
of sum and intersection for families of algebras and ideals. We observe
that the algebras ∆0

α, 3 ≤ α < ω1, on R are MB-representable under
GCH. We find a class of topological spaces in which the algebra of clopen
sets is MB-representable.

1. Introduction

Our notation is standard. (See [7].) Let X 6= ∅. Define two operations
SX , S

0
X : P(P(X) \ {∅})→ P(P(X)) given by

SX(F) = {E ⊂ X : (∀ A ∈ F) (∃B ∈ F) B ⊂ A ∩ E ∨ B ⊂ A \ E},
S0
X(F) = {E ⊂ X : (∀ A ∈ F) (∃B ∈ F) B ⊂ A \ E}.

In [2] (see also [19]) it was observed that SX(F) forms an algebra of sets and
S0
X(F) forms an ideal of sets. Obviously S0

X(F)⊂SX(F) and X ∈SX(F).
Throughout the paper we assume that an algebra of subsets of X contains
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the set X. Operations SX and S0
X were considered by Marczewski [22], and

earlier by Burstin [6]. (See also [17].) The authors of [5], [2] and [1] proved
that several algebras and ideals of subsets of X are of the form SX(F) and
S0
X(F). This problem was also investigated for pairs (Σ, I) where I is an

ideal in an algebra Σ. If the respective representation exists, we say that Σ
(or (Σ, I)) is Marczewski-Burstin representable or briefly, MB-representable.
Some questions on this topic remain open, for instance it is still not known
whether it can be proved in ZFC that the algebra of Borel subsets of R is
MB-representable. (See [1].) In our paper we continue studies connected
with MB-representations. If X is fixed, we write S and S0 instead of SX
and S0

X .

2. Relativization, sums and intersections

Let Σ be an algebra of subsets of X and let ∅ 6= Y ∈ Σ. Then the family
ΣY = {A ∩ Y : A ∈ Σ} forms an algebra of subsets of Y . This is a natural
relativization of the algebra Σ to subsets of Y . Also, if I ⊂ Σ is an ideal of
sets and Y 6∈ I then IY = {A ∩ Y : A ∈ I} forms an ideal of subsets of Y .

Theorem 1. Assume that F ⊂ P(X) \ {∅}, Σ = SX(F), I = S0
X(F) and

Y ∈ Σ \ I. Then ΣY = SY (FY ) and IY = S0
Y (FY ) where FY = F ∩ P(Y ).

Proof. Since Y ∈ Σ, we have ΣY = Σ ∩ P(Y ) and IY = I ∩ P(Y ).
We will show that ΣY ⊂ SY (FY ). Let E ∈ ΣY , thus E ∈ Σ and E ⊂ Y .

Let A ∈ FY , thus A ∈ F and A ⊂ Y . Since E ∈ Σ = SX(F), there is a
C ∈ F such that either C ⊂ A∩E or C ⊂ A\E. Obviously C ∈ FY . Hence
E ∈ SY (FY ).

We will show that SY (FY ) ⊂ ΣY . Let E ∈ SY (FY ). It is enough to prove
that E ∈ SX(F). Let A ∈ F . If there is a B ∈ F such that B ⊂ A ∩ Y ,
then B ∈ FY and from E ∈ SY (FY ) it follows that there is a C ∈ FY such
that either C ⊂ B ∩ E or C ⊂ B \ E. Since C ∈ FY , we have C ∈ F . If
there is no B ∈ F such that B ⊂ A ∩ Y then, since Y ∈ Σ = SX(F), there
is a C ∈ F for which C ⊂ A \ Y . Hence C ⊂ A \ E. So E ∈ SX(F).

Analogously, one can show that IY = S0
Y (FY ).

Now, let us consider a kind of the inverse problem. Let T 6= ∅. For each
t ∈ T , let Yt be a nonempty subset of X. Assume that for each t ∈ T , an
algebra Σt and an ideal It of subsets of Yt are given. It is easy to check
that the families

Σ =
⋂
t∈T
{E ⊂ X : E ∩ Yt ∈ Σt} and I =

⋂
t∈T
{E ⊂ X : E ∩ Yt ∈ It}
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form an algebra and an ideal of subsets of X, respectively. We denote
Σ =

⊕
t∈T Σt and I =

⊕
t∈T It. Observe that if any two distinct members

of Y = {Yt : t ∈ T} are disjoint, we have ΣYt = Σt and IYt = It for each
t ∈ T . The operation

⊕
is analogous to the sum of topological spaces [9],

however, in general we do not require the disjointness of sets Yt, t ∈ T .

Theorem 2. Assume that T 6= ∅ and let Yt ∈ P(X)\{∅}, Ft ⊂ P(Yt)\{∅}
be given for each t ∈ T . Assume additionally, for any t1, t2 ∈ T , the
following condition

(∀A1 ∈ Ft1 , ∀A2 ∈ Ft2) A1 ⊂ A2 ⇒ A1 ∈ Ft2 . (?)

If Σt = SYt(Ft) and It = S0
Yt

(Ft) then, for Σ =
⊕

t∈T Σt and I =
⊕

t∈T It,
we have Σ = SX(F) and I = S0

X(F) where F =
⋃
t∈T Ft.

Proof. To show Σ ⊂ SX(F), consider an E ∈ Σ and an A ∈ F . Hence
A ∈ Ft for some t ∈ T . Clearly E ∩ Yt ∈ Σt = SYt(Ft). Thus there exists a
B ∈ Ft such that either B ⊂ (A∩ Yt)∩ (E ∩ Yt) or B ⊂ (A∩ Yt) \ (E ∩ Yt).
Consequently, B ∈ F and either B ⊂ A∩E or B ⊂ A\E. Hence E ∈ SX(F).
(In this part of proof we do not use (?).)

To show SX(F) ⊂ Σ, consider an E ∈ SX(F) and a t ∈ T . We want
to prove that E ∩ Yt ∈ SYt(Ft). Let A ∈ Ft. Obviously, A ∈ F . Since
E ∈ SX(F), there is a B ∈ F such that either B ⊂ A ∩ E or B ⊂ A \ E.
By the definition of F there is a t1 ∈ T such that B ∈ Ft1 . Since B ⊂ A,
we have B ∈ Ft, by (?). Thus, either B ⊂ A∩ (E ∩Yt) or B ⊂ A \ (E ∩Yt).
Hence E ∩ Yt ∈ SYt(Ft).

The proof of I = S0
X(F) is analogous.

Remark 1. A. Bartoszewicz has observed that (?) in Theorem 2 can be
replaced by a weaker condition

(∀A1 ∈ Ft1 , ∀A2 ∈ Ft2)(A1 ⊂ A2 ⇒ (∃A ∈ Ft2)A ⊂ A1).

The proof needs only minor modification. Note that condition (?) is fulfilled,
if any two distinct sets Yt1 , Yt2 are disjoint. This enables one to produce new
examples of MB-representable algebras and ideals from the known examples.

It is obvious that the intersection of a family of algebras (ideals) is again
an algebra (ideal). Is that intersection MB-representable, provided all the
factors are MB-representable? From Theorem 2 we can infer the affirmative
answer in some special case.
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Corollary 1. Let T 6= ∅ and let Ft ⊂ P(X) \ {∅} be given for each t ∈ T .
Assume, for any t1, t2 ∈ T , the following condition

(∀A1 ∈ Ft1 , ∀A2 ∈ Ft2) A1 ⊂ A2 ⇒ A1 ∈ Ft2 .

Then
⋂
t∈T

S(Ft) = S(
⋃
t∈T
Ft) and

⋂
t∈T

S0(Ft) = S0(
⋃
t∈T
Ft).

Proof. Put Yt = X for each t ∈ T , observe that
⊕

t∈T S(Ft) =
⋂
t∈T S(Ft),⊕

t∈T S
0(Ft) =

⋂
t∈T S

0(Ft) and use Theorem 2.

Now, we are going to show some situations where Corollary 1 applies.
For an ideal I ⊂ P(X) we denote

add(I) = min{|G| : G ⊂ I &
⋃
G /∈ I}.

We say that two ideals I, J ⊂ P(X) are orthogonal if there is a set E ⊂ X
such that E ∈ I and X\E ∈ J . We say that two families F , G ⊂ P(X)\{∅}
are mutually coinitial (in symbols F ∼ G), if

(∀A ∈ F)(∃B ∈ G)B ⊂ A and (∀A ∈ G)(∃B ∈ F)B ⊂ A.
(See [2].) It is easy to check that relation ∼ is transitive and that F ∼ G
implies S(F) = S(G) and S0(F) = S0(G).

Corollary 2. Let 0 < |T | < κ and, for each t ∈ T , let a family Ft ⊂
P(X) \ {∅} be given. Assume that:

10 : Ft ⊂ S(Ft) for each t ∈ T ;
20 : the ideals S0(Ft), t ∈ T , are pairwise orthogonal;
30 : add(S0(Ft)) ≥ κ for each t ∈ T .

Then
⋂
t∈T

S(Ft) = S(
⋃
t∈T
Ft) and

⋂
t∈T

S0(Ft) = S0(
⋃
t∈T
Ft).

Proof. Denote Σt = S(Ft) and It = S0(Ft) for t ∈ T . By 20, for any
t1, t2 ∈ T, t1 6= t2, we can pick a set A(t1, t2) ∈ It1 with X \A(t1, t2) ∈ It2 .
We may assume that A(t2, t1) = X \A(t1, t2). For each t0 ∈ T define

A(t0) =
⋃

t∈T\{t0}

A(t0, t).

Then A(t0) ∈ It0 , by 30 and |T | < κ. It can easily be checked that Ft ⊂ Σt

(see 10) implies Σt \ It ∼ Ft for each t ∈ T . (See [2, Proposition 1.1].) Put

F∗t = {A \A(t) : A ∈ Σt \ It}, t ∈ T.
Obviously F∗t ∼ Σt \ It and thus F∗t ∼ Ft for each t ∈ T . Consider any
t1, t2 ∈ T , t1 6= t2, and A1 ∈ F∗t1 , A2 ∈ F∗t2 . Then A1 ⊂ X \ A(t1) ⊂
X \ A(t1, t2) = A(t2, t1) and A2 ⊂ X \ A(t2) ⊂ X \ A(t2, t1), so A1 ⊂ A2 is
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impossible. Hence by Corollary 1 we obtain
⋂
t∈T S(F∗t ) = S(

⋃
t∈T F∗t ) and⋂

t∈T S
0(F∗t ) = S0(

⋃
t∈T F∗t ). But F∗t ∼ Ft for each t ∈ T , and thus also⋃

t∈T F∗t ∼
⋃
t∈T Ft. Hence the assertion follows.

Example 1. In [18] Mycielski introduced a class of σ-ideals on the Cantor
space 2ω; we shall call them Mycielski ideals. Further results on that topic
were obtained in [3] and [20], [21]. Lemma 1.1 in [3] states that one can
find a Mycielski ideal othogonal to each ideal of a given countable family of
Mycielski ideals. This easily leads to the family {Mα : α < ω1} of pairwise
orthogonal Mycielski ideals. To apply Corollary 2 we put Fα = {2ω\E : E ∈
Mα}. Then Fα ⊂ Mα ∪ Fα = S(Fα) and Mα = S0(Fα) for each α < ω1.
(See [2, Proposition 1.5].) Since Mα are σ-ideals, we have add(Mα) ≥ ω1
for α < ω1 (in fact add(Mα) = ω1, cf. [20]). Hence Corollary 2 applies.

Example 2. Let X = R. Let Σ1 and Σ2 stand for the algebra of all Lebes-
gue measurable sets, and for the algebra of all sets with the Baire property
(in R). Let I1 and I2 denote the ideal of null sets, and the ideal of meager
sets (in R). In [6] it is proved that Σ1 = S(F1) and I1 = S0(F1) where
F1 consists of perfect sets of positive measure. In [5] it is proved that
Σ2 = S(F2) and I2 = S0(F2) where F2 consists of sets of the form U \ A
where U is nonempty open and A ⊂ U is meager of type Fσ. By Corollary
2 we infer that Σ1 ∩ Σ2 = S(F1 ∪ F2) and I1 ∩ I2 = S0(F1 ∪ F2), so the
pair (Σ1 ∩Σ2, I1 ∩ I2) is MB-representable. This result can be also derived
from the general theorem by Baldwin [4] who proved that if the pair (Σ, I),
consisting of an algebra Σ and an ideal I ⊂ Σ, possesses the so-called hull
property, then Σ = S(Σ \ I) and I = S0(Σ \ I). We say that (Σ, I) has the
hull property if whenever U ⊂ X there is a V ∈ Σ such that U ⊂ V , and
if W ∈ Σ is such that U ⊂ W , then V \W ∈ I. It is known that each of
the pairs (Σ1, I1), (Σ2, I2) has the hull property, and the same follows for
(Σ1 ∩ Σ2, I1 ∩ I2). Thus Σ1 ∩ Σ2 = S(Σ1 ∩ Σ2 \ (I1 ∩ I2)) and I1 ∩ I2 =
S0(Σ1 ∩ Σ2 \ (I1 ∩ I2)). Finally, observe that F1 ∼ Σ1 \ I1, F2 ∼ Σ2 \ I2
and F1 ∪ F2 ∼ Σ1 ∩ Σ2 \ (I1 ∩ I2).

Condition (?) in Theorem 2 is rather restrictive. Let us mention two
important algebras of the form

⊕
Y ∈Y ΣY . Because of condition (?), our

Theorem 2 seems useless in these cases. Namely, consider the algebra Σ
of all sets in R that are of types Fσ and Gδ simultaneously. Following [14,
§34,VI] we have Σ =

⊕
Y ∈Y ΣY where Y is the family of all nonempty closed

sets in R, and ΣY stands for the algebra of subsets of Y with nowhere dense
boundary, relatively to Y . It is known that ΣY = SY (FY ) where FY consists
of all nonempty sets open in the topology of Y . A trouble with condition
(?) appears in the following situation. Let Y1, Y2 be nonempty perfect sets
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where Y1 ⊂ Y2 and Y1 is nowhere dense in Y2. Then for each A1 ∈ FY1 we
have A1 /∈ FY2 .

Let us consider another example. Let Y be as above and now let ΣY stand
for the algebra of subsets of Y ∈ Y, with the Baire property, relatively to Y .
Thus the sets of the algebra Σ =

⊕
Y ∈Y ΣY are called sets with the Baire

property in the restricted sense. (See [14, §11, VI].) Theorem 2 again seems
unapplicable.

We leave open the question whether these two algebras are MB-
representable. The problem concerning sets with the Baire property in
the restricted sense has been suggested to the first author by P. Reardon.

3. MB-representations of algebras ∆0
α

It was shown in [1] that, under GCH (more precisely, under 2ω = ω1 and
2ω1 = ω2), the algebra of all Borel sets in R is MB-representable. We will
observe that the same method leads to the analogous result for the algebras
of ambiguous Borel sets of classes α ≥ 3. However, this does not work in
the case α = 2.

Recall necessary definitions from [1]. Let A ⊂ P(X) and I ⊂ A be an
algebra and an ideal. We say that A is inner (outer) MB-representable if
there is an F ⊂ P(X) such that A = S(F) and F ⊂ A (F ∩ A = ∅). We
say that A is strongly outer MB-representable if for each family C ⊂ P(X)
with A ⊂ C and |C| = |A| there is an F ⊂ P(X) \ C such that A = S(F). If
moreover, I = S0(F), we say that the pair (A, I) is (respectively) inner, or
outer, or strongly outer MB-representable. We shall use, in the role of I,
the ideal

H(A) = {A ⊂ X : (∀B ⊂ A)B ∈ A}
of sets which hereditarily belong to A.

Let us quote two theorems from [1].

Theorem 3. Let |X| = κ ≥ ω and let A ⊂ P(X) be an algebra such that
H(A) ⊂ [X]<κ, A ∩ [X]<κ ⊂ H(A) and S(A \ [X]<κ) \ A 6= ∅. Then A is
not inner MB-representable.

Theorem 4. Let |X| = κ ≥ ω and let A ⊂ P(X) be an algebra such that
[X]<κ ⊂ A. If 2κ = κ+ and |A| < 2κ then the pair (A,H(A)) is strongly
outer MB-representable.

Fix an uncountable Polish space X. Thus |X| = c where c = 2ω is the
cardinality of continuum. Consider ∆0

α, α < ω1, the algebra of ambiguous
Borel sets of class α in X, i.e. ∆0

2 = Fσ ∩ Gδ, ∆0
3 = Fσδ ∩ Gδσ, etc. (See
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[11].) The algebra ∆0
ω1

=
⋃
α<ω1

∆0
α consists of all Borel sets in X. The

family of Gδ sets in X is written as Π0
2.

Lemma 1. H(∆0
2) = [X]≤ω ∩Π0

2.

Proof. To show “⊂” suppose that A ∈ H(∆0
2) is uncountable. Pick a

perfect subset of A and its subset which is not in ∆0
2. (See [11, 13.6, 22.4].)

Contradiction.
To show “⊃” consider an A ∈ [X]≤ω ∩ Π0

2. Let B ⊂ A. Thus X \ B =
(X \ A) ∪ (A \ B) and so, B is of type Gδ. Hence B ∈ [X]≤ω ∩ Π0

2 ⊂ ∆0
2.

Consequently A ∈ H(∆0
2).

Lemma 2. H(∆0
α) = [X]≤ω for each α, 3 ≤ α ≤ ω1.

Proof. The argument for “⊂” is similar to that in the proof of Lemma 1.
Inclusion “⊃” follows from [X]≤ω ⊂ ∆0

3 ⊂ ∆0
α.

As an application of Theorems 3 and 4 we obtain the following

Theorem 5. In an uncountable Polish space X, we have:
(I) algebras ∆0

α, 2 ≤ α ≤ ω1, are not inner MB-representable;

(II) if 2ω = ω1 and 2ω1 = ω2, then the pairs (∆0
α, [X]ω), 3 ≤ α ≤ ω1, are

strongly outer MB-representable.

Proof. (I) (Cf. [1, Corollary 14].) Fix α, 2 ≤ α ≤ ω1, and put A = ∆0
α.

From Lemmas 1 and 2 we infer that H(A) ⊂ [X]<c and A ∩ [X]<c ⊂
H(A). Observe that A \ [X]<c and the family of all perfect sets in X are
mutually coinitial. Hence S(A\ [X]<c) is equal to the algebra of Marczewski
measurable sets. Since there is a non-Borel Marczewski measurable set [15],
we may use Theorem 3.

(II) (Cf. [1, Corollary 5].) We have |X| = c = ω1, and [X]<ω1 = [X]≤ω =
H(∆0

α) ⊂ ∆0
α by Lemma 2. Also |∆0

α| = c = ω1 < ω2 = 2ω1 . Then apply
Theorem 4.

Remark 2. In the case α = 2 we cannot repeat the argument for Theorem
5 (II) since [X]ω ⊂ ∆0

2 is false. Indeed, each set from [X]ω \Π0
2 is not in ∆0

2.

Finally, let us show that Theorem 4 can be applied to an algebra on a set
of cardinality 2λ where a cardinal λ ≥ ω is arbitrarily large.
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Example 3. Let λ ≥ ω be a cardinal and consider the Cantor cube X =
{0, 1}λ. The basis for the product topology τ on X is of size |[λ]<ω| = λ
which easily implies that |τ | = 2λ. Hence |X| = |τ | = 2λ and we denote
2λ = κ. An algebra A ⊂ P(X) will be called λ+-additive if

⋃
ν<λAν ∈ A

for any function ν 7→ Aν ∈ A, ν < λ. Now, let A stand for the smallest λ+-
additive algebra containing τ . We can classify sets in A analogously as Borel
sets in a Polish space, considering the classes analogous to Σ0

α, Π0
α (cf. [11],

[7]) but now α < λ+. Each of this class is of size κ since κλ = (2λ)λ = κ.
Hence we conclude that |A| ≤ λ+κ = κ. Assume 2λ = λ+ (that is κ = λ+)
and 2κ = κ+, which is a part of GCH. Thus [X]<κ = [X]≤λ ⊂ A and
|A| = κ < 2κ. Consequently, Theorem 4 applies.

4. MB-representations of clopen sets

A basic question concerning MB-representations was whether every al-
gebra of sets is MB-representable. Now, the answer is known. One of
the theorems in [1] gives the negative answer under GCH: if 2κ = κ+ and
|X| = κ ≥ ω then there is a non-MB-representable algebra on X. In
December 2002, P. Koszmider [13] found a non-MB-representable algebra
A ⊂ P(ω) in ZFC.

A related question is whether every algebra of sets is isomorphic to an
MB-representable algebra where an isomorphism is meant in the Boolean
theoretical sense. Suprisingly, Koszmider [13] answered it in the affirmative.
A natural idea to solve this problem is to use the classical Stone representa-
tion theorem which states that every Boolean algebra (in particular, every
algebra of sets) is isomorphic to the algebra Clop(X) of clopen subsets of
some zero-dimensional compact Hausdorff space X. (See [12].) Koszmider
[13] proved that this last algebra is isomorphic to an MB-representable al-
gebra of sets. Independently of this result one can pose the following topo-
logical problem: describe all zero-dimensional compact Hausdorff spaces X
for which Clop(X) is MB-representable. We do not solve it in this paper.
We only give some conditions on a topological space X under which the
algebra Clop(X) is MB-representable.

Let λ ≥ 2 be a cardinal. A topological space is called λ-resolvable if there
is a disjoint family of cardinality λ, of dense subsets of X. (See [8].) Clearly,
each λ-resolvable space is dense-in-itself. Now, let λ be infinite. For Γ ⊂ λ
put (+1)Γ = Γ and (−1)Γ = Γc (= λ \ Γ). A family F ⊂ P(λ) is called
independent if, whenever Γ0, ...,Γn is a finite sequence of distinct elements
from F and ε0, ..., εn is a sequence of numbers −1,+1, then

⋂n
k=0 εkΓk 6= ∅.

The theorem of Fichtenholz, Kantorovitch and Hausdorff states that for
each cardinal λ ≥ ω there is an independent family F ⊂ P(λ) of cardinality
2λ. (See [16].) We call it Theorem FKH.
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Theorem 6. Let X, with |X| = κ ≥ ω, be a dense-in-itself a λ-resolvable
topological space where 2λ ≥ κ. Then the algebra Clop(X) is MB-
representable.

Proof. We will mimic some ideas contained in [2, Theorem 2.1] which are
due to S. Wroński. The trick with an independent family, suggested us by
P. Koszmider, has strenghtened the former version of our theorem.

By Theorem FKH there is an independent family T ⊂ P(λ) of size 2λ.
Since κ ≤ 2λ, any subfamily of size κ is also independent. So, assume that
|T | = κ. Because |X| = κ, we may put T = {Tx : x ∈ X}. Since X is
λ-resolvable, there is a disjoint family {Dα : α < λ} of dense subsets of X.
We may assume that

⋃
α<λDα = X. Define

F (x) =
⋃
α∈Tx

Dα \ {x} for x ∈ X.

Obviously, the sets F (x), x ∈ X, are dense.

Claim 1. For each finite set {x0, ..., xn} ⊂ X, the set X \
⋃n
k=0 F (xk) is

dense.
Indeed, by the definition of F (xk) and the disjointness of sets Dα we have

X \
n⋃
k=0

F (xk) ⊃
n⋂
k=0

⋃
α∈T cxk

Dα ⊃
⋃

α∈T cx0
∩···∩T cxn

Dα.

Since T is independent, T cx0
∩ · · · ∩ T cxn 6= ∅. Thus X \

⋃n
k=0 F (xk) contains

at least one dense set Dα which ends the proof of Claim 1.

Now, define F = {U \ F (x) : x ∈ U and U is open}.
At first we shall prove that Clop(X) ⊂ S(F). Let V ∈ Clop(X) and

consider a U \ F (x) ∈ F . There are two cases:
10: x ∈ V . Then x ∈ U ∩ V . Put W = U ∩ V . Hence W \ F (x) ⊂

(U \ F (x)) ∩ V and W \ F (x) ∈ F .
20: x /∈ V . Then x ∈ U \ V and from V ∈ Clop(X) it follows that

the set W = U \ V is open. Hence W \ F (x) ⊂ (U \ F (x)) \ V and
W \ F (x) ∈ F .

To prove S(F) ⊂ Clop(X) we need the following:

Claim 2. If V \F (y) and U \F (x) are in F and V \F (y) ⊂ U \F (x), then
x = y.
Indeed, suppose that x 6= y. Then

V = (V \ F (y)) ∪ (V ∩ F (y)) ⊂ (X \ F (x)) ∪ F (y)

⊂ {x} ∪
⋃
α∈T cx

Dα ∪
⋃
α∈Ty

Dα ⊂ {x} ∪ (X \
⋃

α∈Tx∩T cy

Dα).
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By the independence of T , the set Tx ∩ T cy is nonempty, so there is a dense
set Dα, for some α ∈ Tx ∩T cy , disjoint from the nonempty open set V \ {x}.
Contradiction.

Now, let A ∈ S(F). We want to show that A is open. Since we may
replace A by X \ A, this will end the proof. Suppose that A is not open.
Thus there exists an x ∈ A \ intA. Clearly X \ F (x) ∈ F . Since A ∈ S(F)
there is U \ F (y) ∈ F such that either

U \ F (y) ⊂ (X \ F (x)) ∩A (1)

or U \ F (y) ⊂ (X \ F (x)) \ A. By Claim 2 we have x = y. Since x = y ∈
(U \ F (y)) ∩ A, condition (1) holds. From x ∈ U and x /∈ intA it follows
that U \A 6= ∅. Pick a z ∈ U \A. Thus U \F (z) ∈ F and from A ∈ S(F) it
follows that there is V \F (t) ∈ F such that either V \F (t) ⊂ (U \F (z))∩A
or

V \ F (t) ⊂ (U \ F (z)) \A. (2)

Using Claim 2 again we infer that z = t. Since z = t ∈ (V \ F (t)) \ A,
condition (2) holds. By Claim 1 we have V \ (F (x) ∪ F (z)) 6= ∅. On the
other hand,

V \ (F (x) ∪ F (z)) ⊂ U \ F (x) = U \ F (y) ⊂ A, by (1)

and

V \ (F (x) ∪ F (z)) ⊂ V \ F (z) = V \ F (t) ⊂ X \A, by (2).

Contradiction.

Example 4. Let η ≥ ω be a cardinal and put λ = 2η, κ = 2λ. Consider
Cantor cubes X1 = {0, 1}η, X2 = {0, 1}λ. Then ∆(X1) = λ, ∆(X2) = κ.
Let X be a topological sum of X1 and X2. (See [9].) Thus |X| = λ+ κ = κ
and ∆(X) = λ. The space X is compact and dense-in-itself. So by [8,
Theorem 3.7] the space X is λ-resolvable. Thus we may apply Theorem 6
with 2λ = κ. Hence Clop(X) is MB-representable. Note that Clop(X) is
nontrivial since X is zero-dimensional as a sum of zero-dimensional spaces
X1 and X2. (See [9].) If we consider space X2 instead of X, we get a simple
example where Theorem 6 applies (thus |X2| = κ and X2 is κ-resolvable)
but in this case we do not use the whole power of our result.

It is an easy observation that, for a discrete topological space X, we have
Clop(X) = P(X) = S(P(X) \ {∅}). This mixed with Theorem 6 produces
the following
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Corollary 3. Let X be a topological space which is a sum of (pairwise dis-
joint, clopen) subspaces Xt, t ∈ T , such that each Xt is either discrete, or
|Xt| = κt ≥ ω and Xt is λt-resolvable with 2λt ≥ κt. Then Clop(X) is
MB-representable.

Proof. Let Σ = Clop(X) and Σt = Clop(Xt) for t ∈ T . Then Σt are MB-
representable by Theorem 6 and the above observation. The rest follows
from Theorem 2.

Acknowledgements. We would like to thank Piotr Koszmider for his
advice that helped us to improve Theorem 6.

References

[1] Balcerzak, M., Bartoszewicz, A., Ciesielski, K., On Marczewski-Burstin representa-
tions of certain algebras of sets, Real Anal. Exchange 26 (2000/2001), 581–592.

[2] Balcerzak, M., Bartoszewicz, A., Rzepecka, J., Wroński, S., Marczewski fields and
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