A GENERALIZED UPPER AND LOWER SOLUTION METHOD FOR SINGULAR DISCRETE BOUNDARY VALUE PROBLEMS FOR THE ONE-DIMENSIONAL p-LAPLACIAN

D. Q. JIANG, D. O'REGAN and R. P. AGARWAL

Received February 10, 2003 and, in revised form, June 26, 2003

Abstract

This paper presents new existence results for singular discrete boundary value problems for the one-dimension p-Laplacian. In particular our nonlinearity may be singular in its dependent variable and is allowed to change sign. Our results are new even for $p=2$.

1. Introduction

An upper and lower solution theory is presented for the singular discrete boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+q(i) f(i, y(i))=0, \quad i \in N=\{1, \ldots, T\} \tag{1.1}\\
y(0)=y(T+1)=0
\end{array}\right.
$$

where $\phi(s)=|s|^{p-2} s, p>1, T \in\{1,2, \ldots\}, N^{+}=\{0,1, \ldots, T+1\}$ and $y: N^{+} \rightarrow \mathbb{R}$. Throughout this paper we will assume $f: N \times(0, \infty) \rightarrow \mathbb{R}$ is

[^0]continuous. As a result our nonlinearity $f(i, u)$ may be singular at $u=0$ and may change sign.

Remark 1.1. Recall that a map $f: N \times(0, \infty) \rightarrow \mathbb{R}$ is continuous if it is continuous as a map of the topological space $N \times(0, \infty)$ into the topological space \mathbb{R}. Throughout this paper the topology on N will be the discrete topology.

We will let $C\left(N^{+}, \mathbb{R}\right)$ denote the class of maps u continuous on N^{+}(discrete topology), with norm $\|u\|=\max _{i \in N^{+}}|u(i)|$. By a solution to (1.1) we mean a $y \in C\left(N^{+}, \mathbb{R}\right)$ such that y satisfies (1.1) for $i \in N$ and y satisfies the boundary condition.

The literature on the one-dimensional p-Laplacian (when the nonlinearity is not singular in its dependent variable) is vast; see [18] and the references therein. Also the existence of solutions to singular boundary value problems in the continuous case have been studied in great detail in the literature (see $[6,7,8,10,13]$ (when $p=2$) and $[14,15]$ and the references therein). However, for the discrete case only a few papers have discussed boundary value problems. For example see $[4,5,11,12]$ (when $p=2$) and $[16,17]$. In $[16]$ the nonlinearity $f(i, u)$ may be singular at $u=0$ and may change sign, and the approach there is based on an argument initiated by Habets and Zanolin in [10]. In this paper a new approach is given which yields a very general existence theory for (1.1). Our results are new even for $p=2$. Not suprizingly our results improve considerable the results in [2] (when $p=2$) and [16, 17].

2. Some preliminary results

In this section we present some results from literature which will be needed in Section 3.

We first state one well known result in [1].
Lemma 2.1 ([1]). Let $u \in C\left(N^{+}, \mathbb{R}\right)$ satisfy $u(i) \geq 0$ for $i \in N^{+}$. If $y \in C\left(N^{+}, \mathbb{R}\right)$ satisfies

$$
\left\{\begin{array}{l}
\Delta^{2} y(i-1)+u(i)=0, \quad i \in N=\{1,2, \ldots, T\} \\
y(0)=y(T+1)=0,
\end{array}\right.
$$

then

$$
y(i) \geq \mu(i)\|y\| \text { for } i \in N^{+} ;
$$

here

$$
\mu(i)=\min \left\{\frac{T+1-i}{T+1}, \frac{i}{T}\right\} .
$$

Lemma 2.2. Let $[a, b]=\{a, a+1, \ldots, b\} \subset N$. If $y \in C\left(N^{+}, \mathbb{R}\right)$ satisfies

$$
\left\{\begin{array}{l}
\Delta^{2} y(i-1) \leq 0, \\
y(a-1) \geq 0, y(b+1) \geq 0,
\end{array} \quad i \in[a, b]\right.
$$

then $y(i) \geq 0$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$.
Remark 2.1. Of course if $b=a$ then Lemma 2.2 is immediate.
Proof. Set

$$
Q(i)=y(a-1)+\frac{y(b+1)-y(a-1)}{b-a+2}(i+1-a), \quad i \in[a-1, b+1] .
$$

Let $y(i)=u(i)+Q(i)$. Then $\Delta^{2} u(i-1) \leq 0, i \in[a, b]$ and $u(a-1)=$ $u(b+1)=0$. Thus by Lemma 2.1, $u(i) \geq 0$ for $i \in[a-1, b+1]$. Since $Q(i) \geq 0$, then $y(i) \geq 0$ for $i \in[a-1, b+1]$.

Lemma 2.3. Let $[a, b]=\{a, a+1, \ldots, b\} \subset N$. If $y \in C\left(N^{+}, \mathbb{R}\right)$ satisfies

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1))) \leq 0, \\
y(a-1) \geq 0, \quad y(b+1) \geq 0,
\end{array} \quad i \in[a, b]\right.
$$

then $y(i) \geq 0$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$.
Proof. Notice $\Delta(\phi(\Delta y(i-1))) \leq 0$ implies $\Delta^{2} y(i-1) \leq 0$ for $i \in[a, b]$, so the result follows from Lemma 2.2.

Lemma 2.4. Let $[a, b]=\{a, a+1, \ldots, b\} \subset N$. If $u, v \in C\left(N^{+}, \mathbb{R}\right)$ satisfy

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta u(i-1))) \leq \Delta(\phi(\Delta v(i-1))), \\
u(a-1) \geq v(a-1), \quad u(b+1) \geq v(b+1),
\end{array} \quad i \in[a, b]\right.
$$

then $u(i) \geq v(i)$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$.

Proof. Suppose $u(i)<v(i)$ for some $i \in[a-1, b+1]$. Since $u(a-1) \geq$ $v(a-1), u(b+1) \geq v(b+1)$, the function $w(i)=u(i)-v(i)$ would have a negative minimum at a point $i_{0} \in[a, b]$. Hence $\Delta w\left(i_{0}-1\right) \leq 0$, i.e., $\Delta u\left(i_{0}-1\right) \leq \Delta v\left(i_{0}-1\right)$. Notice that

$$
\Delta(\phi(\Delta u(i-1))) \leq \Delta(\phi(\Delta v(i-1))), \quad i \in[a, b] .
$$

Sum both sides of the above inequality from i_{0} to $i \in\left[i_{0}, b\right]=\left\{i_{0}, \ldots, b\right\}$ to get

$$
\phi(\Delta u(i))-\phi\left(\Delta u\left(i_{0}-1\right)\right) \leq \phi(\Delta v(i))-\phi\left(\Delta v\left(i_{0}-1\right)\right), \quad \text { for all } i \in\left[i_{0}, b\right],
$$

and so we have

$$
\phi(\Delta u(i))-\phi(\Delta v(i)) \leq \phi\left(\Delta u\left(i_{0}-1\right)\right)-\phi\left(\Delta v\left(i_{0}-1\right)\right), \quad \text { for all } i \in\left[i_{0}, b\right] .
$$

As a result

$$
\Delta w(i)=\Delta u(i)-\Delta v(i) \leq 0, \quad \text { for all } i \in\left[i_{0}, b\right],
$$

and so $w\left(i_{0}\right) \geq w(b+1) \geq 0$, a contradiction.
Consider the discrete boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+F(i, y(i))=0, \quad i \in N=\{1, \ldots, T\} \tag{2.1}\\
y(0)=A, y(T+1)=B
\end{array}\right.
$$

where A and B are given real numbers, $\phi(s)=|s|^{p-2} s, p>1$. The following existence principle for problem (2.1) was established in [16, 17].

Lemma 2.5. Suppose that $F(i, u): N \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous, and there exists $h \in C(N,[0, \infty))$ with $|F(i, u)| \leq h(i)$ for $i \in N$. Then (2.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$.

3. Existence theory

In this section we combine the ideas in [9] (when $p=2$) and [16] to obtain new results for the singular discrete boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+q(i) f(i, y(i))=0, \quad i \in N=\{1, \ldots, T\} \tag{3.1}\\
y(0)=y(T+1)=0,
\end{array}\right.
$$

where our nonlinearity f may change sign. Our main result can be stated immediately.

Theorem 3.1. Let $n_{0} \in\{1,2, \ldots$.$\} be fixed and suppose the following con-$ ditions are satisfied:

$$
\begin{gather*}
\qquad f: N \times(0, \infty) \rightarrow \mathbb{R} \text { is continuous } \tag{3.2}\\
\qquad q \in C(N,(0, \infty)) \tag{3.3}\\
\left\{\begin{array}{l}
\text { there exists a function } \alpha \in C\left(N^{+}, \mathbb{R}\right) \\
\text { with } \alpha(0)=\alpha(T+1)=0, \alpha>0 \text { on } N \text { such } \\
\text { that } q(i) f(i, \alpha(i)) \geq-\Delta(\phi(\Delta \alpha(i-1))) \text { for } i \in N
\end{array}\right. \tag{3.4}
\end{gather*}
$$

and

$$
\left\{\begin{array}{l}
\text { there exists a function } \beta \in C\left(N^{+}, \mathbb{R}\right) \text { with } \tag{3.5}\\
\beta(i) \geq \alpha(i) \text { and } \beta(i) \geq 1 / n_{0} \text { for } i \in N^{+} \text {with } \\
q(i) f(i, \beta(i)) \leq-\Delta(\phi(\Delta \beta(i-1))) \text { for } i \in N .
\end{array}\right.
$$

Then (3.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i) \geq \alpha(i)$ for $i \in N^{+}$.
Proof. We begin with the discrete boundary value problem

$$
\left\{\begin{array}{l}
-\Delta(\phi(\Delta y(i-1)))=q(i) f_{n_{0}}^{\star}(i, y(i)), \quad i \in N \tag{3.6}\\
y(0)=y(T+1)=\frac{1}{n_{0}}
\end{array}\right.
$$

here

$$
f_{n_{0}}^{\star}(i, y)= \begin{cases}f(i, \alpha(i)), & y \leq \alpha(i) \\ f(i, y), & \alpha(i) \leq y \leq \beta(i) \\ f(i, \beta(i)), & y \geq \beta(i) .\end{cases}
$$

From Lemma 2.5 we know that (3.6) has a solution $y_{n_{0}} \in C\left(N^{+}, \mathbb{R}\right)$. We first show

$$
\begin{equation*}
y_{n_{0}}(i) \geq \alpha(i), \quad i \in N^{+} . \tag{3.7}
\end{equation*}
$$

Suppose (3.7) is not true. Since $y_{n_{0}}(0)>\alpha(0)=0, y_{n_{0}}(T+1)>\alpha(T+1)=$ 0 , then there exists $[a, b]=\{a, a+1, \ldots, b\} \subset N$ such that

$$
y_{n_{0}}(i)<\alpha(i) \text { on }[a, b], y_{n_{0}}(a-1) \geq \alpha(a-1), y_{n_{0}}(b+1) \geq \alpha(b+1) .
$$

Thus for $i \in[a, b]$, we have

$$
\begin{aligned}
-\Delta\left(\phi\left(\Delta y_{n_{0}}(i-1)\right)\right) & =q(i) f_{n_{0}}^{\star}\left(i, y_{n_{0}}(i)\right)=q(i) f(i, \alpha(i)) \\
& \geq-\Delta(\phi(\Delta(\alpha(i-1))) .
\end{aligned}
$$

Since $y_{n_{0}}(a-1) \geq \alpha(a-1), y_{n_{0}}(b+1) \geq \alpha(b+1)$, it follows from Lemma 2.4 that $y_{n_{0}}(i) \geq \alpha(i)$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$, a contradiction.

A similar argument shows

$$
\begin{equation*}
y_{n_{0}}(i) \leq \beta(i) \quad \text { for } i \in N^{+} . \tag{3.8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\alpha(i) \leq y_{n_{0}}(i) \leq \beta(i) \quad \text { for } i \in N^{+} . \tag{3.9}
\end{equation*}
$$

Now proceed inductively to construct $y_{n_{0}+1}, y_{n_{0}+2}, y_{n_{0}+3}, \ldots$ as follows. Suppose we have y_{k} for some $k \in\left\{n_{0}, n_{0}+1, n_{0}+2, \ldots\right\}$ with $\alpha(i) \leq$ $y_{k}(i) \leq y_{k-1}(i)$ for $i \in N^{+}$(here $y_{n_{0}-1}=\beta$). Then consider the discrete boundary value problem

$$
\left\{\begin{array}{l}
-\Delta(\phi(\Delta y(i-1)))=q(i) f_{k+1}^{\star}(i, y(i)), \quad i \in N \tag{3.10}\\
y(0)=\frac{1}{k+1}
\end{array}\right.
$$

here

$$
f_{k+1}^{\star}(i, y)= \begin{cases}f(i, \alpha(i)), & y \leq \alpha(i) \\ f(i, y), & \alpha(i) \leq y \leq y_{k}(i) \\ f\left(i, y_{k}(i)\right), & y \geq y_{k}(i) .\end{cases}
$$

Now Lemma 2.5 guarantees that (3.10) has a solution $y_{k+1} \in C\left(N^{+}, \mathbb{R}\right)$, and essentially the same reasoning as above yields

$$
\begin{equation*}
\alpha(i) \leq y_{k+1}(i) \leq y_{k}(i) \text { for } i \in N^{+} . \tag{3.11}
\end{equation*}
$$

Thus for each $n \in\left\{n_{0}, n_{0}+1, \ldots\right\}$ we have

$$
\begin{equation*}
\alpha(i) \leq y_{n}(i) \leq y_{n-1}(i) \leq \ldots \leq y_{n_{0}}(i) \leq \beta(i) \text { for } i \in N^{+} . \tag{3.12}
\end{equation*}
$$

Bolzano's theorem guarantees the existence of a subsequence $Z_{n_{0}}$ of integers and a function y with y_{n} converging to y on N^{+}as $n \rightarrow \infty$ through $Z_{n_{0}}$. Also $y(0)=y(T+1)=0$. Now $y_{n}, n \in Z_{n_{0}}$, satisfies $y_{n}(i) \geq \alpha(i)>0$ for $i \in N$. Fix $i \in N$, and we obtain

$$
\begin{aligned}
\Delta\left(\phi\left(\Delta y_{n}(i-1)\right)\right) & =\phi\left(\Delta y_{n}(i)\right)-\phi\left(\Delta y_{n}(i-1)\right) \\
& =\phi\left(y_{n}(i+1)-y_{n}(i)\right)-\phi\left(y_{n}(i)-y_{n}(i-1)\right) \\
& \rightarrow \Delta(\phi(\Delta y(i-1))), i \in N, n \in Z_{n_{0}}, n \rightarrow \infty,
\end{aligned}
$$

and

$$
f\left(i, y_{n}(i)\right) \rightarrow f(i, y(i)), i \in N, n \in Z_{n_{0}}, n \rightarrow \infty .
$$

Thus $\Delta(\phi(\Delta y(i-1)))+q(i) f(i, y(i))=0$ for $i \in N, y(0)=y(T+1)=0$. As a result $y \in C\left(N^{+}, \mathbb{R}\right)$ is a solution to (3.1) and also we have $\alpha(i) \leq$ $y(i) \leq \beta(i), i \in N^{+}$.

Suppose (3.2)-(3.4) hold, and in addition assume the following conditions are satisfied:

$$
\left\{\begin{array}{l}
q(i) f(i, y) \geq-\Delta(\phi(\Delta \alpha(i-1))) \tag{3.13}\\
\text { for }(i, y) \in N \times\{y \in(0, \infty): y<\alpha(i)\}
\end{array}\right.
$$

and

$$
\begin{cases}\text { there exists a function } \beta \in C\left(N^{+}, \mathbb{R}\right) \text { with } & \tag{3.14}\\ \beta(i) \geq \frac{1}{n_{0}} & \text { for } i \in N^{+} \text {with } \\ q(i) f(i, \beta(i)) \leq-\Delta(\phi(\Delta \beta(i-1))) & \text { for } i \in N .\end{cases}
$$

Then the result in Theorem 3.1 is again true. This follows immediately from Theorem 3.1 once we show $\beta(i) \geq \alpha(i)$ for $i \in N^{+}$. Suppose it is false. Since $\beta(0)>\alpha(0)=0, \beta(T+1)>\alpha(T+1)=0$, then there exists $[a, b]=\{a, a+1, \ldots, b\} \subset N$ such that

$$
\beta(i)<\alpha(i) \text { on }[a, b], \beta(a-1) \geq \alpha(a-1), \beta(b+1) \geq \alpha(b+1) .
$$

Thus for $i \in[a, b]$, we have

$$
q(i) f(i, \beta(i)) \geq-\Delta(\phi(\Delta \alpha(i-1))),
$$

and therefore

$$
-\Delta(\phi(\Delta \beta(i-1))) \geq-\Delta(\phi(\Delta(\alpha(i-1))), \quad i \in[a, b] .
$$

Since $\beta(a-1) \geq \alpha(a-1), \beta(b+1) \geq \alpha(b+1)$, it follows from Lemma 2.4 that $\beta(i) \geq \alpha(i)$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$, a contradiction. Thus we have

Corollary 3.1. Let $n_{0} \in\{1,2, \ldots\}$ be fixed and suppose (3.2)-(3.4), (3.13) and (3.14) hold. Then (3.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i) \geq \alpha(i)$ for $i \in N^{+}$.

Next we discuss how to construct the lower solution α in (3.4) and in (3.13). Suppose the following condition is satisfied:

$$
\left\{\begin{array}{l}
\text { let } n \in\left\{n_{0}, n_{0}+1, \ldots\right\} \text { and associated with each } n \tag{3.15}\\
\text { there exists a constant } k_{0}>0 \text { such that for } i \in N \\
\text { and } 0<y \leq \frac{1}{n} \text { we have } q(i) f(i, y) \geq k_{0} .
\end{array}\right.
$$

Let $\alpha(i)=k v(i), i \in N^{+}$, where $v \in C\left(N^{+},[0, \infty)\right)$ is the solution of

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta v(i-1)))+1=0, \quad i \in N=\{1, \ldots, T\} \tag{3.16}\\
v(0)=v(T+1)=0 ;
\end{array}\right.
$$

here

$$
0<k<\min \left\{\left[k_{0}\right]^{1 /(p-1)}, \frac{1}{n_{0}\|v\|}\right\} .
$$

Since $\Delta(\phi(\Delta v(i-1)))<0$ implies $\Delta^{2} v(i-1)<0$ for $i \in N$, it follows from Lemma 2.1 that $v(i) \geq \mu(i)\|v\|$ for $i \in N^{+}$. Thus, $\alpha(i) \leq 1 / n_{0}$, $-\Delta(\phi(\Delta \alpha(i-1)))=k^{p-1} \leq k_{0}, \alpha(0)=\alpha(T+1)=0, \alpha>0$ for $i \in N$, so (3.4) and (3.13) hold, since

$$
q(i) f(i, y) \geq k_{0} \geq-\Delta(\phi(\Delta \alpha(i-1))), \quad \text { for } i \in N, 0<y<\alpha(i)
$$

and

$$
q(i) f(i, \alpha(i)) \geq k_{0} \geq-\Delta(\phi(\Delta \alpha(i-1))), \quad i \in N
$$

We combine this with Corollary 3.2 to obtain our next result.
Theorem 3.2. Let $n_{0} \in\{1,2, \ldots$.$\} be fixed and suppose (3.2), (3.3), (3.14),$ and (3.15) hold. Then (3.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i)>0$ for $i \in N$.

Looking at Theorem 3.3 we see that the main difficulty when discussing examples is the construction of the β in (3.14). Our next result replaces (3.14) with a growth condition which is natural from an application viewpoint and easy to check in practice. We first present the result in its full generality.

Theorem 3.3. Let $n_{0} \in\{1,2, \ldots\}$ be fixed and suppose (3.2)-(3.4) hold. Also assume the following condition is satisfied:

$$
\left\{\begin{array}{l}
|f(i, y)| \leq g(y)+h(y) \text { on } N \times(0, \infty) \text { with } \tag{3.17}\\
g>0 \text { continuous and nonincreasing on }(0, \infty) \\
\text { and } h \geq 0 \text { continuous on }[0, \infty) \\
\frac{h}{g} \text { nondecreasing on }(0, \infty)
\end{array}\right.
$$

Also suppose there exists a constant $M>\sup _{i \in N^{+}} \alpha(i)$ with

$$
\begin{equation*}
b_{0}<\frac{1}{\phi^{-1}\left(1+\frac{h(M)}{g(M)}\right)} \int_{0}^{M} \frac{d y}{\phi^{-1}(g(y))} \tag{3.18}
\end{equation*}
$$

holding; here

$$
b_{0}=\max _{i \in N}\left(\sum_{j=1}^{i} \phi^{-1}\left(\sum_{z=j}^{i} q(z)\right), \sum_{j=i}^{T} \phi^{-1}\left(\sum_{z=i}^{j} q(z)\right)\right)
$$

Then (3.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i) \geq \alpha(i)$ for $i \in N^{+}$.

Proof. Choose $\varepsilon>0, \varepsilon<M$, with

$$
\begin{equation*}
\frac{1}{\phi^{-1}\left(1+\frac{h(M)}{g(M)}\right)} \int_{\varepsilon}^{M} \frac{d y}{\phi^{-1}(g(y))}>b_{0} \tag{3.19}
\end{equation*}
$$

Without loss of generality assume $1 / n_{0}<\varepsilon$. We consider the discrete boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+q(i) g(y(i))\left(1+\frac{h(M)}{g(M)}\right)=0, i \in N \tag{3.20}\\
y(0)=y(T+1)=\frac{1}{n_{0}}
\end{array}\right.
$$

First we consider the modified discrete boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+q(i) g^{*}(y(i))\left(1+\frac{h(M)}{g(M)}\right)=0, i \in N \tag{3.21}\\
y(0)=y(T+1)=\frac{1}{n_{0}}
\end{array}\right.
$$

here

$$
g^{\star}(y)= \begin{cases}g\left(\frac{1}{n_{0}}\right), & y \leq \frac{1}{n_{0}} \\ g(y), & y \geq \frac{1}{n_{0}}\end{cases}
$$

Now $\left|g^{\star}(y)\right|=g^{\star}(y) \leq g\left(1 / n_{0}\right)$ for $y \in \mathbb{R}$, so Lemma 2.5 guarantees that (3.21) has a solution $\beta \in C\left(N^{+}, \mathbb{R}\right)$. Let $u(i)=\beta(i)-1 / n_{0}$ for $i \in N^{+}$. Then $\Delta(\phi(\Delta u(i-1)))=\Delta(\phi(\Delta \beta(i-1))) \leq 0$ for $i \in N$, and $u(0)=u(T+1)=0$. Lemma 2.3 guarantees that $u(i) \geq 0$, and so $\beta(i) \geq 1 / n_{0}$ for $i \in N^{+}$. Then β is a solution to problem (3.20) also.

Now we claim that $\alpha(i) \leq \beta(i) \leq M, i \in N^{+}$. First we show

$$
\begin{equation*}
\beta(i) \geq \alpha(i), \quad i \in N^{+} \tag{3.22}
\end{equation*}
$$

Suppose (3.22) is false. Since $\beta(0)=\beta(T+1)=1 / n_{0}>\alpha(0)=\alpha(1)=0$, then there exists $[a, b]=\{a, a+1, \ldots, b\} \subset N$ such that

$$
\beta(i)<\alpha(i) \text { on }[a, b], \quad \beta(a-1) \geq \alpha(a-1), \quad \beta(b+1) \geq \alpha(b+1)
$$

Thus for $i \in[a, b]$, we have from (3.20) and $M>\sup _{i \in N^{+}} \alpha(i)$ that

$$
\begin{aligned}
-\Delta(\phi(\Delta \beta(i-1))) & =q(i) g(\beta(i))\left(1+\frac{h(M)}{g(M)}\right) \\
& \geq q(i) g(\alpha(i))\left(1+\frac{h(\alpha(i))}{g(\alpha(i))}\right) \\
& \geq q(i) f(i, \alpha(i)) \geq-\Delta(\phi(\Delta \alpha(i-1)))
\end{aligned}
$$

Since $\beta(a-1) \geq \alpha(a-1), \beta(b+1) \geq \alpha(b+1)$, it follows from Lemma 2.4 that $\beta(i) \geq \alpha(i)$ for $i \in[a-1, b+1]=\{a-1, a, \ldots, b+1\} \subset N^{+}$, a contradiction.

Next we show

$$
\begin{equation*}
\beta(i) \leq M, \quad i \in N^{+} \tag{3.23}
\end{equation*}
$$

Since $\Delta(\phi(\Delta \beta(i-1))) \leq 0$ on N implies $\Delta^{2} \beta(i-1) \leq 0$ on N, then $\beta(i) \geq 1 / n_{0}$ on N^{+}and there exists $i_{0} \in N$ with $\Delta \beta(i) \geq 0$ on $\left[0, i_{0}\right)=$ $\left\{0,1, \ldots, i_{0}-1\right\}$ and $\Delta \beta(i) \leq 0$ on $\left[i_{0}, T+1\right)=\left\{i_{0}, i_{0}+1, \ldots, T\right\}$, and $\beta\left(i_{0}\right)=\|\beta\|$.

Also notice that for $z \in N$, we have

$$
\begin{equation*}
-\Delta(\phi(\Delta \beta(z-1)))=g(\beta(z))\left(1+\frac{h(M)}{g(M)}\right) q(z) \tag{3.24}
\end{equation*}
$$

We sum the equation (3.24) from $j+1\left(0 \leq j<i_{0}\right)$ to i_{0} to obtain

$$
\phi(\Delta \beta(j))=\phi\left(\Delta \beta\left(i_{0}\right)\right)+\left(1+\frac{h(M)}{g(M)}\right) \sum_{z=j+1}^{i_{0}} g(\beta(z)) q(z)
$$

Since $\Delta \beta\left(i_{0}\right) \leq 0$, and $\beta(z) \geq \beta(j+1)$ when $j+1 \leq z \leq i_{0}$, we have

$$
\phi[\Delta \beta(j)] \leq g(\beta(j+1))\left(1+\frac{h(M)}{g(M)}\right) \sum_{z=j+1}^{i_{0}} q(z), \quad j<i_{0}
$$

i.e.,

$$
\begin{equation*}
\frac{\Delta \beta(j)}{\phi^{-1}(g(\beta(j+1)))} \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \phi^{-1}\left(\sum_{z=j+1}^{i_{0}} q(z)\right), j<i_{0} \tag{3.25}
\end{equation*}
$$

Since $g(\beta(j+1)) \leq g(u) \leq g(\beta(j))$ for $\beta(j) \leq u \leq \beta(j+1)$ when $j<i_{0}$, we have

$$
\begin{equation*}
\int_{\beta(j)}^{\beta(j+1)} \frac{d u}{\phi^{-1}(g(u))} \leq \frac{\Delta \beta(j)}{\phi^{-1}(g(\beta(j+1)))}, \quad j<i_{0} \tag{3.26}
\end{equation*}
$$

It follows from (3.25) and (3.26) that

$$
\int_{\beta(j)}^{\beta(j+1)} \frac{d u}{\phi^{-1}(g(u))} \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \phi^{-1}\left(\sum_{z=j+1}^{i_{0}} q(z)\right), \quad j<i_{0}
$$

and then we sum the above from 0 to $i_{0}-1$ to obtain

$$
\begin{align*}
\int_{1 / n_{0}}^{\beta\left(i_{0}\right)} \frac{d u}{\phi^{-1}(g(u))} & \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \sum_{j=0}^{i_{0}-1} \phi^{-1}\left(\sum_{z=j+1}^{i_{0}} q(z)\right) \\
& =\phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \sum_{j=1}^{i_{0}} \phi^{-1}\left(\sum_{z=j}^{i_{0}} q(z)\right) \tag{3.27}
\end{align*}
$$

Similarly, we sum the equation (3.24) from i_{0} to $j\left(i_{0} \leq j<T+1\right)$ to obtain

$$
-\phi(\Delta \beta(j))=-\phi\left(\Delta \beta\left(i_{0}-1\right)\right)+\left(1+\frac{h(M)}{g(M)}\right) \sum_{z=i_{0}}^{j} g(\beta(z)) q(z), s \geq t_{0}
$$

Since $\Delta \beta\left(i_{0}-1\right) \geq 0$, we have

$$
\frac{-\Delta \beta(j)}{\phi^{-1}(g(\beta(j)))} \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \phi^{-1}\left(\sum_{z=i_{0}}^{j} q(z)\right), \quad j \geq i_{0}
$$

So we have

$$
\int_{\beta(j+1)}^{\beta(j)} \frac{d u}{\phi^{-1}(g(u))} \leq \frac{-\Delta \beta(j)}{\phi^{-1}(g(\beta(j)))} \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \phi^{-1}\left(\sum_{z=i_{0}}^{j} q(z)\right), j \geq i_{0}
$$

and then we sum the above from i_{0} to T to obtain

$$
\begin{equation*}
\int_{1 / n_{0}}^{\beta\left(i_{0}\right)} \frac{d u}{\phi^{-1}(g(u))} \leq \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right) \sum_{j=i_{0}}^{T} \phi^{-1}\left(\sum_{z=i_{0}}^{j} q(z)\right) \tag{3.28}
\end{equation*}
$$

Now (3.27) and (3.28) imply

$$
\int_{\varepsilon}^{\beta\left(i_{0}\right)} \frac{d u}{\phi^{-1}(g(u))} \leq \int_{1 / n_{0}}^{\beta\left(i_{0}\right)} \frac{d u}{\phi^{-1}(g(u))} \leq b_{0} \phi^{-1}\left(1+\frac{h(M)}{g(M)}\right)
$$

This together with (3.19) implies $\|\beta\|=\beta\left(i_{0}\right) \leq M$.
Observe that

$$
\begin{aligned}
f(i, \beta(i)) & \leq g(\beta(i))\left(1+\frac{h(\beta(i))}{g(\beta(i))}\right) \\
& \leq g(\beta(i))\left(1+\frac{h(M)}{g(M)}\right), \quad i \in N .
\end{aligned}
$$

Thus we have $\beta(i) \geq 1 / n_{0}$ and $\beta(i) \geq \alpha(i)$ for $i \in N^{+}$with

$$
-\Delta\left(\phi(\Delta(\beta(i-1)))=q(i) g(\beta(i))\left(1+\frac{h(M)}{g(M)}\right) \geq q(i) f(i, \beta(i)), i \in N\right.
$$

so that $\beta(i)$ satisfies (3.5). The result follows from Theorem 3.1.
Combining Theorem 3.4 with the comments before Theorem 3.3 yields the following theorem.

Theorem 3.4. Let $n_{0} \in\{1,2, \ldots\}$ be fixed and suppose (3.2), (3.3), (3.15) and (3.17) hold. In addition assume there is a constant $M>0$ with (3.18) holding. Then (3.1) has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i)>0$ for $i \in N$.

Proof. This follows immediately from Theorem 3.4 once we show there exists $\alpha \in C\left(N^{+}, \mathbb{R}\right)$ such that (3.4) hold, and

$$
\begin{equation*}
M>\alpha(i) \text { for each } i \in N^{+} . \tag{3.29}
\end{equation*}
$$

Let $\alpha(i)=k v(i), i \in N^{+}$, where v is defined by (3.16), and

$$
0<k<\min \left\{\left[k_{0}\right]^{1 /(p-1)}, \frac{1}{n_{0}\|v\|}, \frac{M}{\|v\|}\right\} .
$$

Thus, $\alpha(i) \leq 1 / n_{0},-\Delta(\phi(\Delta \alpha(i-1)))=k^{p-1} \leq k_{0}, \alpha(0)=\alpha(T+1)=0$, $\alpha>0$ for $i \in N$ with (3.4) holding, since

$$
q(i) f(i, \alpha(i)) \geq k_{0} \geq-\Delta(\phi(\Delta \alpha(i-1))), \quad i \in N
$$

Then $\alpha \in C\left(N^{+}, \mathbb{R}\right)$ and (3.4), and (3.29) hold.
Next we present an example which illustrates how easily the theory is applied in practice.

Example 3.1. The boundary value problem

$$
\left\{\begin{array}{l}
\Delta(\phi(\Delta y(i-1)))+\sigma\left([y(i)]^{-\alpha}+[y(i)]^{\beta}+\sin \frac{8 \pi i}{T}\right), \quad i \in N \tag{3.30}\\
y(0)=y(T+1)=0
\end{array}\right.
$$

with $\alpha>0, \beta \geq 0$ and $\sigma>0$ has a solution $y \in C\left(N^{+}, \mathbb{R}\right)$ with $y(i)>0$ for $i \in N$, if

$$
\begin{equation*}
\sigma<\left[\frac{p-1}{b_{1}(\alpha+p-1)}\right]^{p-1} \sup _{c \in(0, \infty)} \frac{c^{\alpha+p-1}}{1+c^{\alpha}+c^{\alpha+\beta}} \tag{3.31}
\end{equation*}
$$

here

$$
b_{1}=\max _{i \in N}\left(\sum_{j=1}^{i}(i-j+1)^{1 /(p-1)}, \sum_{j=i}^{T}(j-i+1)^{1 /(p-1)}\right)
$$

To see this we will apply Theorem 3.5 with

$$
q(i)=\sigma, \quad g(u)=u^{-\alpha}, \quad h(u)=u^{\beta}+1
$$

Clearly (3.2), (3.3), (3.15) and (3.17) hold. Also notice that (3.31) implies that there exists $M>0$ such that

$$
\sigma<\left[\frac{p-1}{b_{1}(\alpha+p-1)}\right]^{p-1} \frac{M^{\alpha+p-1}}{1+M^{\alpha}+M^{\alpha+\beta}}
$$

and so (3.18) holds.
Thus all the conditions of Theorem 3.5 are satisfied so existence is guaranteed.

Remark 3.1. If $\beta<p-1$ then (3.31) is automatically satisfied.

References

[1] Agarwal, R. P., O'Regan, D., Nonpositive discrete boundary value problems, Nonlinear Anal. 39 (2000), 207-215.
[2] Agarwal, R. P., O'Regan, D., Singular discrete boundary value problems, Appl. Math. Lett. 12 (1999), 127-131.
[3] Agarwal, R. P., O'Regan, D., Boundary value problems for discrete equations, Appl. Math. Lett. 10 (1997), 83-89.
[4] Agarwal, R. P., O'Regan, D., Singular discrete (n, p) boundary value problems, Appl. Math. Lett. 12 (1999), 113-119.
[5] Agarwal, R. P., O'Regan, D., Wong, P. J. Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer Acad. Publ., Dordrecht, 1999.
[6] Agarwal, R. P., O'Regan, D., Singular initial and boundary value problems with sign changing nonlinearities, IMA J. Appl. Math. 65 (2000), 173-198.
[7] Agarwal, R. P., O'Regan, D., Some new existence results for singular problems with sign changing nonlinearities, J. Comput. Appl. Math. 113 (2000), 1-15.
[8] Agarwal, R. P., O'Regan, D., Lakshmikantham, V., Leela, S., Existence of positive solutions for singular initial and boundary value problems via the classical upper and lower solution approach, Nonlinear Anal. 50 (2002), 215-222.
[9] Agarwal, R. P., O'Regan, D., Lakshmikantham, V., Leela, S., An upper and lower solution theory for singular Emden-Fowler equations, Nonlinear Anal.: Real World Appl. 3 (2002), 275-291.
[10] Habets, P., Zanolin, F., Upper and lower solutions for a generalized Emden-Fowler equation, J. Math. Anal. Appl. 181 (1994), 684-700.
[11] Henderson, J., Singular boundary value problems for difference equations, Dynam. Systems Appl. 1 (1992), 271-282.
[12] Henderson, J., Singular boundary value problems for higher order difference equations, World Congress on Nonlinear Analysts 1992 (Tampa, FL, August 1992), Vol I-IV, 1139-1150, de Gruyter, Berlin, 1996.
[13] Jiang, D. Q., Upper and lower solutions for a superlinear singular boundary value problem, Comput. Math. Appl. 41 (2001), 563-569.
[14] Jiang, D. Q., Upper and lower solutions method and a superlinear singular boundary value problem for the one-dimension p-Laplacian, Comput. Math. Appl. 42 (2001), 927-940.
[15] Jiang, D. Q., Gao, W., Upper and lower solution method and a singular boundary value problem for the one-dimension p-Laplacian, J. Math. Anal. Appl. 252 (2000), 631-648.
[16] Jiang, D. Q., Pang, P. Y. H., Agarwal, R. P., Upper and lower solutions method and a superlinear singular discrete boundary value problem, Dynam. Systems Appl. (to appear).
[17] Jiang, D. Q., Zhang, L., O'Regan, D., Agarwal, R. P., Existence theory for single and multiple solutions to singular positone discrete Dirichlet boundary value problems to the one-dimensional p-Laplacian, Arch. Math. 40 (2004), 367-381.
[18] Manasevich, R., Zanolin, F., Time mappings and multiplicity of solutions for the one-dimensional p-Laplacian, Nonlinear Anal. 21 (1993), 269-291.

Daqing Jiang
Department of Mathematics
Northeast Normal University
Changchun 130024
P. R. China

Donal O'Regan
Department of Mathematics National University of Ireland

Galway
IRELAND
E-MAIL: DONAL.OREGAN@UNIGALWAY.IE

Ravi P. Agarwal
Department of Mathematical Science
Florida Institute of Technology
Melbourne, FL 32901-6975
USA
E-MAIL: AGARWAL@FIT.EDU

[^0]: 2000 Mathematics Subject Classification. 34B16, 39A10.
 Key words and phrases. Upper and lower solutions, discrete boundary value problem, existence, singular.

 The work was supported by NNSF of China.

