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Abstract. This paper presents new existence results for singular dis-
crete boundary value problems for the one-dimension p-Laplacian. In
particular our nonlinearity may be singular in its dependent variable
and is allowed to change sign. Our results are new even for p = 2.

1. Introduction

An upper and lower solution theory is presented for the singular discrete
boundary value problem{

∆(φ(∆y(i− 1))) + q(i) f(i, y(i)) = 0, i ∈ N = {1, . . . , T}
y(0) = y(T + 1) = 0,

(1.1)

where φ(s) = |s|p−2s, p > 1, T ∈ {1, 2, ...}, N+ = {0, 1, ..., T + 1} and
y : N+ → R. Throughout this paper we will assume f : N × (0,∞) → R is
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continuous. As a result our nonlinearity f(i, u) may be singular at u = 0
and may change sign.

Remark 1.1. Recall that a map f : N × (0,∞) → R is continuous if it is
continuous as a map of the topological space N×(0,∞) into the topological
space R. Throughout this paper the topology on N will be the discrete
topology.

We will let C(N+,R) denote the class of maps u continuous on N+ (dis-
crete topology), with norm ||u|| = maxi∈N+ |u(i)|. By a solution to (1.1) we
mean a y ∈ C(N+,R) such that y satisfies (1.1) for i ∈ N and y satisfies
the boundary condition.

The literature on the one–dimensional p-Laplacian (when the nonlinear-
ity is not singular in its dependent variable) is vast; see [18] and the ref-
erences therein. Also the existence of solutions to singular boundary value
problems in the continuous case have been studied in great detail in the
literature (see [6, 7, 8, 10, 13] (when p = 2) and [14, 15] and the references
therein). However, for the discrete case only a few papers have discussed
boundary value problems. For example see [4, 5, 11, 12] (when p = 2) and
[16, 17]. In [16] the nonlinearity f(i, u) may be singular at u = 0 and may
change sign, and the approach there is based on an argument initiated by
Habets and Zanolin in [10]. In this paper a new approach is given which
yields a very general existence theory for (1.1). Our results are new even
for p = 2. Not suprizingly our results improve considerable the results in
[2] (when p = 2) and [16, 17].

2. Some preliminary results

In this section we present some results from literature which will be
needed in Section 3.

We first state one well known result in [1].

Lemma 2.1 ([1]). Let u ∈ C(N+,R) satisfy u(i) ≥ 0 for i ∈ N+. If
y ∈ C(N+,R) satisfies{

∆2y(i− 1) + u(i) = 0, i ∈ N = {1, 2, . . . , T}
y(0) = y(T + 1) = 0,

then
y(i) ≥ µ(i)||y|| for i ∈ N+;

here

µ(i) = min
{
T + 1− i
T + 1

,
i

T

}
.
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Lemma 2.2. Let [a, b] = {a, a+ 1, ..., b} ⊂ N . If y ∈ C(N+,R) satisfies{
∆2y(i− 1) ≤ 0, i ∈ [a, b]
y(a− 1) ≥ 0, y(b+ 1) ≥ 0,

then y(i) ≥ 0 for i ∈ [a− 1, b+ 1] = {a− 1, a, ..., b+ 1} ⊂ N+.

Remark 2.1. Of course if b = a then Lemma 2.2 is immediate.

Proof. Set

Q(i) = y(a− 1) +
y(b+ 1)− y(a− 1)

b− a+ 2
(i+ 1− a), i ∈ [a− 1, b+ 1].

Let y(i) = u(i) + Q(i). Then ∆2u(i − 1) ≤ 0, i ∈ [a, b] and u(a − 1) =
u(b + 1) = 0. Thus by Lemma 2.1, u(i) ≥ 0 for i ∈ [a − 1, b + 1]. Since
Q(i) ≥ 0, then y(i) ≥ 0 for i ∈ [a− 1, b+ 1].

Lemma 2.3. Let [a, b] = {a, a+ 1, . . . , b} ⊂ N . If y ∈ C(N+,R) satisfies{
∆(φ(∆y(i− 1))) ≤ 0, i ∈ [a, b]
y(a− 1) ≥ 0, y(b+ 1) ≥ 0,

then y(i) ≥ 0 for i ∈ [a− 1, b+ 1] = {a− 1, a, ..., b+ 1} ⊂ N+.

Proof. Notice ∆(φ(∆y(i− 1))) ≤ 0 implies ∆2y(i− 1) ≤ 0 for i ∈ [a, b], so
the result follows from Lemma 2.2.

Lemma 2.4. Let [a, b] = {a, a+ 1, ..., b} ⊂ N . If u, v ∈ C(N+,R) satisfy{
∆(φ(∆u(i− 1))) ≤ ∆(φ(∆v(i− 1))), i ∈ [a, b]
u(a− 1) ≥ v(a− 1), u(b+ 1) ≥ v(b+ 1),

then u(i) ≥ v(i) for i ∈ [a− 1, b+ 1] = {a− 1, a, ..., b+ 1} ⊂ N+.

Proof. Suppose u(i) < v(i) for some i ∈ [a − 1, b + 1]. Since u(a − 1) ≥
v(a − 1), u(b + 1) ≥ v(b + 1), the function w(i) = u(i) − v(i) would have
a negative minimum at a point i0 ∈ [a, b]. Hence ∆w(i0 − 1) ≤ 0, i.e.,
∆u(i0 − 1) ≤ ∆v(i0 − 1). Notice that

∆(φ(∆u(i− 1))) ≤ ∆(φ(∆v(i− 1))), i ∈ [a, b].

Sum both sides of the above inequality from i0 to i ∈ [i0, b] = {i0, ..., b} to
get

φ(∆u(i))− φ(∆u(i0 − 1)) ≤ φ(∆v(i))− φ(∆v(i0 − 1)), for all i ∈ [i0, b],
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and so we have

φ(∆u(i))− φ(∆v(i)) ≤ φ(∆u(i0 − 1))− φ(∆v(i0 − 1)), for all i ∈ [i0, b].

As a result

∆w(i) = ∆u(i)−∆v(i) ≤ 0, for all i ∈ [i0, b],

and so w(i0) ≥ w(b+ 1) ≥ 0, a contradiction.

Consider the discrete boundary value problem{
∆(φ(∆y(i− 1))) + F (i, y(i)) = 0, i ∈ N = {1, . . . , T}
y(0) = A, y(T + 1) = B,

(2.1)

where A and B are given real numbers, φ(s) = |s|p−2s, p > 1. The following
existence principle for problem (2.1) was established in [16, 17].

Lemma 2.5. Suppose that F (i, u) : N × R → R is continuous, and there
exists h ∈ C(N, [0,∞)) with |F (i, u)| ≤ h(i) for i ∈ N . Then (2.1) has a
solution y ∈ C(N+,R).

3. Existence theory

In this section we combine the ideas in [9] (when p = 2) and [16] to obtain
new results for the singular discrete boundary value problem{

∆(φ(∆y(i− 1))) + q(i) f(i, y(i)) = 0, i ∈ N = {1, . . . , T}
y(0) = y(T + 1) = 0,

(3.1)

where our nonlinearity f may change sign. Our main result can be stated
immediately.

Theorem 3.1. Let n0 ∈ {1, 2, ....} be fixed and suppose the following con-
ditions are satisfied:

f : N × (0,∞)→ R is continuous (3.2)

q ∈ C(N, (0,∞)) (3.3)
there exists a function α ∈ C(N+,R)
with α(0) = α(T + 1) = 0, α > 0 on N such
that q(i) f(i, α(i)) ≥ −∆(φ(∆α(i− 1))) for i ∈ N

(3.4)

and 
there exists a function β ∈ C(N+,R) with
β(i) ≥ α(i) and β(i) ≥ 1/n0 for i ∈ N+ with
q(i) f(i, β(i)) ≤ −∆(φ(∆β(i− 1))) for i ∈ N.

(3.5)
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Then (3.1) has a solution y ∈ C(N+,R) with y(i) ≥ α(i) for i ∈ N+.

Proof. We begin with the discrete boundary value problem−∆(φ(∆y(i− 1))) = q(i) f?n0
(i, y(i)), i ∈ N

y(0) = y(T + 1) =
1
n0

;
(3.6)

here

f?n0
(i, y) =


f(i, α(i)), y ≤ α(i)
f(i, y), α(i) ≤ y ≤ β(i)
f(i, β(i)), y ≥ β(i).

From Lemma 2.5 we know that (3.6) has a solution yn0 ∈ C(N+,R). We
first show

yn0(i) ≥ α(i), i ∈ N+. (3.7)
Suppose (3.7) is not true. Since yn0(0) > α(0) = 0, yn0(T +1) > α(T +1) =
0, then there exists [a, b] = {a, a+ 1, . . . , b} ⊂ N such that

yn0(i) < α(i) on [a, b], yn0(a− 1) ≥ α(a− 1), yn0(b+ 1) ≥ α(b+ 1).

Thus for i ∈ [a, b], we have

−∆(φ(∆yn0(i− 1))) =q(i) f?n0
(i, yn0(i)) = q(i) f(i, α(i))

≥−∆(φ(∆(α(i− 1))).

Since yn0(a − 1) ≥ α(a − 1), yn0(b + 1) ≥ α(b + 1), it follows from Lemma
2.4 that yn0(i) ≥ α(i) for i ∈ [a − 1, b + 1] = {a − 1, a, . . . , b + 1} ⊂ N+, a
contradiction.

A similar argument shows

yn0(i) ≤ β(i) for i ∈ N+. (3.8)

Thus
α(i) ≤ yn0(i) ≤ β(i) for i ∈ N+. (3.9)

Now proceed inductively to construct yn0+1, yn0+2, yn0+3, . . . as follows.
Suppose we have yk for some k ∈ {n0, n0 + 1, n0 + 2, . . . } with α(i) ≤
yk(i) ≤ yk−1(i) for i ∈ N+ (here yn0−1 = β). Then consider the discrete
boundary value problem−∆(φ(∆y(i− 1))) = q(i) f?k+1(i, y(i)), i ∈ N

y(0) =
1

k + 1
;

(3.10)

here

f?k+1(i, y) =


f(i, α(i)), y ≤ α(i)
f(i, y), α(i) ≤ y ≤ yk(i)
f(i, yk(i)), y ≥ yk(i).
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Now Lemma 2.5 guarantees that (3.10) has a solution yk+1 ∈ C(N+,R),
and essentially the same reasoning as above yields

α(i) ≤ yk+1(i) ≤ yk(i) for i ∈ N+. (3.11)

Thus for each n ∈ {n0, n0 + 1, . . . } we have

α(i) ≤ yn(i) ≤ yn−1(i) ≤ . . . ≤ yn0(i) ≤ β(i) for i ∈ N+. (3.12)

Bolzano’s theorem guarantees the existence of a subsequence Zn0 of in-
tegers and a function y with yn converging to y on N+ as n→∞ through
Zn0 . Also y(0) = y(T + 1) = 0. Now yn, n ∈ Zn0 , satisfies yn(i) ≥ α(i) > 0
for i ∈ N . Fix i ∈ N , and we obtain

∆(φ(∆yn(i− 1))) = φ(∆yn(i))− φ(∆yn(i− 1))

= φ(yn(i+ 1)− yn(i))− φ(yn(i)− yn(i− 1))

→ ∆(φ(∆y(i− 1))), i ∈ N, n ∈ Zn0 , n→∞,
and

f(i, yn(i))→ f(i, y(i)), i ∈ N, n ∈ Zn0 , n→∞.
Thus ∆(φ(∆y(i − 1))) + q(i)f(i, y(i)) = 0 for i ∈ N , y(0) = y(T + 1) = 0.
As a result y ∈ C(N+,R) is a solution to (3.1) and also we have α(i) ≤
y(i) ≤ β(i), i ∈ N+.

Suppose (3.2)–(3.4) hold, and in addition assume the following conditions
are satisfied: {

q(i) f(i, y) ≥ −∆(φ(∆α(i− 1)))
for (i, y) ∈ N × {y ∈ (0,∞) : y < α(i)}

(3.13)

and
there exists a function β ∈ C(N+,R) with

β(i) ≥ 1
n0

for i ∈ N+ with

q(i) f(i, β(i)) ≤ −∆(φ(∆β(i− 1))) for i ∈ N.

(3.14)

Then the result in Theorem 3.1 is again true. This follows immediately
from Theorem 3.1 once we show β(i) ≥ α(i) for i ∈ N+. Suppose it is
false. Since β(0) > α(0) = 0, β(T + 1) > α(T + 1) = 0, then there exists
[a, b] = {a, a+ 1, . . . , b} ⊂ N such that

β(i) < α(i) on [a, b], β(a− 1) ≥ α(a− 1), β(b+ 1) ≥ α(b+ 1).

Thus for i ∈ [a, b], we have

q(i) f(i, β(i)) ≥ −∆(φ(∆α(i− 1))),

and therefore

−∆(φ(∆β(i− 1))) ≥ −∆(φ(∆(α(i− 1))), i ∈ [a, b].
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Since β(a − 1) ≥ α(a − 1), β(b + 1) ≥ α(b + 1), it follows from Lemma
2.4 that β(i) ≥ α(i) for i ∈ [a − 1, b + 1] = {a − 1, a, . . . , b + 1} ⊂ N+, a
contradiction. Thus we have

Corollary 3.1. Let n0 ∈ {1, 2, . . . } be fixed and suppose (3.2)–(3.4), (3.13)
and (3.14) hold. Then (3.1) has a solution y ∈ C(N+,R) with y(i) ≥ α(i)
for i ∈ N+.

Next we discuss how to construct the lower solution α in (3.4) and in
(3.13). Suppose the following condition is satisfied:

let n ∈ {n0, n0 + 1, . . . } and associated with each n

there exists a constant k0 > 0 such that for i ∈ N

and 0 < y ≤ 1
n

we have q(i) f(i, y) ≥ k0.

(3.15)

Let α(i) = kv(i), i ∈ N+, where v ∈ C(N+, [0,∞)) is the solution of{
∆(φ(∆v(i− 1))) + 1 = 0, i ∈ N = {1, . . . , T}
v(0) = v(T + 1) = 0;

(3.16)

here

0 < k < min
{

[k0]1/(p−1),
1

n0||v||

}
.

Since ∆(φ(∆v(i − 1))) < 0 implies ∆2v(i − 1) < 0 for i ∈ N , it follows
from Lemma 2.1 that v(i) ≥ µ(i)||v|| for i ∈ N+. Thus, α(i) ≤ 1/n0,
−∆(φ(∆α(i − 1))) = kp−1 ≤ k0, α(0) = α(T + 1) = 0, α > 0 for i ∈ N , so
(3.4) and (3.13) hold, since

q(i)f(i, y) ≥ k0 ≥ −∆(φ(∆α(i− 1))), for i ∈ N, 0 < y < α(i),

and
q(i)f(i, α(i)) ≥ k0 ≥ −∆(φ(∆α(i− 1))), i ∈ N.

We combine this with Corollary 3.2 to obtain our next result.

Theorem 3.2. Let n0 ∈ {1, 2, ....} be fixed and suppose (3.2), (3.3), (3.14),
and (3.15) hold. Then (3.1) has a solution y ∈ C(N+,R) with y(i) > 0 for
i ∈ N .

Looking at Theorem 3.3 we see that the main difficulty when discussing
examples is the construction of the β in (3.14). Our next result replaces
(3.14) with a growth condition which is natural from an application view-
point and easy to check in practice. We first present the result in its full
generality.
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Theorem 3.3. Let n0 ∈ {1, 2, . . . } be fixed and suppose (3.2)–(3.4) hold.
Also assume the following condition is satisfied:

|f(i, y)| ≤ g(y) + h(y) on N × (0,∞) with
g > 0 continuous and nonincreasing on (0,∞)
and h ≥ 0 continuous on [0,∞)
h

g
nondecreasing on (0,∞).

(3.17)

Also suppose there exists a constant M > supi∈N+ α(i) with

b0 <
1

φ−1

(
1 +

h(M)
g(M)

) ∫ M

0

dy

φ−1(g(y))
(3.18)

holding; here

b0 = max
i∈N

 i∑
j=1

φ−1(
i∑

z=j

q(z)),
T∑
j=i

φ−1(
j∑
z=i

q(z))

 .

Then (3.1) has a solution y ∈ C(N+,R) with y(i) ≥ α(i) for i ∈ N+.

Proof. Choose ε > 0, ε < M, with

1

φ−1

(
1 +

h(M)
g(M)

) ∫ M

ε

dy

φ−1(g(y))
> b0. (3.19)

Without loss of generality assume 1/n0 < ε. We consider the discrete
boundary value problem

∆(φ(∆y(i− 1))) + q(i)g(y(i))
(

1 +
h(M)
g(M)

)
= 0, i ∈ N,

y(0) = y(T + 1) =
1
n0
.

(3.20)

First we consider the modified discrete boundary value problem
∆(φ(∆y(i− 1))) + q(i)g∗(y(i))

(
1 +

h(M)
g(M)

)
= 0, i ∈ N,

y(0) = y(T + 1) =
1
n0

;
(3.21)

here

g?(y) =


g

(
1
n0

)
, y ≤ 1

n0

g(y), y ≥ 1
n0
.
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Now |g?(y)| = g?(y) ≤ g(1/n0) for y ∈ R, so Lemma 2.5 guarantees that
(3.21) has a solution β ∈ C(N+,R). Let u(i) = β(i)−1/n0 for i ∈ N+. Then
∆(φ(∆u(i−1))) = ∆(φ(∆β(i−1))) ≤ 0 for i ∈ N , and u(0) = u(T +1) = 0.
Lemma 2.3 guarantees that u(i) ≥ 0, and so β(i) ≥ 1/n0 for i ∈ N+. Then
β is a solution to problem (3.20) also.

Now we claim that α(i) ≤ β(i) ≤M , i ∈ N+. First we show

β(i) ≥ α(i), i ∈ N+. (3.22)

Suppose (3.22) is false. Since β(0) = β(T + 1) = 1/n0 > α(0) = α(1) = 0,
then there exists [a, b] = {a, a+ 1, . . . , b} ⊂ N such that

β(i) < α(i) on [a, b], β(a− 1) ≥ α(a− 1), β(b+ 1) ≥ α(b+ 1).

Thus for i ∈ [a, b], we have from (3.20) and M > supi∈N+ α(i) that

−∆(φ(∆β(i− 1))) = q(i)g(β(i))(1 +
h(M)
g(M)

)

≥ q(i)g(α(i))(1 +
h(α(i))
g(α(i))

)

≥ q(i)f(i, α(i)) ≥ −∆(φ(∆α(i− 1))).

Since β(a − 1) ≥ α(a − 1), β(b + 1) ≥ α(b + 1), it follows from Lemma
2.4 that β(i) ≥ α(i) for i ∈ [a − 1, b + 1] = {a − 1, a, . . . , b + 1} ⊂ N+, a
contradiction.

Next we show
β(i) ≤M, i ∈ N+. (3.23)

Since ∆(φ(∆β(i − 1))) ≤ 0 on N implies ∆2β(i − 1) ≤ 0 on N , then
β(i) ≥ 1/n0 on N+ and there exists i0 ∈ N with ∆β(i) ≥ 0 on [0, i0) =
{0, 1, . . . , i0 − 1} and ∆β(i) ≤ 0 on [i0, T + 1) = {i0, i0 + 1, . . . , T}, and
β(i0) = ||β||.

Also notice that for z ∈ N , we have

−∆(φ(∆β(z − 1))) = g(β(z))
(

1 +
h(M)
g(M)

)
q(z). (3.24)

We sum the equation (3.24) from j + 1 (0 ≤ j < i0) to i0 to obtain

φ(∆β(j)) = φ(∆β(i0)) +
(

1 +
h(M)
g(M)

) i0∑
z=j+1

g(β(z))q(z).

Since ∆β(i0) ≤ 0, and β(z) ≥ β(j + 1) when j + 1 ≤ z ≤ i0, we have

φ[∆β(j)] ≤ g(β(j + 1))
(

1 +
h(M)
g(M)

) i0∑
z=j+1

q(z), j < i0,
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i.e.,

∆β(j)
φ−1(g(β(j + 1)))

≤ φ−1
(

1 +
h(M)
g(M)

)
φ−1(

i0∑
z=j+1

q(z)), j < i0. (3.25)

Since g(β(j + 1)) ≤ g(u) ≤ g(β(j)) for β(j) ≤ u ≤ β(j + 1) when j < i0, we
have ∫ β(j+1)

β(j)

du

φ−1(g(u))
≤ ∆β(j)
φ−1(g(β(j + 1)))

, j < i0. (3.26)

It follows from (3.25) and (3.26) that∫ β(j+1)

β(j)

du

φ−1(g(u))
≤ φ−1

(
1 +

h(M)
g(M)

)
φ−1(

i0∑
z=j+1

q(z)), j < i0,

and then we sum the above from 0 to i0 − 1 to obtain∫ β(i0)

1/n0

du

φ−1(g(u))
≤ φ−1

(
1 +

h(M)
g(M)

) i0−1∑
j=0

φ−1(
i0∑

z=j+1

q(z))

=φ−1
(

1+
h(M)
g(M)

) i0∑
j=1

φ−1(
i0∑
z=j

q(z)). (3.27)

Similarly, we sum the equation (3.24) from i0 to j (i0 ≤ j < T + 1) to
obtain

−φ(∆β(j)) = −φ(∆β(i0 − 1)) +
(

1 +
h(M)
g(M)

) j∑
z=i0

g(β(z))q(z), s ≥ t0.

Since ∆β(i0 − 1) ≥ 0, we have

−∆β(j)
φ−1(g(β(j)))

≤ φ−1
(

1 +
h(M)
g(M)

)
φ−1(

j∑
z=i0

q(z)), j ≥ i0.

So we have∫ β(j)

β(j+1)

du

φ−1(g(u))
≤ −∆β(j)
φ−1(g(β(j)))

≤ φ−1
(

1+
h(M)
g(M)

)
φ−1(

j∑
z=i0

q(z)), j ≥ i0,

and then we sum the above from i0 to T to obtain∫ β(i0)

1/n0

du

φ−1(g(u))
≤ φ−1

(
1 +

h(M)
g(M)

) T∑
j=i0

φ−1(
j∑

z=i0

q(z)). (3.28)

Now (3.27) and (3.28) imply∫ β(i0)

ε

du

φ−1(g(u))
≤
∫ β(i0)

1/n0

du

φ−1(g(u))
≤ b0φ−1

(
1 +

h(M)
g(M)

)
.
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This together with (3.19) implies ||β|| = β(i0) ≤M .
Observe that

f(i, β(i)) ≤ g(β(i))
(

1 +
h(β(i))
g(β(i))

)
≤ g(β(i))

(
1 +

h(M)
g(M)

)
, i ∈ N.

Thus we have β(i) ≥ 1/n0 and β(i) ≥ α(i) for i ∈ N+ with

−∆(φ(∆(β(i− 1))) = q(i)g(β(i))(1 +
h(M)
g(M)

) ≥ q(i)f(i, β(i)), i ∈ N,

so that β(i) satisfies (3.5). The result follows from Theorem 3.1.

Combining Theorem 3.4 with the comments before Theorem 3.3 yields
the following theorem.

Theorem 3.4. Let n0 ∈ {1, 2, . . . } be fixed and suppose (3.2), (3.3), (3.15)
and (3.17) hold. In addition assume there is a constant M > 0 with (3.18)
holding. Then (3.1) has a solution y ∈ C(N+,R) with y(i) > 0 for i ∈ N .

Proof. This follows immediately from Theorem 3.4 once we show there
exists α ∈ C(N+,R) such that (3.4) hold, and

M > α(i) for each i ∈ N+. (3.29)

Let α(i) = kv(i), i ∈ N+, where v is defined by (3.16), and

0 < k < min
{

[k0]1/(p−1),
1

n0||v||
,
M

||v||

}
.

Thus, α(i) ≤ 1/n0, −∆(φ(∆α(i − 1))) = kp−1 ≤ k0, α(0) = α(T + 1) = 0,
α > 0 for i ∈ N with (3.4) holding, since

q(i)f(i, α(i)) ≥ k0 ≥ −∆(φ(∆α(i− 1))), i ∈ N.

Then α ∈ C(N+,R) and (3.4), and (3.29) hold.

Next we present an example which illustrates how easily the theory is
applied in practice.

Example 3.1. The boundary value problem∆(φ(∆y(i− 1))) + σ([y(i)]−α + [y(i)]β + sin
8πi
T

), i ∈ N
y(0) = y(T + 1) = 0

(3.30)
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with α > 0, β ≥ 0 and σ > 0 has a solution y ∈ C(N+,R) with y(i) > 0 for
i ∈ N , if

σ <

[
p− 1

b1(α+ p− 1)

]p−1

sup
c∈(0,∞)

cα+p−1

1 + cα + cα+β ; (3.31)

here

b1 = max
i∈N

( i∑
j=1

(i− j + 1)1/(p−1),
T∑
j=i

(j − i+ 1)1/(p−1)
)
.

To see this we will apply Theorem 3.5 with

q(i) = σ, g(u) = u−α, h(u) = uβ + 1.

Clearly (3.2), (3.3), (3.15) and (3.17) hold. Also notice that (3.31) implies
that there exists M > 0 such that

σ <

[
p− 1

b1(α+ p− 1)

]p−1 Mα+p−1

1 +Mα +Mα+β ;

and so (3.18) holds.
Thus all the conditions of Theorem 3.5 are satisfied so existence is guar-

anteed.

Remark 3.1. If β < p− 1 then (3.31) is automatically satisfied.
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