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Abstract. In this paper, a generalization of convexity, namely V -r-
invexity, is considered in the case of nonlinear multiobjective program-
ming problems where the functions involved are differentiable. The
assumptions on Pareto solutions are relaxed by means of V -r-invex
functions. Also some duality results are obtained for such optimiza-
tion problems.

1. Introduction

An important concept in mathematical models in economics, game the-
ory, optimal control, and decision theory is that of a vector minimum or
Pareto optimum.

In the recent years, optimization problems with vector-valued cost crite-
ria or programming problems with several objectives conflicting with one
another have been of considerable interest, particularly in economics.
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The convexity of functions occurring in multiobjective programming
problems is usually assumed to be sufficient condition in seeking Pareto
optimal solutions (see, for example, [14], [16], [19], [25], [27]). To relax con-
vexity assumptions imposed in theorems on sufficient optimality conditions
and duality, various generalized convexity notions have been proposed (see,
for example, [2], [3], [4], [12], [15], [17], [21], [23]).

An invex function is one of the generalized convex functions and this
was introduced by Hanson [13]. He considered a differentiable function
f : X → R, X ⊂ Rn, for which there exists an n-dimensional vector function
η : X ×X → Rn such that, for all x, u ∈ X, the inequality

f(x)− f(u) ≥ ∇f(u)η(x, u) (1)

holds. In [9], Craven called functions satisfying (1) invex. Of course, differ-
entiable convex functions are invex with respect to the function η(x, u) =
x− u. A simple characterization of invexity was given for both constrained
and unconstrained optimization problems by Ben-Israel and Mond [7]. After
the works of Hanson and Craven, other types of differentiable functions have
appeared with the intent of generalizing invex functions from different points
of view. One of such generalizations is r-invexity which was introduced by
Antczak [4]. Many authors have studied some properties and further gen-
eralizations of scalar Hanson’s functions to vector-valued functions, in view
of applications to multiobjective optimization problems.

Egudo and Hanson [12] have studied a multiobjective problem with Wolfe-
type and Mond-Weir-type duals for invex objective and quasi-invex con-
straint functions. Weir [27] considered a multi-objective programming prob-
lem involving invex functions and obtained Kuhn-Tucker necessary and suf-
ficient conditions for a feasible point to be a Pareto optimal solution. Op-
timization and duality results for a vector optimization problem with invex
set-valued data are also given, for example, in [18], [26]. In [1], Antczak
introduced a new class of differentiable nonconvex vector-valued functions,
namely (p, r)-invex vector-valued functions with respect to η. This class of
functions is a generalization of scalar (p, r)-invex functions [2] to the vecto-
rial case. This fact leads to consider more general definition than Hanson’s
definition (1).

Recently, Jeyakumar and Mond [15] have observed that one major diffi-
culty in all of these extensions of convexity is that invex problems require
the same functions η for the objective and constraint functions. This re-
quirement turns out to be a major restriction in applications. To improve
upon this situation they have defined V -invex functions and its various gen-
eralizations. They have obtained optimality conditions for differentiable
multiobjective programming problems and established some duality results.
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Basing on the definition of V -invex vector-valued functions and the defini-
tion of scalar r-invex functions [4], we introduce a new class of differentiable
nonconvex vector valued functions, namely V -r-invex functions with respect
to η.

However, the main purpose of this article is to apply V -r-invexity to
develop optimality conditions and duality theory for the differentiable mul-
tiobjective programming problems. Considering the concept of a (weak)
Pareto solution in multiobjective programming problems in which the func-
tions occurring belong to the class of V -r-invex functions, we give some suf-
ficient conditions for optimality. As in the scalar case (see [2]), the concept
of V -r-invexity function plays an important role. A dual of the Mond-Weir
type, the Wolfe type and the mixed type are also considered and a number
of duality results are established. Duality results are established by using a
Pareto type relation between the primal and dual objective functions and
the concept of V -r-invexity.

2. New classes of nonconvex vector-valued functions

Let Rn denote the n-dimensional Euclidean space and Rn+ its non-negative
orthant.

The following convention for equalities and inequalities will be used
throughout the paper.

For any x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , we define:
(i) x = y if and only if xi = yi for all i = 1, 2, . . . , n;
(ii) x > y if and only if xi > yi for all i = 1, 2, . . . , n;
(iii) x = y if and only if xi ≥ yi for all i = 1, 2, . . . , n;
(iv) x ≥ y if and only if x = y and x 6= y.

Throughout the paper, we will use the same notation for row and column
vectors when the interpretation is obvious.

Hanson defined invex functions which allow the use of the Kuhn-Tucker
conditions as sufficient conditions for optimality in constrained optimization
problems. Moreover, Wolfe weak duality holds between primal problem and
its associated Wolfe dual problem under invexity assumption.

However, the major difficulty is that the invex problems require the same
function η restriction in applications for the objective function and the con-
straints. This requirement turns out to be severe restriction in applications.

Now, we show how this situation can be improved and how can be ex-
tended the class of invex functions to posses the two well-known properties
for constrained optimization problems (that is, the sufficiency of Kuhn-
Tucker conditions and Wolfe weak duality). The following definition gener-
alizes the definition of a class of r-invex functions [2] to the case of a class
of V -r-invex functions.
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Definition 1. Let S be a nonempty open subset of Rn and let r be an
arbitrary real number. A differentiable function f : S → Rk is called a V -
r-invex function (a strictly V -r-invex function) with respect to η at u ∈ S
on S if, there exist functions η : S × S → Rn and α : S × S → Rk+\{0} such
that for each x ∈ S, the relation

1
r
erf(x) = 1

r
erf(u) [1 + rα (x, u)∇f(u)η(x, u)] (> if x 6= u) for r 6= 0,

f(x)− f(u) = α (x, u)∇f(u)η(x, u) (> if x 6= u) for r = 0
(2)

holds.
If inequalities (2) are satisfied at any point u ∈ S, then f is said to be

V -r-invex (strictly V -r-invex) with respect to η on S.

It should be pointed out that the exponentials appearing on the left-hand
sides of inequalities (2) are understood to be taken componentwise.

Equivalently, the definition of V -r-invexity of function f can be written
in the following form:

Definition 2. A differentiable function f : S → Rk is called an αi-r-invex
function (a strictly αi-r-invex function) with respect to η at u ∈ S on S if,
there exist functions η : S×S → Rn and αi : S×S → R+\{0}, i = 1, . . . , k,
such that for each x ∈ S, the relation

1
r
erfi(x) = 1

r
erfi(u) [1 + rαi (x, u)∇fi(u)η(x, u)] (> if x 6= u) for r 6= 0,

fi(x)− fi(u) = αi (x, u)∇fi(u)η(x, u) (> if x 6= u) for r = 0
(3)

holds.
If inequalities (3) are satisfied at any point u ∈ S, then f is said to be

αi-r-invex (strictly αi-r-invex) with respect to η on S.

Note that asymmetry between Definition 1 and Definition 2. The first one
exhibits only one positive factor α which however (in a vector optimization
problem) may be different with respect to the objective and the constraint
functions.

Remark 3. In order to define an analogous class of (strictly) V -r-incave
functions with respect to η, the direction of the inequalities in (2) should
be changed to the opposite one.

Remark 4. If, for all x, u ∈ S, αi(x, u) ≡ 1, i = 1, . . . , k, then the above
definition reduces to the usual definition of r-invexity (see [1]).
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Remark 5. In the case when η(x, u) = x − u we obtain a definition of
V -r-convexity (for k = 1 Definition 1 reduces to the definition of a scalar
r-convex function, see [5]).

Now, we consider an example of a V -r-invex function.

Example 6. Let f : R → R2 be a differentiable vector-valued function
defined by

f(x) =
(
log(x2 + 1), log(x2 − 2x+ 5)

)
.

It is not difficult to prove, by Definition 1 or Definition 2, that f is V -1-invex
on R with respect to η defined by

η(x, u) =

−
1

u− 1
if u < 0,

−1 if u ≥ 0,
(4)

where α = (α1, α2) : R× R→ R2 is defined by

α1(x, u) =

{
1
2u (u− 1) if u < 0,
1
2u if u ≥ 0,

α2(x, u) =


1
2

(
u2 − 2u+ 5

)
if u < 0,

1
2 if 0 ≤ u < 1,
2k − 1 if 2k − 1 ≤ u < 2k + 1, k = 1, 2, . . . .

But f is neither a V -invex function on R with respect to η and with α
defined above (see [15]) nor an r-invex vector-valued function on R with
respect to the function η (see Remark 4).

Proposition 7. Let f : Rn → Rk be a V -r-invex (V -r-incave) vector func-
tion with respect to η on Rn. The following propositions are true:

a) If a be any real number, then the function f + a is V -r-invex (V -r-
incave) with respect to η on Rn.

b) If λ is any positive real number, then the function λf is V -r/λ-invex
(V -r/λ-incave) with respect to η on Rn.

c) f is V -r-invex (V -r-incave) with respect to η on Rn if and only if −f
is V -(−r)-incave (V -(−r)-invex) with respect to η on Rn.
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3. Optimality conditions in multiobjective programming

In general, a multiobjective programming problem is formulated as the
following vector minimization problem:

f(x) = (f1(x), f2(x), . . . , fk(x))→ min

g(x) 5 0, (CVP)

h(x) = 0,
x ∈ X,

where fi : X → R, i ∈ K = {1, . . . , k}, gj : X → R, j ∈ J = {1, . . . ,m},
hs : X → R, s ∈ Q = {1, . . . , q} are differentiable functions on a nonempty
open set X ⊂ Rn.

Let D = {x ∈ X : g(x) 5 0, h(x) = 0} be the set of feasible solutions for
problem (CVP).

Definition 8. A vector optimization problem (CVP) is said to be a V -
r-invex multiobjective programming problem if each of the functions fi,
i ∈ K, gj , j ∈ J , hs, s ∈ Q are V -r-invex functions with respect to the same
function η on D, but the positive factor which however may be different
with respect to the objective and the constraint functions.

Unlike problems with a unique objective, in which there may exist an
optimal solution to the effect that it minimizes the objective function, in
vector optimization problem there does not necessarily exist a point which
may be optimal for all objectives. It is known that for a problem of this
type, the concept of optimal solution found in single-objective optimization
problem (so-called scalar optimization problem) is not valid. The concept
of an ideal point — one that minimizes each objective — is in general not
feasible. The solution concept of a multiobjective programming problem
(CVP) are referred to in the literature as efficient solutions, or Pareto-
optimal. Other variants include weakly efficient solutions, local efficient
solutions, etc.

For such optimization problems minimization means in general obtaining
(weak) Pareto optimal solutions in the following sense [24] (also see [17]):

Definition 9. A feasible point x is said to be a Pareto solution (efficient
solution) for (CVP) if and only if there exists no x ∈ D such that

f(x) ≤ f(x).
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Definition 10. A feasible point x is said to be a weak Pareto solution
(weakly efficient solution, weak minimum) for (CVP) if and only if there
exists no x ∈ D such that

f(x) < f(x).

Speaking roughly, a point x ∈ D is Pareto optimal in (CVP) if and only
if we can improve (in the sense of minimization) the value of one of the
objective functions only at the cost of making at least one of the remaining
objective functions worse; it is weak Pareto optimal if and only if we cannot
improve further all of the objective functions simultaneously.

The following result gives the relationship between the vector minimiza-
tion problem (CVP) and the corresponding scalar minimization problem.

Lemma 11 ([8]). A point x ∈ D is a Pareto optimal solution for (CVP) if
and only if x is a solution of the following problems for each i ∈ K:

fi (x)→ min

s.t. x ∈ D, fs (x) ≤ fs (x) , for all s ∈ K\ {i} .

In [10], Craven obtained the necessary optimality conditions for a multi-
objective programming problem (CVP). Thus, under a suitable constraint
qualification [6], [20], the following generalized Kuhn-Tucker conditions are
true:

Theorem 12. Let x be a Pareto minimal point (a weak Pareto minimal
point) in problem (CVP). Moreover, we assume that g and h satisfy a suit-
able constraint qualification at x [6], [20]. Then there exist λ ∈ Rk, ξ ∈ Rm,
µ ∈ Rq such that

λ∇f (x) + ξ∇g (x) + µ∇h (x) = 0, (5)

ξg (x) = 0, (6)

λ ∈ Rk+, λ 6= 0, ξ ∈ Rm+ , µ ∈ Rq+. (7)

Let J(z) := {j ∈ J : gj(z) = 0} denote the active constraint index set at
some fixed point z ∈ D.

Next, we point out role played by V -r-invexity to state the sufficiency
of the above Kuhn-Tucker conditions. Thus, we obtained results which
extended Jeyakumar’s results [15].

It is well known [25] that for such multiobjective optimization problems,
under convexity assumptions, the Kuhn-Tucker conditions (5)–(7) are also
sufficient for (weak) Pareto optimality. Now, we show that assumptions of
convexity (or invexity) may be replaced by V -r-invexity.
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Theorem 13. Let x be a feasible point for (CVP) and let fi, i ∈ K, be
αi-r-invex with respect to η at x on D, gj, j ∈ J (x), be βj-r-invex with
respect to η at x on D and hs, s ∈ Q, be γs-r-invex with respect to η at x
on D. Further, we assume that there exist λ ∈ Rk+, ξJ(x) ∈ RJ(x)

+ , µ ∈ Rq+,
(λ ≥ 0, ξJ(x) = 0, µ = 0), λ > 0, ξJ(x) = 0, µ = 0, such that:(

λ∇f (x) + ξJ(x)∇gJ(x) (x) + µ∇h (x)
)
η(x, x) = 0, (8)

ξg (x) = 0. (9)

Then x is a (weak) Pareto optimal point for (CVP).

Proof. We proceed by contradiction. Suppose that x is not a Pareto opti-
mal point for (CVP), that is, there exists x̃ ∈ D such that

f (x̃)− f (x) ≤ 0. (10)

By assumption, fi, i ∈ K, are αi-r-invex with respect to the same function
η at x on D. By Definition 2, we have

1
r
erfi(ex) = 1

r
erfi(x) [1 + rαi(x̃, x)∇fi (x) η(x̃, x)] .

From definition αi(x̃, x) > 0, i ∈ K, and since λ > 0, we obtain

1
r

λi
αi(x̃, x)

(
er(fi(ex)−fi(x)) − 1

)
= λi∇fi (x) η(x̃, x),

and so

1
r

k∑
i=1

λi
αi(x̃, x)

(
er(fi(ex)−fi(x)) − 1

)
=

k∑
i=1

λi∇fi (x) η(x̃, x).

Hence, by (10),

0 ≥ λ∇f (x) η(x̃, x). (11)

By assumption, gj , j ∈ J (x), are βj-r-invex with respect to the same func-
tion η at x on D. By Definition 2, we have

1
r
ergj(ex) = 1

r
ergj(x) [1 + rβi(x̃, x)∇gJ(x) (x) η(x̃, x)

]
, j ∈ J (x) .

From definition βj(x̃, x) > 0, and since ξj > 0, j ∈ J (x), we obtain

1
r

∑
j∈J(x)

ξj
βj(x̃, x)

(
e(r/ξ)j(ξjgj(ex)−ξjgj(x)) − 1

)
= ∑

j∈J(x)

ξj∇gj (x) η(x̃, x). (12)
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Hence, using (9) together with a feasibility of x̃, we get

1
r

∑
j∈J(x)

ξj
βj(x̃, x)

(
e(r/ξ)j(ξjgj(ex)−ξjgj(x)) − 1

)
5 0.

Thus, by (12)

0 = ξJ(x)∇gJ(x) (x) η(x̃, x). (13)

Analogously, by assumption, hs, s ∈ Q, be γs-r-invex with respect to η at
x on D. By Definition 2, we have

1
r
erhs(ex) = 1

r
erhs(x) [1 + rγi(x̃, x)∇hs (x) η(x̃, x)] , s ∈ Q.

Since γs(x̃, x) > 0, s ∈ Q, and µs = 0, then
1
r

∑
s∈Q

µs
γs(x̃, x)

(
er(hs(ex)−hs(x)) − 1

)
=∑

s∈Q
µs∇hs (x) η(x̃, x).

and by x̃, x ∈ D

0 =∑
s∈Q

µs∇hs (x) η(x̃, x). (14)

Adding (11), (13), (14) we obtain the inequality

0 ≥
(
λ∇f (x) + ξJ(x)∇gJ(x) (x) + µ∇h (x)

)
η(x̃, x).

which contradicts the Kuhn-Tucker condition (5).
Proof for a weak Pareto optimality is analogous.

Now, we present an example of a V -r-invex multiobjective programming
problem. Moreover, we show that the assumption of the positivity of the
Lagrange multiplier λ is required to prove the efficiency of x; to prove the
weak efficiency of x it is sufficient to assume that the Lagrange multiplier λ
is only nonnegative.

Example 14. We consider the following multiobjective programming prob-
lem

f(x) =
(
log(x2

1 + 1), log(x2
2 + 1)

)
g(x) =

(
log(

1
2
x2

1 +
1
2

), log(
1
2
x2

2 +
1
2

)
)
5 0.

For the above problem,

D =
{

(x1, x2) ∈ R2 : g(x) 5 0
}

=
{

(x1, x2) ∈ R2 : −1 5 x1 5 1 ∧ −1 5 x2 5 1
}
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It is not difficult to prove, by Definition 1 or Definition 2, that the considered
multiobjective programming problem is V -1-invex on D with respect to
η = (η1, η2) : D ×D → R2 defined by

ηi(x, u) =


1
2

if ui < 0,

−1 if ui ≥ 0,
i = 1, 2,

where α = (α1, α2) : D ×D → R2
+ is defined by

αi(x, u) =


−ui if ui < 0,
1 if ui = 0,
1
2
ui if ui > 0,

i = 1, 2,

and β = (β1, β2) : D ×D → R2
+ is defined by

βi(x, u) =

−
1
ui

if ui < 0,

1 if ui = 0,
i = 1, 2.

Now, at the point x̃ = (0, 1), condition (8) of Theorem 13 takes the following
form (

λ2 + 2ξ2
)

(−1) = 0,

and we have to take

λ2 = 0, ξ2 = 0.

But x̃ = (0, 1) is not the Pareto optimal solution in the considered prob-
lem (it is only the weak Pareto solution) since f ((0, 1)) = (0, log 2) ≥
(0, 0) = f ((0, 0)). It is not difficult to see that there no x ∈ D such that
f (x) ≤ f ((0, 0)). Moreover, at the point x = (0, 0) from the condition (8)
of Theorem 13 follows that we can take λi > 0, i = 1, 2. This means that
x = (0, 0) is the Pareto optimal solution in the considered multiobjective
optimization problem.

Now, we establish the sufficient condition for optimality in (CVP) under
V -r-invexity of the Lagrangian.

Theorem 15. Let x be a feasible point for (CVP) and we assume the fol-
lowing:

i) f , g, h are differentiable at x,
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ii) there exist λ ∈ Rk+, ξJ(x) ∈ RJ(x)
+ , µ ∈ Rq+, (λ ≥ 0, ξJ(x) = 0, µ = 0)

λ > 0, ξJ(x) = 0, µ = 0, such that:(
λ∇f (x) + ξJ(x)∇gJ(x) (x) + µ∇h (x)

)
η(x, x) = 0, ∀x ∈ D. (15)

iii) the Lagrangian λf + ξJ(x)gJ(x) + µh is V -r-invex with respect to η at
x on D.
Then x is a (weak) Pareto optimal point for (CVP).

Proof. We proceed by contradiction. Suppose that x is not a Pareto opti-
mal point for (CVP), that is, there exists x̃ ∈ D such that

f (x̃)− f (x) ≤ 0. (16)

Since x ∈ D and x̃ ∈ D, by hypothesis (ii) there exist λ > 0, ξJ(x) = 0,
µ = 0, such that (15) is fulfilled. Moreover, from the feasibility of x and x̃
in problem (CVP) together with λ > 0, ξ ≥ 0, µ ≥ 0 follows

0 ≥ λ (f (x̃)− f (x)) , 0 = ξJ(x)
(
gJ(x) (x̃)− gJ(x) (x)

)
, 0 = µ (h (x̃)− h (x)) .

Hence,

λf (x) + ξJ(x)gJ(x) (x) +µh (x) ≥ λf (x̃) + ξJ(x)gJ(x) (x̃) +µh (x̃) . (17)

Since λf + ξJ(x)gJ(x) + µh is V -r-invex with respect to η at x, by (17), we
get the inequality

0 ≥
(
λ∇f (x) + ξ∇gJ(x) (x) + µ∇h (x)

)
η(x̃, x),

which is a contradiction to the assumption (ii) of the theorem.
Proof for weak Pareto optimality is similar.

4. Mond-Weir duality

Now, in relation to (CVP) we consider the following multiobjective dual
problem, which is in the format of Mond-Weir [22] duality:

f(y) = (f1(y), f2(y), . . . , fk(y))→ max

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) = 0, ∀x ∈ D,
ξg(y) + µh(y) = 0,

y ∈ X, (MWVD)

λ ∈ Rk+, λ ≥ 0, λe = 1,

ξ ∈ Rm+ , ξ = 0,

µ ∈ Rq+, µ = 0,
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where e = (1, . . . ,1) ∈ Rk.
Let W denote the set of all feasible points of (MWVD) and I(z) the set

of objective functions indices for which a corresponding multipler is positive
at the point z, that is, I(z) := {i ∈ K : λi > 0}. Moreover, we denote by
prXW the projection of the set W on X.

Now, we give some useful lemma which a simple proof will be omitted.

Lemma 16. Let (y, λ, ξ, µ) be a feasible point for (MWVD). Moreover, we
assume one of the following conditions:

a) ξg + µh is a V -r-invex function with respect to η at y on D ∪ prXW ,
b) gj, j ∈ J (y), are βj-r-invex with respect to η at y on D ∪ prXW and

hs, s ∈ Q, are γs-r-invex with respect to η at y on D ∪ prXW .
Then

(ξ∇g(y) + µ∇h(y)) η(x, y) 5 0, ∀x ∈ D. (18)

Theorem 17 (Weak duality). Let x and (y, λ, ξ, µ) be feasible points for
(CVP) and (MWVD), respectively. Moreover, we assume that fi, i ∈ I (y),
are αi-r-invex with respect to the same function η at y on D ∪ prXW , gj,
j ∈ J (y), are βj-r-invex with respect to η at y on D ∪ prXW , hs, s ∈ Q,
are γs-r-invex with respect to η at y on D ∪ prXW . Then f (x) � f (y) .

Proof. We consider only the case r 6= 0. We proceed by contradiction.
Suppose that f (x) < f (y). Since fi, i ∈ I (y), are αi-r-invex with respect
to the same function η at y on D ∪ prXW , then by Definition 2,

λi
r

(
er(fi(x)−fi(y)) − 1

)
= λiαi(x, y)∇fi(y)η(x, y), i ∈ I (y) .

Using f (x) < f (y), we get

0 > λiαi(x, y)∇fi(y)η(x, y), i ∈ I (y) .

Since by definition αi(x, y) > 0, i = 1, . . . , k, then we obtain

0 > λ∇f(y)η(x, y). (19)

By assumption, gj , j ∈ J (y), are βj-r-invex with respect to η at y on
D∪prXW and hs, s ∈ Q, are γs-r-invex with respect to η at y on D∪prXW .
Then, by Corollary 16, the inequality (18) holds. After adding both sides
of (19) and (18), we obtain, for all x ∈ D, the inequality

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) < 0,

which contradicts the constraint of (MWVD).

Now, we prove weak duality in the sense of Mond-Weir under V -r-invexity
assumption imposed on the Lagrange function.
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Theorem 18 (Weak duality). Let x and (y, λ, ξ, µ) be feasible points for
(CVP) and (MWVD), respectively. Moreover, we assume that λf + ξg+µh
is V -r-invex with respect to η at y on D ∪ prXW . Then f (x) � f (y) .

Proof. We proceed by contradiction. Suppose that

f (x) < f (y) . (20)

Since λf + ξg + µh is V -r-invex with respect to η at y on D ∪ prXW , it
follows that the following inequality

1
r

(
er(λf(x)+ξg(x)+µh(x)−(λf(y)+ξg(y)+µh(y))) − 1

)
= α (x, y) (λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) (21)

holds for all x ∈ D. Using (20) together with the feasibility of x and
(y, λ, ξ, µ) for (CVP) and (MWVD), respectively, we obtain

0 >
1
r

(
er(λf(x)+ξg(x)+µh(x)−(λf(y)+ξg(y)+µh(y))) − 1

)
,

and by (21)

0 > α (x, y) (λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y), ∀x ∈ D, (22)

Since by definition α (x, y) > 0, it follows a contradiction to the dual con-
straint

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) = 0, for all x ∈ D.

Theorem 19 (Strong duality). Let x be a (weak) Pareto solution in (CVP)
at which a suitable constraint qualification is satisfied. Then there exist
λ ∈ Rk+, λ 6= 0, ξ ∈ Rm+ , µ ∈ Rq+, such that

(
x, λ, ξ, µ

)
is feasible for

(MWVD) with ξg (x) = 0. If also weak duality Theorem 17 (or Theorem 18)
holds then

(
x, λ, ξ, µ

)
is a (weak) maximum for (MWVD), and the objective

function values are equal in problems (CVP) and (MWVD).

Proof. From assumption, x is Pareto optimal solution in (CVP). Hence,
by Theorem 12, there exist λ ∈ Rk+, λ 6= 0, ξ ∈ Rm+ , ξ = 0, µ ∈ Rq+, µ = 0,
such that the Kuhn-Tucker conditions (5)–(7) hold. It follows from (5)–(7)
that

(
x, λ, ξ, µ

)
is feasible in (MWVD). Also, by weak duality (Theorem 17

or Theorem 18), it follows that
(
x, λ, ξ, µ

)
is optimal for (MWVD).

Theorem 20 (Converse duality). Let
(
y, λ, ξ, µ

)
be a weak maximum for

(MWVD) and λf + ξg+µh be V -r-invex with respect η at y on D∪prXW .
Then y is weak Pareto optimal in (CVP).
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Proof. This follows on the line of the proof of Theorem 18.

5. Wolfe duality

Relative to problem (CVP) we consider the following Wolfe dual:

ϕ(y, λ, ξ, µ) = f(y) + ξg(y) + µh(y)→ max

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) = 0, ∀x ∈ D,
y ∈ X, (WVD)

λ ∈ Rk+, λ ≥ 0, λe = 1,

ξ ∈ Rm+ , ξ = 0,

µ ∈ Rq+, µ = 0.

Let W̃ denote the set of all feasible points of (WVD).

Theorem 21 (Weak duality). Let x and (y, λ, ξ, µ) be feasible points for
(CVP) and (WVD), respectively. If λf + ξg + µh is V -r-invex with respect
to η at y on D ∪ prX W̃ . Then f (x) � ϕ (y, λ, ξ, µ) .

Proof. We assume that f (x) < ϕ (y, λ, ξ, µ) and exhibit a contradiction.
Because ξ ∈ Rm+ , µ ∈ Rq+, and x ∈ D, we get from the inequality above that

f(x) + ξg(x) + µh(x) < f(y) + ξg(y) + µh(y).

Since λ ≥ 0 and λe = 1 we obtain

λf(x) + ξg(x) + µh(x) < λf(y) + ξg(y) + µh(y). (23)

Using V -r-invexity of λf+ξg+µh with respect to η on D∪prX W̃ together
with (23), we get the inequality

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) < 0,

contradicting the dual constraint of (WVD).

Theorem 22 (Strong duality). Let x be a (weak) Pareto optimal in (CVP)
at which a suitable constraint qualification is satisfied. Then there exist
λ ∈ Rk+, λ 6= 0, ξ ∈ Rm+ , µ ∈ Rq+, such that

(
x, λ, ξ, µ

)
is feasible for (WVD)

and the objective functions of (CVP) and (WVD) are equal at these points.
If also, weak duality (Theorem 21) between (CVP) and (WVD) holds then(
x, λ, ξ, µ

)
is a (weak) maximum in (WVD).
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Proof. Since x satisfies all conditions of the Theorem 12, there exist λ ∈
Rk+, λ 6= 0, ξ ∈ Rm+ , ξ = 0, µ ∈ Rq+, µ = 0, such that the Kuhn-Tucker
conditions (5)–(7) hold. By (5)–(7), we have that

(
x, λ, ξ, µ

)
is feasible

for (WVD). Also, by Theorem 21, it follows that
(
x, λ, ξ, µ

)
is optimal for

(WVD).

Theorem 23 (Converse duality). Let
(
y, λ, ξ, µ

)
be a weak maximum for

(WVD) such that y ∈ D. Moreover, we assume that ϕ
(
y, λ, ξ, µ

)
is V -r-

invex with respect η at y on D ∪ prX W̃ . Then y is weak Pareto optimal in
(CVP).

Proof. We suppose that y is not a weak minimum for (CVP). Then, there
exists x̃ ∈ D such that f (x̃) < f (y). The feasibility of

(
y, λ, ξ, µ

)
in (WVD)

implies that ξg (y) = 0, µh (y) = 0, and also the feasibility of x̃ in (CVP)
implies that ξg (x̃) 5 0, µh (x̃) = 0. Since λ ∈ Rk+ and λe = 1, and by
f (x̃) < f (y) we get

λf (x̃) + ξg (x̃) + µh (x̃) < λf (y) + ξg (y) + µh (y) . (24)

Since λf + ξg + µh is V -r-invex with respect η at y for all x ∈ D ∪ prX W̃ ,
by (24), we get (

λ∇f(y) + ξ∇g(y) + µ∇h(y)
)
η(x̃, y) < 0.

This contradicts the dual constraints of problem (WVD), which holds at y
for all x ∈ D, and also for x̃.

6. Mixed duality

In a similar manner to that given in [22], relative to problem (CVP), we
consider the following multiobjective dual problem:

ϕ(y, λ, ξ, µ) = f(y) + ξg(y) + µh(y)→ max

(λ∇f(y) + ξ∇g(y) + µ∇h(y)) η(x, y) = 0, ∀x ∈ D,
ξg(y) + µh(y) = 0,

y ∈ X, (MVD)

λ ∈ Rk+, λ ≥ 0, λe = 1,

ξ ∈ Rm+ , ξ = 0,

µ ∈ Rq+, µ = 0.

Since the set of all feasible solutions for problem (MVD) is the same as
the set of feasible solutions for problem (MWVD) we denote it by W .
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Proofs for corresponding duality results for the above dual run on the
same lines as the proofs of the Theorems 18–20 and they were be omitted
in this work.

Theorem 24 (Weak duality). Let x and (y, λ, ξ, µ) be feasible points for
(CVP) and (MVD), respectively. If the Lagrangian ϕ (y, λ, ξ, µ) is V -r-
invex with respect to η at y on D ∪ prXW . Then f (x) � ϕ (y, λ, ξ, µ) .

Theorem 25 (Strong duality). Let x be a Pareto optimal or a weak Pareto
optimal for (CVP) at which a suitable constraint qualification [6] is satisfied.
Then there exist λ ∈ Rk+, λ 6= 0, ξ ∈ Rm+ , ξ = 0, µ ∈ Rq+, µ = 0, such
that

(
x, λ, ξ, µ

)
is feasible for (MVD) and the objective functions of (CVP)

and (MVD) are equal at these points. If, also, weak duality (Theorem 24)
between (CVP) and (MVD) holds then

(
x, λ, ξ, µ

)
is a (weak) maximum for

(MVD).

Theorem 26 (Converse duality). Let
(
y, λ, ξ, µ

)
be a weak maximum for

(MVD) such that y ∈ D. Moreover, we assume that the Lagrangian
ϕ
(
y, λ, ξ, µ

)
is V -r-invex with respect η at y on D ∪ prXW . Then y is

weak Pareto optimal in (CVP).
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