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Abstract. We study the existence of solutions to a class of problems

u′′ + f(t, u) = 0, u(0) = u(1) = 0,

where f(t, ·) is allowed to be singular at t = 0, t = 1.

1. Introduction

Consider the singular boundary value problem (BVP)

u′′ + f(t, u) = 0, (1.1)

u(0) = u(1) = 0, (1.2)

where f : (0, 1) × Rk → Rk, k ∈ N, is singular both at the end points
t = 0, t = 1 and f will be either a Carathéodory function, or a continuous
function. A model example for a continuous function f is

f(t, u) =
g(u)

tγ(1− t)γ
,
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where g is continuous. In the case γ < 2 the Dirichlet problem (1.1)–(1.2)
was investigated by several authors ([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15]). By a solution u of (1.1)–(1.2) in the continuous case we mean
a function u ∈ C([0, 1],Rk) ∩ C2((0, 1),Rk) satisfying (1.1) everywhere and
(1.2). In the Carathéodory case, this means a function u ∈ C([0, 1],Rk) with
absolutely continuous derivative u which satisfies (1.1) almost everywhere
and (1.2). In the case γ ≥ 2 the standard method of finding a fixed point to
an appropriate integral operator (see below) will not be acting in the space
C of all continuous functions u : [0, 1]→ Rk.

2. The general framework

The present work shows that having γ ≥ 2, we shall obtain the existence
of solutions for the problem (1.1)–(1.2). The results here are different. Our
method of proof is based on the definition of the following subspace

Xα :=

{
u ∈ C([0, 1],Rk) : sup

t∈(0,1)

|u(t)|
(t(1− t))α

<∞

}
,

α ∈ (0, 1) with the norm

||u||α = sup
t∈(0,1)

|u(t)|
tα(1− t)α

,

where C([0, 1],Rk) is the space of all continuous functions from [0, 1] into
Rk, and | · | means the Euclidean norm in Rk.

Functions from Xα vanish immediately at the ends of the interval [0, 1]
and the family of Xα is extending (increasing) when α decreases to 0. For
α ≥ 1, the space is not sufficiently large. It is obvious that the convergence
in Xα is the uniform convergence after multiplication by the function

t→ (t(1− t))−α

and that the compactness criterion in Xα is the classical Ascoli-Arzèla’s
theorem after the same operation. The first result Theorem 2.1 shows con-
ditions which guarantee that the Hammerstein operator connected with the
problem maps Xα into itself and is completely continuous. After that the ex-
istence of a solution can be obtained by using either the Schauder fixed point
Theorem 3.1 or the Leray-Schauder continuation Theorem 4.1 is devoted
similar results for the Carathéodory case. The last result Theorem 6.2 con-
cerns positive solutions. Now (1.1)–(1.2) has a solution u = u(t) ∈ C2(0, 1)
if and only if u ∈ C[0, 1] solves the operator equation

u(t) =
∫ 1

0
G(t, s)f(s, u(s))ds. (2.1)
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Define the operator u 7→ Tu by

Tu(t) :=
∫ 1

0
G(t, s)f(s, u(s))ds, (2.2)

where

G(t, s) :=

{
s(1− t) for 0 ≤ s < t,

t(1− s) for t ≤ s ≤ 1,

is the Green function corresponding to the linear differential operator −u′′
with the boundary value u(0) = u(1) = 0. Notice that

G(t, s) ≤ s(1− s) for all s, t ∈ [0, 1]. (2.3)

Remark 2.1. By definition of the Banach space Xα, we can see that for
any u ∈ Xα there is M > 0 such that for all t ∈ (0, 1), one has

|u(t)| ≤Mtα(1− t)α.

Theorem 2.1. Let f : (0, 1)×Rk → Rk be a continuous function. Assume
that f satisfies the following condition
(H): there exist

0 < δ ≤ 1
2
, c > 0, γ ≥ 2, p > γ − 1

such that for all t ∈ (0, δ) ∪ (1− δ, 1), and |u| ≤ δ,

|f(t, u)| ≤ c|u|p

tγ(1− t)γ
. (2.4)

Then if α ∈ (0, 1) satisfies the inequality

αp+ 1 > γ, (2.5)

the operator T maps Xα into itself and is completely continuous.

Proof. Let u ∈ Xα. By Remark 2.1, there is M > 0 such that for any
t ∈ (0, 1) we have

|u(t)| ≤Mtα(1− t)α.
This implies that there exists 0 < δ1 < δ such that for t ∈ (0, δ1)∪(1−δ1, 1),
one obtains |u(t)| ≤ δ. Hence, by (2.2) and (2.3)

|Tu(t)| =
∣∣∣∣∫ 1

0
G(t, s)f(s, u(s))

∣∣∣∣ ds
≤
(∫ δ1

0
+
∫ 1−δ1

δ1

+
∫ 1

1−δ1

)
s(1− s)|f(s, u(s))|ds

≤c||u||pα
(∫ δ1

0
+
∫ 1

1−δ1

)
(s(1− s))αp+1−γds
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+
∫ 1−δ1

δ1

s(1− s)|f(s, u(s))|ds.

The first summand is finite by (2.5). Since the interval [δ1, 1− δ1] is closed
and the function u : [δ1, 1 − δ1] → Rk is continuous, hence the subset
u([δ1, 1− δ1]) is compact in Rk.

Put
B := [δ1, 1− δ1]× u([δ1, 1− δ1]).

Then f|B is a bounded function on the set B, i.e., there exists M1 > 0 such
that

|f(t, x)| ≤M1, (2.6)

for all (t, x) ∈ B, and in consequence
∫ 1−δ1
δ1

s(1−s)|f(s, u(s))|ds exists.Thus
T is well defined. Now we shall prove that T maps Xα into itself. First we
verify, using the Lebesgue dominated convergence theorem, that:

Tu ∈ C[0, 1] (2.7)

and

sup
t∈(0,1)

|Tu(t)|
tα(1− t)α

<∞. (2.8)

In fact, let limn→∞ tn = t. One has

|Tu(tn)− Tu(t)| ≤
(∫ δ1

0
+
∫ 1−δ1

δ1

+
∫ 1

1−δ1

)
|G(tn, s)−G(t, s)||f(s, u(s))|ds

≤
(∫ δ1

0
+
∫ 1

1−δ1

)
ϕn(s)(s(1− s))αp−γds+

∫ 1−δ1

δ1

ψn(s)ds.

where

ϕn(s) =c||u||pα|G(tn, s)−G(t, s)|
ψn(s) =M |G(tn, s)−G(t, s)|,

where
M = sup{|f(t, u)| : (t, u) ∈ B} <∞,

one obtains
lim
n→∞

ψn(s) = 0

(since G is continuous), and

|ψn(s)| ≤ 2s(1− s) =: g(s).

We see that the function g is integrable. Therefore when n→∞∫ 1−δ1

δ1

|G(tn, s)−G(t, s)||f(s, u(s))|ds→ 0 (2.9)
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due to Lebesgue dominated convergence theorem. Now let

ϕn(s) = c||u||pα|G(tn, s)−G(t, s)|(s(1− s))αp−γ .
By the continuity of the function G, we have

lim
n→∞

ϕn(s) = 0,

and
ϕn(s) ≤ c(s(1− s))αp−γ+1

which is an integrable function. Hence

lim
n→∞

(∫ δ1

0
+
∫ 1

1−δ1

)
ϕn(s)ds = 0. (2.10)

Using (2.9)–(2.10), we have

lim
n→∞

Tu(tn) = Tu(t).

Hence Tu ∈ C[0, 1]. Notice that the map

t 7→ 1− t
(t(1− t))α

is decreasing, and the map

t 7→ t

(t(1− t))α

is increasing for any t ∈ (0, 1), so one obtains
1− t

(t(1− t))α
≤ 1− s

(s(1− s))α
for s ≤ t, (2.11)

and
s

(s(1− s))α
≤ t

(t(1− t))α
for s ≤ t. (2.12)

Let

H(t, s) :=
G(t, s)

(t(1− t))α
. (2.13)

By (2.11)–(2.12) we have

H(t, s) ≤ (s(1− s))1−α for all s, t ∈ [0, 1]. (2.14)

Using (2.11), (2.12) and (2.6), one has

sup
t∈(0,1)

|Tu(t)|
(t(1− t))α

| ≤c||u||pα
(∫ δ1

0
+
∫ 1

1−δ1

)
(s(1− s))αp+1−α−γds

+M1

∫ 1−δ1

δ1

(s(1− s))1−αds <∞.
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This shows that for all u ∈ Xα, Tu ∈ Xα, so that T : Xα → Xα. We
shall show that T is completely continuous. First we verify the continuity
of T . In fact, let limn→∞ un = u in Xα. We prove that Tun → Tu in Xα.
The sequence un as convergent is bounded, so there exists M > 0 such that
||un||α ≤ M for all n ∈ N and ||u||α ≤ M . Therefore there is δ1 ∈ (0, δ)
such that for t ∈ (0, δ1) ∪ (1 − δ1, 1), one has |un(t)| ≤ δ for n ∈ N, and
|u(t)| ≤ δ. We have

||Tun − Tu||α = sup
t∈(0,1)

∣∣∣∣Tun(t)− Tu(t)
(t(1− t))α

∣∣∣∣
≤
(∫ δ1

0
+
∫ 1−δ1

δ1

+
∫ 1

1−δ1

)
(s(1− s))1−α|f(s, un(s))− f(s, u(s))|ds.

Put
ψn(s) := (s(1− s))1−α|f(s, un(s))− f(s, u(s))|.

One obtains
|ψn(s)| ≤ 2(s(1− s))1−α|hM (s)|,

where

hM (s) =

{
cMp(s(1− s))αp−γ , s ∈ (0, δ1) ∪ (1− δ1, 1)
M1, s ∈ [δ1, 1− δ1].

Then by the Lebesgue dominated convergence theorem Tun → Tu, as n→
∞, in Xα.

We can see that the image T (D) of any bounded set D ⊂ Xα is relatively
compact in Xα, i.e., the family {Fu : u ∈ D}, where

Fu(t) :=
Tu(t)

(t(1− t))α
,

is uniformly bounded by (2.8) and equicontinuous since the function H has
a continuous extension on the product [0, 1]× [0, 1] , so that H is uniformly
continuous, i.e., for a given ε > 0 there is η > 0, such that for any s ∈ [0, 1]
and t1, t2 ∈ [0, 1] if |t1 − t2| < η then

|H(t1, s)−H(t2, s)| ≤ max
(

ε

3cRpµ
,
ε

3M0

)
,

where

M0 := max{|f(t, u(t))| : t ∈ [δ1, 1− δ1], u ∈ D},

µ :=
∫ 1

0
(s(1− s))αp−γds,

and R is a radius of the ball containing the set D. One has

|Fu(t1)− Fu(t2)| =
∣∣∣∣∫ 1

0
(H(t1, s)−H(t2, s))f(s, u(s))ds

∣∣∣∣
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≤
(∫ δ1

0
+
∫ 1−δ1

δ1

+
∫ 1

1−δ1

)
|H(t1, s)−H(t2, s)||f(s, u(s))|ds

≤ c||u||pα
(∫ δ1

0
+
∫ 1

1−δ1

)
|H(t1, s)−H(t2, s)|(s(1− s))αp−γds

+
∫ 1−δ1

δ1

|H(t1, s)−H(t2, s)||f(s, u(s))|ds =: J1 + J2.

We have

J1 ≤c||u||pα
(∫ δ1

0
+
∫ 1

1−δ1

)
ε

3cRpµ
(s(1− s))αp−γds

≤ ε

3µ

(∫ δ1

0
+
∫ 1

1−δ1

)
(s(1− s))αp−γds ≤ 2ε/3 if |t1 − t2| < η,

and

J2 ≤
∫ 1−δ1

δ1

|H(t1, s)−H(t2, s)||f(s, u(s))|ds ≤ ε

3
if |t1 − t2| < η.

Therefore
|Fu(t1)− Fu(t2)| ≤ ε if |t1 − t2| < η.

This means that the subset F (D) consists of equibounded and equicontin-
uous functions. Using the Arzèla-Ascoli theorem we can conclude that T is
completely continuous.

3. Application of Schauder theorem

The following theorem gives a solution to the problem under assumption
of the sublinearity of f . Unfortunately, f loses his strong singularity at
t = 0, t = 1 for large |u|.

Theorem 3.1. Assume
(i) there exist

0 < δ ≤ 1
2
, c > 0, γ ≥ 2, p > γ − 1

such that for any t ∈ (0, δ) ∪ (1− δ, 1), u ∈ Rk

|f(t, u)| ≤ c|u|p

(t(1− t))γ
, (3.1)

(ii) there exist

E > 0, c1 > 0, ρ ∈ (0, 1), ν ≤ γ

p− ρ+ 1
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such that for all t ∈ (0, 1), and |u| ≥ E, one has

|f(t, u)| ≤ c1|u|ρ

(t(1− t))ν
. (3.2)

Let α ∈ (0, 1) satisfy the condition (2.5). Set

ω := αp+ 1− α− γ, ξ := αρ+ 1− α− ν,

λ2 :=
∫ 1−δ

δ
(s(1− s))ξds and λ1 :=

∫ 1−δ

δ
(s(1− s))1−αds.

Let

M := sup{|f(t, u)| : |u| ≤ E; δ ≤ t ≤ 1− δ}.

If there is a positive number R such that

R ≥ cRp
(∫ δ

0
+
∫ 1

1−δ

)
(s(1 − s))ωds + max(Mλ1, c1λ2R

ρ). (3.3)

Then the problem (1.1)–(1.2) has a solution in Xα with the norm ||u||α ≤ R.

Proof. Let

B(0, R) := {u ∈ Xα : ||u||α ≤ R}

be a closed ball in Xα centered at 0 with radius defined in (3.3). We shall
prove that T maps this ball into itself, i.e., T (B(0, R)) ⊂ B(0, R). In fact,
let u ∈ B(0, R), one obtains

sup
t∈(0,1)

∣∣∣∣ Tu(t)
(t(1− t))α

∣∣∣∣ ≤ (∫ δ

0
+
∫ 1−δ

δ
+
∫ 1

1−δ

)
(s(1− s))1−α|f(s, u(s))|ds

≤ cRp
(∫ δ

0
+
∫ 1

1−δ

)
(s(1− s))ωds

+
∫ 1−δ

δ
(s(1− s))1−α max(M, c1||u||ρα(s(1− s))αρ−ν)ds.

So for ||u||α ≤ R, using (3.3), one has ||Tu||α ≤ R. Hence T has a fixed
point due to Schauder Fixed Point Theorem.

Remark 3.1. First assumption of the above theorem is slightly stronger
than condition (H) which guarantees the complete continuity of T .
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Example 3.1.

f(t, u)=



u4

(t(1− t))3 for |u| ≤ 1

|u|1/2

(t(1− t))1/2 for |u| ≥ 4

[
2

3(t(1− t))1/2 −
1

3(t(1− t))3 ]|u|+ 4
3(t(1− t))3 −

2
3(t(1− t))1/2

for |u| ∈ (1, 4).

Let δ = 1/2 and p = 4, γ = 3 when t is near the end points t = 0, t = 1
of the interval [0, 1], and u ∈ R with |u|-small, and

ρ = ν =
1
2

when t is everywhere on (0, 1) with |u| ≥ 4 =: E and let α ∈ (1/2, 5/7),
then by assumption, one has

1
2

= ν ≤ γ

p− ρ+ 1
=

2
3
.

Let now

α =
5
7
, p = 4, γ = 3, ρ = ν =

1
2
, δ =

1
2
, and c = c1 = 1,

then for these values the condition αp+ 1 > γ is satisfied and

ω = 1− α+ αp− γ =
1
7
, ξ = 1− α+ αρ− ν =

1
7
,

λ1 =
∫ 1−δ

δ
(s(1− s))1−αds = 0, λ2 =

∫ 1−δ

δ
(s(1− s))ξds = 0,(∫ δ

0
+
∫ 1

1−δ

)
(s(1− s))ωds =

∫ 1

0
(s(1− s))

1
7ds =

1
294

.

It is easy to verify that there exists R > 0 which satisfies

1
294

R4 ≤ R.

Remark 3.2. The integral is computed by MAPLE 6.
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4. Application of the topological degree

We shall use the following theorem

Theorem 4.1 ([6, Lemma 2.5.1]). Let Ω be a bounded open set in a real
Banach space E, 0 ∈ Ω and A : Ω → E be completely continuous. Suppose
Au 6= µu, for all u ∈ ∂Ω, µ ≥ 1. Then the operator A has a fixed point in
Ω.

Theorem 4.2. Suppose condition (H) holds and α satisfies (2.5). Assume
that there exists M > 0 such that for any |u| > M(t(1− t))α, one has

(f(t, u), u) ≤ 0 for all t ∈ (0, 1). (4.1)

Then the Dirichlet problem (1.1)–(1.2) has a solution in Xα.

Proof. First let us assume that inequality (4.1) is sharp. Let B(0,M0) be
a ball in Xα centered at 0 with radius M0, where M0 = M + 1. We shall
prove that the BVP

u′′ = −λf(t, u), u(0) = u(1) = 0, for λ ∈ (0, 1], (4.2)

has no solutions on ∂B(0,M0). Suppose on the contrary that there exist ϕ
and λ > 0 satisfying (4.2) such that ||ϕ||α = M0. Put

ψ(t) :=
ϕ(t)

(t(1− t))α
.

Since ϕ satisfies (4.2), then it is of the form

ϕ(t) = λ

∫ 1

0
G(t, s)f(s, ϕ(s))ds.

We can see that

ϕ′(t) = −λ
∫ t

0
sf(s, ϕ(s))ds+ λ

∫ 1

t
(1− s)f(s, ϕ(s))ds

So by condition (H), one has ϕ′ is a bounded function and then, due to the
l’Hospital theorem

lim
t→0,1

ψ(t)→ 0.

Since the function ψ is continuous, hence there is t0 ∈ (0, 1) such that∣∣∣∣ ϕ(t0)
(t0(1− t0))α

∣∣∣∣ = M0.

Then |ψ(t0)| = M0, and one has

0 =
d

dt
|ψ(t)|2t=t0 =

d

dt
(ψ(t), ψ(t))t=t0 = 2(ψ′(t0), ψ(t0)).
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Using (4.1)

0 ≥ d2

dt2
|ψ(t)|2t=t0 = 2(ψ”(t0), ψ(t0)) > 0 (4.3)

a contradiction. Any solution of (4.2) is a zero of the operator (1/λ)I − T .
Hence, by Theorem 4.1 with A = T , µ = 1/λ, the equation u− Tu = 0 has
a solution u ∈ Ω.

Now, pass to the general case: inequality (4.1) is as in the statement
of the theorem. Perturbing the right-hand side of the differential equation
by −(1/n)u, where n ∈ N, we have a solution un by the first part of the
proof. It is easily seen that the sequence (un)n satisfies the assumptions of
the Arzéla-Ascoli theorem. Thus it has a uniformly convergent subsequence
unm → u. The limit is a solution of the main problem.

Example 4.1. Let

f(t, u) =
−u2n+1

(t(1− t))γ
+ h(t),

where h ∈ Xα, t ∈ (0, 1), u ∈ R+, 2n + 1 > γ − 1, and 1 > α >
(γ − 1)/(2n+ 1). If h ∈ Xα we have

|h(t)| ≤M(t(1− t))α,
and for |u| ≥M(t(1− t))α, one has

uf(t, u) ≤ 0.

It is obvious, since

|uh(t)| ≤ |u|2n+2

(t(1− t))γ
for such u.

5. The Carathéodory conditions

Consider the Dirichlet problem (1.1)–(1.2) with f : (0, 1)×Rk → Rk sat-
isfying the Carathéodory conditions, i.e., f(·, u) : t 7→ f(t, u) is measurable
on (0, 1) for each u ∈ Rk and f(t, ·) : u 7→ f(t, u) is continuous on Rk for
almost all t ∈ (0, 1). Let

L{1−α} :=
{
h :
∫ 1

0
(s(1− s))1−α|h(s)|ds <∞

}
, α ∈ (0, 1)

(5.1)

be the L1-space for the measure µ on [0, 1] defined by the formula

µ(A) =
∫
A

(s(1− s))1−αds.
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Theorem 5.1. Suppose that f satisfies the Carathéodory conditions, and
for any M > 0 there is hM ∈ L{1−α}, such that for any |u| ≤M(t(1− t))α
we obtain

|f(t, u)| ≤ hM (t)
for a. e. t ∈ (0, 1). Then the operator T is completely continuous from Xα

into Xα, where T is of the form (2.2).

Proof. By assumption and by the fact that

t(1− t) ≤ (t(1− t))1−α,

for α ∈ (0, 1), and for any t ∈ [0, 1], one has

|G(t, s)f(s, ϕ(s))| ≤ s(1− s)|hM (s)|
for ||ϕ||α ≤M . This implies that∫ 1

0
s(1− s)|hM (s)|ds <∞,

and in consequence (2.2) exists. We prove that the operator T maps Xα

into itself. Let

Fu(t) :=
Tu(t)

(t(1− t))α
.

So the operator F is of the form:

Fu(t) :=
Tu(t)

(t(1− t))α
=
∫ 1

0
H(t, s)f(s, u(s))ds.

Let ϕ ∈ Xα such that ||ϕ||α ≤M , so there exists hM ∈ L{1−α}, and

|Fϕ(t)− Fϕ(t0)| ≤
∫ 1

0
|H(t, s)−H(t0, s)||f(s, ϕ(s))|ds

≤
∫ 1

0
|H(t, s)−H(t0, s)||hM (s)|ds.

Let
ψt(s) := |H(t, s)−H(t0, s)||hM (s)|.

Since the function H is uniformly continuous on the product [0, 1] × [0, 1],
then

lim
t→t0
|H(t, s)−H(t0, s)||hM (s)| = 0

uniformly with respect to t0 ∈ [0, 1], and

|ψt(s)| ≤ 2(s(1− s))1−α|hM (s)| =: g(s).

Hence, using the Lebesgue dominated convergence theorem again, one has

lim
t→t0

∫ 1

0
|H(t, s)−H(t0, s)||hM (s)|ds = 0.
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So

lim
t→t0
|Fϕ(t)− Fϕ(t0)| = 0 (5.2)

for any t0 ∈ (0, 1). This means that the function Fϕ is continuous on [0, 1],
so that Fϕ is bounded and in consequence Tϕ ∈ Xα for any ϕ ∈ Xα.
Now we shall prove that the subset T (B(0,M)) is relatively compact in
Xα, i.e., the subset F (B(0,M)) consists of equibounded and equicontinuous
functions. By (5.2), for any ε > 0 there is δ > 0 such that if |t − t0| < δ
implies ∫ 1

0
|H(t, s)−H(t0, s)||hM (s)|ds ≤ ε,

then for any function ||ϕ||α ≤M and |t− t0| < δ

|Fϕ(t)− Fϕ(t0)| ≤
∫ 1

0
|H(t, s)−H(t0, s)||hM (s)|ds ≤ ε,

i.e., the family {Fϕ : ||ϕ||α ≤ M} is equicontinuous. Moreover for ϕ ∈ Xα

and ||ϕ||α ≤M there exists hM ∈ L{1−α} such that

sup
t∈(0,1)

|Fϕ(t)| ≤ sup
t∈(0,1)

∫ 1

0
H(t, s)|f(s, ϕ(s)|ds

≤
∫ 1

0
(s(1− s))1−α|hM (s)|ds =: N < +∞.

Then the family {Fϕ : ||ϕ||α ≤ M} is equibounded. By Arzéla-Ascoli
theorem the operator T is compact in Xα. Now we shall prove that T is
continuous. In fact, let ϕn be a sequence of elements in Xα, converging to
some function ϕ of Xα, i.e.,

||ϕn − ϕ||α → 0,

when n → ∞. There is M > 0 such that ||ϕn||α ≤ M for all n ∈ N and
||ϕ||α ≤M . By assumption on f , one has

lim
n→∞

f(t, ϕn(t)) = f(t, ϕ(t))

for almost all t. Let ε > 0. Since the integral∫ 1

0
(s(1− s))1−α|hM (s)|ds

exists then there is δ > 0 such that for J ⊂ I, where I = [0, 1], and µ(J) < δ∫
J
(s(1− s))1−α|hM (s)|ds ≤ ε

4µ(I)
.

Using the Egoroff theorem there is J1 ⊂ I such that for µ(J1) ≤ δ
lim
n→∞

f(t, ϕn(t)) = f(t, ϕ(t))
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uniformly on I − J1, so there exists n0 ∈ N, and for n ≥ n0

(s(1− s))|f(s, ϕn(s))− f(s, ϕ(s))| ≤ ε

2µ(I)

for s ∈ I − J1. Therefore for all n ≥ n0

sup
t∈(0,1)

|Fϕn(t)− Fϕ(t)| ≤
(∫

I−J1

+
∫
J1

)
H(t, s)|f(s, ϕn(s))− f(s, ϕ(s))|ds

≤ ε

2µ(I)

∫
I−J1

µds+ 2
∫
J1

(s(1− s))1−α|hM (s)|ds

≤ε
2

+
ε

2
= ε.

Then
||Tϕn − Tϕ||α ≤ ε.

This means that the operator T is continuous.

Now to prove that the problem (1.1)–(1.2) has a solution, we can re-
peat Theorem 4.2 and the application of the Theorem 3.1 for Carathéodory
functions.

6. Positive solutions

Now we look for a positive solution to problem (1.1)–(1.2) in dimension
k = 1, for simplicity. Function f : (0, 1) × R+ → R+ (R+ = [0,∞)) is
supposed to be continuous or to satisfy the Carathéodory conditions. Let E
be a real Banach space and P denote a cone in E, i.e. P ⊂ E is a nonempty
closed convex set such that

u ∈P, λ ≥ 0 ⇒ λu ∈P ;

u ∈P ∩ (−P ) ⇒ u =0.

This cone defines a partial order in E:

u ≤ v ⇔ v − u ∈ P
and one can set

[u, v] := {w ∈ E : u ≤ w ≤ v}.
Any operator defined on a subset of E is called increasing if

u ≤ v ⇒ Tu ≤ Tv.
If u ≤ v and u 6= v, we write u < v.

We shall use the following theorem on fixed points for increasing opera-
tors.
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Theorem 6.1 ([6, Theorem 2.1.3]). Let E be a real Banach space, let
u0, v0 ∈ E, u0 < v0 and T : [u0, v0]→ E be an increasing operator such that
u0 ≤ Tu0, Tv0 ≤ v0. Suppose that T ([u0, v0]) is a relatively compact subset
of E. Then T has at least one fixed point in [u0, v0].

Now let Pα := {u ∈ Xα : u(t) ≥ 0, t ∈ [0, 1]} be a cone in the real Banach
space Xα. Similarly as in Section 2, we can prove that under condition (H),
(Theorem 2.1), the operator T maps Xα into itself, and T : Xα → Xα is
completely continuous.

Theorem 6.2. Let f be a non-negative continuous function satisfying the
condition (H), and there exist r0 > 0, c0 > 0, β > −2 such that for any
t ∈ (0, 1), one has:

f(t, r0t(1− t)) ≥ c0(t(1− t))β, (6.1)

λc0 ≥ r0, (6.2)

where

λ =
∫ 1

0
(s(1− s))1+βds. (6.3)

Suppose that there exists α ≤ 1/2 satisfying the condition

αp+ 1 > γ

and

lim
u→∞

sup
t∈(0,1)

f(t, u)
u

(t(1− t))α = 0, (6.4)

f(t, ·) is non-decreasing on R+ for 0 < t < 1. (6.5)

Then the operator T has a fixed point in Pα.

Proof. Define the operator u 7→ Tu as in (2.2). Put

u0 (t) = r0t (1− t) . (6.6)

Since t(1 − t) ≤ (t(1 − t))α then u0(t) ≤ r0(t(1 − t))α and using (6.1), one
has

Tu0(t) =
∫ 1

0
G(t, s)f(s, u0(s))ds

≥c0r0

(
(1− t)

∫ t

0
s1+β(1− s)βds+ t

∫ 1

t
sβ(1− s)β+1ds

)
≥c0r0t(1− t)

∫ 1

0
(s(1− s))1+βds.
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By (6.2)–(6.3), one has

c0r0t(1− t)
∫ 1

0
(s(1− s))1+βds ≥ r0t(1− t) = u0(t).

Therefore Tu0 ≥ u0. Using (6.4) one obtains: there exists R > r0 such that

f(t, R)
R

≤ 1
(t(1− t))α

, (6.7)

for any t ∈ (0, 1). Let v0(t) = R(t(1 − t))1−α. We observe that v0 ∈ Xα,
(since α ≤ 1/2), v0(t) < R, for all t ∈ [0, 1], and α ∈ (0, 1), u0(t) < v0(t),
for any t ∈ [0, 1]. By (6.7), (2.11) and (2.12) we have

Tv0(t) =
∫ 1

0
G(t, s)f(s, v0(s))ds ≤

∫ 1

0
G(t, s)f(s,R)ds

≤R
∫ t

0
(1− t) sds

(s(1− s))α
+R

∫ 1

t
t

(1− s)ds
(s(1− s))α

≤R
∫ t

0
(1− t) tds

(t(1− t))α
+R

∫ 1

t
t

(1− t)ds
(t(1− t))α

=R(t(1− t))1−α
∫ 1

0
ds = v0(t).

So for 0 ≤ t ≤ 1 we have
Tv0(t) ≤ v0(t).

We can apply Theorem 6.1. Therefore the operator T has one positive
solution.

Example 6.1. Let p > γ − 1. The following function satisfies all assump-
tions of the last theorem.

f(t, u) :=


up

tγ(1− t)γ
for 0 ≤ u ≤ t(1− t),

tp−γ(1− t)p−γ for u > t(1− t).
For 0 ≤ u ≤ v ≤ t(1− t),

f(t, u)− f(t, v) =
up − vp

tγ(1− t)γ
≤ 0,

(since p > γ − 1 ≥ 1). For u ≤ t(1− t), and v > t(1− t), one has

f(t, u)− f(t, v) =
up

tγ(1− t)γ
− tp−γ(1− t)p−γ

≤tp−γ(1− t)p−γ − tp−γ(1− t)p−γ = 0.

Now for t(1− t) < u ≤ v, we have

f(t, u)− f(t, v) = 0.
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Hence the function f(t, ·) is increasing for any t ∈ (0, 1). We can see that

lim
u→∞

f(t, u)
u

tα(1− t)α = 0.

If u > r0t(1− t) and r0 ≥ 1, then by (6.5) we note that

f(t, u) ≥ c0t
β(1− t)β

and from the assumption, one has

f(t, u) = tp−γ(1− t)p−γ .
So the inequality

tp−γ(1− t)p−γ ≥ c0t
β(1− t)β

must be satisfied and, in consequence, p− γ ≤ β.

Remark 6.1. All examples in this paper are not natural and complicated
but they demonstrate the fact that such examples exist.

Remark 6.2. We have tried to apply the Krasnoselskii Fixed Point The-
orem for cone-expansion maps but it seems that it is impossible in our
situation.
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