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Abstract. New existence results are presented for fuzzy differential and
integral equations. Our analysis combines the stacking theorem with
results concerning the maximal solution for an appropriate differential
equation.

1. Introduction

We consider fuzzy sets with respect to a nonempty base set X (usually
X = Rn). To each x ∈ X we assign a membership grade u(x) taking values
in [0, 1] with u(x) = 0 corresponding to non-membership, 0 < u(x) < 1
to partial membership and u(x) = 1 to full membership. For example a
fuzzy set u ∈ En is a function u : Rn → [0, 1] for which

(i) u is normal;
(ii) u is fuzzy convex;
(iii) u is upper semicontinuous;
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and
(iv) the closure of {x ∈ Rn : u(x) > 0}, denoted [u]0 and called the

support, is compact.
For 0 < α ≤ 1 the α-level set [u]α is defined by

[u]α = {x ∈ Rn : u(x) ≥ α}

and note the support is
⋃
α∈(0,1] [u]α. Clearly [u]α ∈ CK(Rn) for α ∈ [0, 1]

(here CK(Rn) denote the family of nonempty, convex, compact subsets of
Rn). We define D : En × En → [0,∞) by

D(u, v) = sup{dH([u]α, [v]α) : α ∈ [0, 1]};

here dH is the Hausdorff distance (i.e. the Hausdorff distance between two
nonempty bounded subsets A and B of a metric space (X, d) is

dH(A,B) = max {sup
a∈A

d(a,B), sup
b∈B

d(b, A)}

where d(a,B) = infb∈B d(a, b)). We let 0̂ be the fuzzy set defined by
0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0.

Fix T > 0 and let Cn[0, T ] be the space of continuous functions
f : [0, T ] → Rn with the usual norm i.e. |f |0 = supt∈[0,T ] |f(t)| for
f ∈ Cn[0, T ]. Denote the space of normal connected (i.e. the α-level
sets are connected) upper semicontinuous fuzzy sets with compact sup-
port over Cn[0, T ] by Cn[0, T ] and we give it the metric D0 induced
by the Hausdorff metric on compact subsets of Cn[0, T ] (i.e. D0(u, v) =
sup{dH([u]α, [v]α) : α ∈ [0, 1]} where d(z, w) = |z − w|0 for z ∈ [u]α and
w ∈ [v]α with u, v ∈ Cn[0, T ]). The compact sets here are characterized
by the Arzela–Ascoli theorem, as families of continuous functions on [0, T ]
which are equicontinuous and uniformly bounded. By L1

n[0, T ] we mean
the space of integrably functions from [0, T ] to Rn with the usual norm
i.e. |f |1 =

∫ T
0 |f(t)| dt for f ∈ L1

n[0, T ]. By L∞n [0, T ] we mean the space of
measurable functions from [0, T ] to Rn bounded almost everywhere on [0, T ]
with norm |f |∞ = ess sup0≤t≤T |f(t)| for f ∈ L∞n [0, T ]. Recall the dual of
L1
n[0, T ] (i.e (L1

n[0, T ])′) is L∞n [0, T ] and Cn[0, T ] is a closed subspace of
L∞n [0, T ]. A sequence {xn} in a Banach space X is said to converge weakly
to x ∈ X if f(xn)→ f(x) for all f ∈ X ′. A sequence {fn} in X ′ converges
weak? to f ∈ X ′ if fn(x)→ f(x) for all x ∈ X. If we supply L∞n [0, T ] with
the weak? topology then we let An[0, T ] = {f ∈ Cn[0, T ] : f ′ ∈ L∞n [0, T ]}.
If we supply Lpn[0, T ] (here 1 ≤ p <∞) with the weak topology then we let
Apn[0, T ] = {f ∈ Cn[0, T ] : f ′ ∈ Lpn[0, T ]}.

In Section 2 we look at the structure of solution sets for differential and
integral inclusions. The results in this section are new and extend previously
known results in the literature (see [1, 6, 9] and the references therein). Next
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we recall the results from the literature [2, 3] which will be used in Section 2.
First we consider the differential inclusion{

y′(t) ∈ F (t, y(t)) for a.e. t ∈ [0, T ]
y(0) ∈ M ⊆ Rn;

(1.1)

here F : [0, T ]×Rn → CK(Rn) and M ⊆ Rn is nonempty and compact (re-
spectively nonempty compact and connected). Let SD(M ;Rn) denote the
solution set of (1.1). For our results we will assume the following conditions
are satisfied:

x 7→ F (t, x) is upper semicontinuous for a.e. t ∈ [0, T ] (1.2)

t 7→ F (t, x) is measurable for every x ∈ Rn (1.3)
for each r > 0 there exists gr ∈ L1[0, T ] with
|F (t, x)| ≤ gr(t) for a.e. t ∈ [0, T ] and every
x ∈ Rn with |x| ≤ r

(1.4)

and{
∃M0 > sup {|y0| : y0 ∈M} with |y|0 = supt∈[0,T ] |y(t)| < M0

for any possible solution to (1.1).
(1.5)

Let ε > 0 be given and let τε : Rn → [0, 1] be the Urysohn function for(
B(0,M0) , Rn\B(0,M0 + ε)

)
such that τε(x) = 1 if |x| ≤ M0 and τε(x) = 0 if |x| ≥ M0 + ε. Let
F̃ (t, x) = τε(x)F (t, x) and consider the problem{

y′(t) ∈ F̃ (t, y(t)) for a.e. t ∈ [0, T ]
y(0) ∈ M ⊆ Rn. (1.6)

Theorem 1.1 ([3]). Suppose M ⊆ Rn is nonempty and compact (respec-
tively nonempty compact and connected) and assume (1.2), (1.3), (1.4) and
(1.5) hold. Let ε > 0 be given and suppose

|w|0 < M0 for any possible solution w to (1.6). (1.7)

Then SD(M ; Rn) is a nonempty compact (respectively nonempty compact
and connected) subset of A1

n[0, T ].

Remark 1.1. Suppose (1.4) is replaced by
for each r > 0 there exists Mr > 0 with
|F (t, x)| ≤Mr for a.e. t ∈ [0, T ] and every
x ∈ Rn with |x| ≤ r,

(1.8)
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and assume (1.2), (1.3), (1.5) and (1.7) hold. Then SD(M ; Rn) is a
nonempty compact (respectively nonempty compact and connected) sub-
set of An[0, T ] (see [3]).

Next we consider the integral inclusion

y(t) ∈ h(t) +
∫ t

0
k(t, s)F (s, y(s)) ds for t ∈ [0, T ] (1.9)

for any h ∈ M ⊆ Cn[0, T ]; here M is a nonempty compact (respectively
nonempty compact and connected) subset of Cn[0, T ], F : [0, T ] × Rn →
CK(Rn) and the matrix valued function k : {(s, t) : 0 ≤ s ≤ t ≤ T} →
L1
n×n[0, T ]. Let SI(M ; Rn) denote the solution set of (1.9). For our result

we will assume (1.2), (1.3) and (1.4) hold and in addition we suppose the
following conditions are satisfied:{

for each t ∈ [0, T ], k(t, s) is measurable on [0, t] and
k(t) = ess sup |k(t, s)|, 0 ≤ s ≤ t, is bounded on [0, T ] (1.10){

the map t 7→ kt is continuous from [0, T ] to
L∞([0, T ], L1

n×n[0, T ]) ; here kt(s) = k(t, s)
(1.11)

and {
∃M0 > sup {|h|0 : h ∈M} with |y|0 < M0

for any possible solution to (1.9).
(1.12)

Let ε > 0 be given and let τε : Rn → [0, 1] be as before. Let F̃ (t, x) =
τε(x)F (t, x) and consider the problem

y(t) ∈ h(t) +
∫ t

0
k(t, s) F̃ (s, y(s)) ds for t ∈ [0, T ] (1.13)

for any h ∈M .

Theorem 1.2 ([2]). Suppose M ⊆ Cn[0, T ] is nonempty and compact (re-
spectively nonempty compact and connected) and assume (1.2), (1.3), (1.4),
(1.10), (1.11) and (1.12) hold. Let ε > 0 be given and suppose{

|w|0 < M0 for any possible solution w

to (1.13) (for any h ∈M).
(1.14)

Then SI(M ; Rn) is a nonempty compact (respectively nonempty compact
and connected) subset of Cn[0, T ].



FUZZY DIFFERENTIAL AND INTEGRAL EQUATIONS 175

In Section 2 we show that SD(M ; Rn) and SI(M ; Rn) is a contin-
uum (in the appropriate space) if our nonlinearity F is bounded by
a L1-Carathéodory function g and if the ordinary differential equation{

v′(t) = a g(t, v(t)) for a.e. t ∈ [0, T ]
v(0) = a0

has a maximal solution (here a = 1 and a0 = sup{|y0| : y0 ∈M} for (1.1)
whereas a = supt∈[0,T ] k(t) and a0 = sup{|h|0 : h ∈M} for (1.9)). Recall
a function g : [0, T ]× R→ R is a L1-Carathéodory function if

(a) the map t 7→ g(t, y) is measurable for all y ∈ R;
(b) the map y 7→ g(t, y) is continuous for a.e. t ∈ [0, T ];

and
(c) for any r > 0 there exists µr ∈ L1[0, T ] such that |y| ≤ r implies
|g(t, y)| ≤ µr(t) for a.e. t ∈ [0, T ].

In Section 3 we discuss fuzzy differential and integral equations. First
we discuss fuzzy Volterra integral equation. Let V ∈ Cn[0, T ] (i.e. V is a
connected (i.e. the α-level sets are connected) upper semicontinuous fuzzy
set with compact support over Cn[0, T ], so the β-level sets are equibounded
and equicontinuous connected sets of continuous functions). Suppose that
V (t) is the value at t and F : [0, T ] × Rn → En. We consider the fuzzy
Volterra integral equation

x(t) = V (t) +
∫ t

0
k(t, s)F (s, x(s)) ds (1.15)

where we interpret [7, 10, 13] the equation (1.15) as a family of integral
inclusions

xβ(·) ∈ Vβ +
∫ ·

0
k(·, s)Fβ(s, xβ(s)) ds, 0 ≤ β ≤ 1, (1.16)

where the subscript β indicates that the β-level set of a fuzzy set is
involved (the system (1.16) can only have any significance as a replace-
ment for (1.15) if the solutions generate fuzzy sets). Note (1.16) (for
fixed β) will be understood to mean that there exists h ∈ Vβ such that
xβ(t) ∈ h(t) +

∫ t
0 k(t, s)Fβ(s, xβ(s)) ds. In [7], (1.15) and (1.16) was dis-

cussed if F satisfies the following “global” boundedness assumption:
there exists p ∈ L1[0, T ] with D(F (t, x), 0̂) ≤ |p(t)|
for a.e. t ∈ [0, T ] and x ∈ Rn; here 0̂ is the fuzzy
set defined by 0̂(x) = 1 if x = 0 and 0̂(x) = 0 if x 6= 0.

This condition is very restrictive from an application viewpoint since F
must be integrably bounded for all x ∈ Rn. In Section 3 we remove this
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condition and replace it with a “local” integrably boundedness assumption
there exists a L1-Carathéodory function
g : [0, T ]× [0,∞)→ [0,∞) such that D(F (t, x), 0̂) ≤ g(t, |x|)
for a.e. t ∈ [0, T ] and all x ∈ Rn,

which is exactly what one needs from an application viewpoint. To achieve
this we will use the new results for solution sets established in Section 2.

Also in Section 3 we discuss the fuzzy differential equation{
x′(t) = F (t, x(t)) for a.e. t ∈ [0, T ]
x(0) = X0 ∈ En

(1.17)

where F : [0, T ]×Rn → En. We interpret [8, 10, 13] the equation (1.17) as
a family of differential inclusions{

x′β(t) ∈ Fβ(t, xβ(t)) ≡ [F (t, xβ(t))]β

xβ(0) = x0,β ∈ [X0]β
(1.18)

where the subscript β indicates that the β-level set of a fuzzy set is involved
(the system (1.18) can only have any significance as a replacement for (1.17)
if the solutions generate fuzzy sets).

Finally in this section we recall the following results which will be needed
in the next section. The first result can be found in [6, Section 4.7], the
second in [13, 14], the third in [8, 13], the fourth in [5], and the fifth in [11].

Theorem 1.3. Define the linear operator W by

(W g)(t) =
∫ t

0
k(t, s) g(s) ds (here g ∈ L1

n[0, T ])

with (1.10) and (1.11) holding. If {gm} ⊆ L1
n[0, T ] with gm → g weakly in

L1
n[0, T ] as m → ∞, then there exists a subsequence S of {1, 2, ....} with

W gm →W g in Cn[0, T ] as m→∞ in S.

Theorem 1.4 (Stacking Theorem). Let {Yβ ⊆ Rn : 0 ≤ β ≤ 1} be a
family of subsets satisfying:

(i) Yβ ∈ K(Rn) for all 0 ≤ β ≤ 1 (here K(Rn) denotes the family of
nonempty compact connected (respectively nonempty compact) subsets
of Rn);

(ii) Yβ ⊆ Yα for 0 ≤ α ≤ β ≤ 1;

and

(iii) Yβ =
⋂∞
i=1 Yβi for any nondecreasing sequence βi → β in [0, 1].
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Then there exists a fuzzy set u ∈ Dn such that [u]β = Yβ; here Dn

denotes the set of upper semicontinuous normal connected (i.e. the β-level
sets are connected) fuzzy sets on Rn with compact support (respectively
Dn denotes the set of upper semicontinuous normal fuzzy sets on Rn with
compact support).

Remark 1.2. The conclusion of the stacking theorem is valid if the Yβ’s
are subsets of Cn[0, T ] and then u ∈ Cn[0, T ] if K(X) denotes the family
of nonempty compact connected subsets of X. Also the conclusion is valid
if the Yβ’s are subsets of An[0, T ] or A1

n[0, T ].

Theorem 1.5. Let Ω be an open subset of R × Rn and suppose G is
an upper semicontinuous map from Ω to En. Define F ( · , · , β) : Ω →
CK(Rn) to be the mapping (t, x) 7→ [G(t, x)]β (here 0 ≤ β ≤ 1). Then
F ( · , · , β) is upper semicontinuous on Ω.

Theorem 1.6 (Banach-Alaoglu). The unit ball in the dual of a normed
space is compact in the weak? topology. Thus the unit ball in L∞n [0, T ] =
(L1

n[0, T ])′ is weak? compact.

Theorem 1.7. Let (X, d) be a metric space and {Sm : m ∈ {1, 2, ...} }
a sequence of nonempty compact (connected) sets with Sm+1 ⊆ Sm for
m ∈ {1, 2, ...}. Then

⋂∞
m=1 Sm is a nonempty compact (connected) set.

2. Solution sets for differential and integral inclusions

In this section we use Theorem 1.1 (respectively Theorem 1.2) and put
natural assumptions (from an application viewpoint) on F to guarantee
that SD(M ;Rn) (respectively SI(M ;Rn)) is a continuum.

Theorem 2.1. Suppose M ⊆ Rn is nonempty and compact (respectively
nonempty compact and connected) and assume (1.2) and (1.3) hold. In
addition suppose the following conditions are satisfied:

there exists a L1-Carathéodory function
g : [0, T ]× [0,∞)→ [0,∞) such that |F (t, x)| ≤ g(t, |x|)
for a.e. t ∈ [0, T ] and all x ∈ Rn (2.1)

and 
the problem{
v′(t) = g(t, v(t)) for a.e. t ∈ [0, T ]
v(0) = max{|w0| : w0 ∈M}

has a maximal solution r(t) on [0, T ].

(2.2)
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Then SD(M ; Rn) is a nonempty compact (respectively nonempty compact
and connected) subset of A1

n[0, T ].

Proof. Let ε > 0 be given and M0 = supt∈[0,T ] r(t) + 1 = r(T ) + 1. We
will show any possible solution u of (1.1) satisfies |u|0 < M0 and any
possible solution y of (1.6) satisfies |y|0 < M0. If this is true then Theorem
1.1 guarantees the result. Suppose u is a possible solution of (1.1) and
assume u(0) = x0 ∈ M . Let t ∈ [0, T ] and we will show |u(t)| < M0.
For convenience we let a0 = max{|w0| : w0 ∈ M}. If |u(t)| ≤ a0 we are
finished so it remains to discuss the case when |u(t)| > a0. In this case
since |u(0)| = |x0| ≤ a0 there exists a ∈ [0, t) with

|u(s)| > a0 for s ∈ (a, t] and |u(a)| = a0.

Also
|u(s)|′ ≤ |u′(s)| ≤ g(s, |u(s)|) a.e. on (a, t)

so {
|u(s)|′ ≤ g(s, |u(s)|) a.e. on (a, t)
|u(a)| = a0.

Now a standard comparison theorem for ordinary differential equations in
the real case [12, Theorem 1.10.2] guarantees that |u(s)| ≤ r(s) for s ∈
[a, t]. In particular |u(t)| ≤ r(t). As a result |u|0 < M0. Next suppose y is
a possible solution of (1.6) and assume y(0) = x0 ∈ M . Let t ∈ [0, T ] and
assume |y(t)| > a0. Then there exists a ∈ [0, t) with

|y(s)| > a0 for s ∈ (a, t] and |y(a)| = a0.

Also since τε : Rn → [0, 1] we have

|y(s)|′ ≤ |y′(s)| ≤ g(s, |y(s)|) a.e. on (a, t),

and as above we have |y(s)| ≤ r(s) for s ∈ [a, t]. In particular |y(t)| ≤ r(t).
As a result |y|0 < M0.

Remark 2.1. One could also obtain an analogue of Theorem 2.1 when the
solution set lies in An[0, T ] if we use Remark 1.1.

Theorem 2.2. Suppose M ⊆ Cn[0, T ] is nonempty and compact (respec-
tively nonempty compact and connected) and assume (1.2), (1.3), (1.10),
(1.11) and (2.1) hold. In addition suppose the following conditions are sat-
isfied:

g(t, x) is nondecreasing in x for a.e. t ∈ [0, T ] (2.3)
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and 
the problem{
v′(t) =

(
supt∈[0,T ] k(t)

)
g(t, v(t)) for a.e. t ∈ [0, T ]

v(0) = sup{|h|0 : h ∈M}
has a maximal solution r(t) on [0, T ].

(2.4)

Then SI(M ; Rn) is a nonempty compact (respectively nonempty compact
and connected) subset of Cn[0, T ].

Proof. We will apply Theorem 1.2 with ε > 0 and M0 = supt∈[0,T ] r(t)+1.
Let u be a possible solution of (1.9) for any h ∈M . Then

|u(t)| ≤ sup{|w|0 : w ∈M}+

(
sup
t∈[0,T ]

k(t)

) ∫ t

0
g(s, |u(s)|) ds ≡ v(t)

for t ∈ [0, T ]. Now (2.3) implies

v′(t) =

(
sup
t∈[0,T ]

k(t)

)
g(t, |u(t)|) ≤

(
sup
t∈[0,T ]

k(t)

)
g(t, v(t)) a.e.,

so {
v′(t) ≤

(
supt∈[0,T ] k(t)

)
g(t, v(t)) for a.e. t ∈ [0, T ]

v(0) = sup{|w|0 : w ∈M}.
Now [12, Theorem 1.10.2] guarantees that v(t) ≤ r(t) for t ∈ [0, T ], so
|u(t)| < M0 for t ∈ [0, T ]. A similar argument guarantees that |y(t)| < M0,
t ∈ [0, T ], for any possible solution y of (1.13) for any h ∈M .

3. Fuzzy differential and integral equations

We first consider (1.15) where we interpret (1.15) as a family of inclusions
(1.16). We denote the solution set of the βth inclusion by Sβ(Vβ) (the
system (1.16) can only have any significance as a replacement for (1.15) if
the solutions generate fuzzy sets i.e. if the sets Sβ(Vβ) are level sets of
a fuzzy set S(V ) say). Before we state our main result recall a mapping
H : [0, T ]→ En is strongly measurable if each level set mapping [H( · )]β :
[0, T ]→ CK(Rn) is measurable.

Theorem 3.1. Suppose F : [0, T ] × Rn → En and assume the following
conditions hold:

t 7→ F (t, x) is strongly measurable for every x ∈ Rn (3.1)

x 7→ F (t, x) is upper semicontinuous for a.e. t ∈ [0, T ] (3.2)
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V ∈ Cn[0, T ] (3.3){
for each t ∈ [0, T ], k(t, s) is measurable on [0, t] and
k(t) = ess sup |k(t, s)|, 0 ≤ s ≤ t, is bounded on [0, T ] (3.4){

the map t 7→ kt is continuous from [0, T ] to
L∞([0, T ], L1

n×n[0, T ]) ; here kt(s) = k(t, s)
(3.5)

there exists a L1-Carathéodory function
g : [0, T ]× [0,∞)→ [0,∞) such that D(F (t, u), 0̂) ≤ g(t, |u|)
for a.e. t ∈ [0, T ] and all u ∈ Rn (3.6)

g(t, x) is nondecreasing in x for a.e. t ∈ [0, T ] (3.7)
for eaxh β ∈ [0, 1], the problem{
v′(t) =

(
supt∈[0,T ] k(t)

)
g(t, v(t)) for a.e. t ∈ [0, T ]

v(0) = sup{|h|0 : h ∈ Vβ}
has a maximal solution rβ(t) on [0, T ]

(3.8)

and{
H(t, · , · ) : Rn × [0, 1]→ CK(Rn) given by (x, β)→ [F (t, x)]β

is upper semicontinuous for a.e. t ∈ [0, T ].
(3.9)

Then the solution set Sβ(Vβ) of the family of inclusions (1.16) are the level
sets of a fuzzy set S(V ) ∈ Cn[0, T ].

Remark 3.1. In Theorem 3.1, (3.3) could be replaced by V ∈ Cn? [0, T ]
(here Cn? [0, T ] denotes the space of normal upper semicontinuous fuzzy
sets with compact support over Cn[0, T ]).

Remark 3.2. Of course (3.9) implies (3.2). Note also that (i) [u]α ⊆ [u]β

for 0 ≤ β ≤ α ≤ 1 and (ii) if (αk) is a nondecreasing sequence converging to
α > 0 then [u]α =

⋂
k≥1 [u]αk , guarantee that R(t, x, · ) : [0, 1]→ CK(Rn)

given by β 7→ [F (t, x)]β is upper semicontinuous for each (t, x) ∈ [0, 1]×Rn.
Notice assumption (3.9) is only needed to establish (3.17), so in Theorem
3.1 we could replace (3.9) with the following closure property:

for any sequences {βi} ⊆ [0, 1], {xβi} ⊆ Cn[0, T ],
{uβi} ⊆ L1

n[0, T ] with βi → β, xβi → xβ in Cn[0, T ],
uβi → uβ weakly in L1

n[0, T ] with uβi( · ) ∈ Fβi( · , xβi( · ))
a.e., we have uβ(t) ∈ Fβ(t, xβ(t)) for a.e. t ∈ [0, T ].

(3.10)
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Proof. We will apply Theorem 1.4 (with Remark 1.2). Let Yβ = Sβ(Vβ).
Fix β ∈ [0, 1]. First we claim

Yβ is nonempty compact and connected. (3.11)

To see this we apply Theorem 2.2. Note (with F replaced by Fβ) (1.2)
follows from (3.2) and Theorem 1.5, (1.3) follows from (3.1), (2.1) (see
(3.6)) and (2.4) (see (3.8)). Now Theorem 2.2 guarantees that (3.11) is
true, so condition (i) of Theorem 1.4 (with Remark 1.2) is satisfied. Let
0 ≤ α ≤ β ≤ 1. Now Vβ ⊆ Vα and Fβ ⊆ Fα so

Yβ = Sβ(Vβ) ⊆ Sα(Vα) = Yα, (3.12)

and condition (ii) of Theorem 1.4 (with Remark 1.2) is satisfied. It remains
to show condition (iii) of Theorem 1.4. Let βi be a nondecreasing sequence
in [0, 1] with βi → β. (As a matter of interest note since Sβi(Vβi) is
a nonincreasing sequence of nonempty compact and connected sets then
Theorem 1.7 guarantees that S =

⋂
i Sβi(Vβi) is nonempty compact and

connected.) We claim

Sβ(Vβ) = S. (3.13)

If (3.13) is true then our result follows from Theorem 1.4 (with Remark
1.2). It remains to show (3.13). Now since Sβ(Vβ) ⊆ Sβi(Vβi) for each
i we have Sβ(Vβ) ⊆ S. Now for each i let xβi ∈ Sβi(Vβi). Then there
exists a continuous function vβi ∈ Vβi and an integrable function uβi( · ) ∈
Fβi( · , xβi( · )) with

xβi(t) = vβi(t) +
∫ t

0
k(t, s)uβi(s) ds. (3.14)

Now {vβi} is uniformly bounded and equicontinuous from the Arzela–Ascoli
theorem (recall V0 is compact and Vβi ⊆ V0). Now for t ∈ [0, T ] we have

|xβi(t)| ≤ sup{|h|0 : h ∈ V0}+

(
sup
t∈[0,T ]

k(t)

) ∫ t

0
g(s, |xβi(s)|) ds ≡ wβi(t).

Then

w′βi(t) =

(
sup
t∈[0,T ]

k(t)

)
g(t, |xβi(t)|) ≤

(
sup
t∈[0,T ]

k(t)

)
g(t, wβi(t))

a.e. so {
w′βi(t) ≤

(
supt∈[0,T ] k(t)

)
g(t, wβi(t)) for a.e. t ∈ [0, T ]

wβi(0) = sup{|h|0 : h ∈ V0}.
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Now [12, Theorem 1.10.2] guarantees that wβi(t) ≤ r(t) for t ∈ [0, T ]; here
r = r0 (r0 is as in (3.8)). Thus

|xβi(t)| ≤ r(t) ≤ sup
t∈[0,T ]

r(t) = r(T ) for t ∈ [0, T ]. (3.15)

As a result {xβi} is uniformly bounded. Also there exists hr(T ) ∈ L1[0, T ]
with

|g(t, x)| ≤ hr(T )(t) for a.e. t ∈ [0, T ] and |x| ≤ r(T ). (3.16)

Now for t, τ ∈ [0, T ] with t > τ we have

|xβi(t)− xβi(τ)| ≤|vβi(t)− vβi(τ)|+
∫ t

0
|[k(t, s)− k(τ, s)]uβi(s)| ds

+
∫ t

τ
|k(τ, s)uβi(s)| ds

≤|vβi(t)− vβi(τ)|

+ |k(t, · )− k(τ, · )|L∞
∫ t

0
|uβi(s)| ds

+

(
sup
t∈[0,T ]

k(t)

) ∫ t

τ
|uβi(s)| ds

≤|vβi(t)− vβi(τ)|

+ |k(t, · )− k(τ, · )|L∞
∫ t

0
hr(T )(s) ds

+

(
sup
t∈[0,T ]

k(t)

) ∫ t

τ
hr(T )(s) ds.

This together with (3.5) and the fact that {vβi} is equicontinuous implies
that {xβi} is equicontinuous. As a result there exists {xβi(1)} ⊆ {xβi}
with xβi(1) → xβ ∈ Cn[0, T ]. In addition there exists {vβi(2)} ⊆ {vβi(1)}
with vβi(2) → vβ ∈ Vβ (clearly), and also of course xβi(2) → xβ. From
(3.15) and (3.16) we have

|uβi(2)(t)| ≤ hr(T )(t) a.e.,

so the sequence of functions

wβi(2)(t) =
uβi(2)(t)

hr(T )(t)

belongs to the unit ball of L∞n [0, T ]. Note Theorem 1.6 guarantees that
the unit ball of L∞n [0, T ] is weak? compact. Thus there is a subse-
quence {wβi(3)} ⊆ {wβi(2)} which converges weak? to a wβ ∈ L∞n [0, T ].
Now [4, p. 14] guarantees that {uβi(3)} converges weakly in L1

n[0, T ] to
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uβ = hr(T )wβ. Next Theorem 1.3 guarantees that there is a subsequence
{uβi(4)} ⊆ {uβi(3)} with∫ t

0
k(t, s)uβi(4)(s) ds→

∫ t

0
k(t, s)uβ(s) ds.

This together with (3.14) implies

xβ(t) = vβ(t) +
∫ t

0
k(t, s)uβ(s) ds.

We claim

uβ(t) ∈ Fβ(t, xβ(t)) for a.e. t ∈ [0, T ]. (3.17)

If (3.17) is true then (1.16) is satisfied so xβ ∈ Sβ(Vβ). Thus S ⊆ Sβ(Vβ)
and (3.13) is true. It remains to show (3.17). Fix t ∈ [0, T ] and let ε > 0
be given. Now (3.9) (assume of course it is holding for this t) guarantees
that there exists a neighborhood U of (xβ(t), β) such that for (v, α) ∈ U
we have

[F (t, v)]α ⊆ [F (t, xβ(t))]β + εB?;

here B? is the unit ball in Rn. Choose i(4) sufficiently large so that
(xβi(4)(t), βi(4)) ∈ U and thus

[F (t, xβi(4)(t))]
βi(4) ⊆ [F (t, xβ(t))]β + εB?.

Thus given a neighborhood N of zero there exists i(5) sufficiently large so
that (uβi(t), xβi(t)) ∈ graph (Gβ)+N for i ≥ i(5); here Gβ( · ) = F (t, · , β)
is the map given by x 7→ [F (t, x)]β. Now (3.17) holds from the convergence
theorem in [4, p. 60].

Next we consider (1.17) where we interpret (1.17) as a family of inclusions
(1.18). We denote the solution set of the βth inclusion by Sβ([X0]β,Rn).
Note the system (1.18) can only have any significance as a replacement for
(1.17) if the solutions generate fuzzy sets i.e. if the sets Sβ([X0]β,Rn) are
level sets of a fuzzy set S(X0,Rn) say.

Theorem 3.2. Suppose F : [0, T ] × Rn → En and assume (3.1), (3.2),
(3.6) and (3.9) hold. In addition assume the following conditions are satis-
fied:

X0 ∈ En (3.18)
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and 
for each β ∈ [0, 1], the problem{
v′(t) = g(t, v(t)) for a.e. t ∈ [0, T ]
v(0) = sup{|w0| : w0 ∈ [X0]β}

has a maximal solution rβ(t) on [0, T ].

(3.19)

Then the solution set Sβ([X0]β,Rn) of the family of inclusions (1.18) are
the level sets of a fuzzy set S(X0,Rn) defined on A1

n[0, T ].

Remark 3.3. It is easy to adjust (3.6) so that A1
n[0, T ] in the statement

of Theorem 3.2 is replaced by An[0, T ].

Remark 3.4. In Theorem 3.2 assumption (3.9) could be replaced by (3.10).

Proof. Let Yβ = Sβ([X0]β,Rn). The proof is essentially the same argument
as in Theorem 3.1 with the only significant difference being in checking that
if βi is a nondecreasing sequence in [0, 1] with βi → β then

S =
⋂
i

Sβi([X0]βi ,Rn) ⊆ Sβ([X0]β,Rn). (3.20)

To see (3.20) let xβi ∈ Sβi([X0]βi ,Rn). There exists x0,βi ∈ [X0]βi and an
integrable function uβi( · ) ∈ Fβi( · , xβi( · )) with

xβi(t) = x0,βi +
∫ t

0
uβi(s) ds. (3.21)

Let t ∈ [0, T ] and we will show |xβi(t)| ≤ r(T ); here r = r0. Let a0 =
sup{|w0| : w0 ∈ [X0]0}. If |xβi(t)| ≤ a0 we are finished so it remains to
discuss the case when |xβi(t)| > a0. In this case since |xβi(0)| = |x0,βi | ≤ a0
there exists a ∈ [0, t) with

|xβi(s)| > a0 for s ∈ (a, t] and |xβi(a)| = a0.

Also |xβi(s)|′ ≤ |x′βi(s)| a.e. on (a, t) so we have{
|xβi(s)|′ ≤ g(s, |xβi(s)|) a.e. on (a, t)
|xβi(a)| = a0.

Now [12, Theorem 1.10.2] guarantees that |xβi(s)| ≤ r(s) for s ∈ [a, t], so
|xβi(t)| ≤ r(t). Thus

|xβi(t)| ≤ r(T ) for t ∈ [0, T ], (3.22)

so {xβi} is uniformly bounded. Also there exists hr(T ) ∈ L1[0, T ] with

|g(t, x)| ≤ hr(T )(t) for a.e. t ∈ [0, T ] and |x| ≤ r(T ), (3.23)
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so for t, τ ∈ [0, T ] with t > τ we have

|xβi(t)− xβi(τ)| ≤
∫ t

τ
|uβi(s)| ds ≤

∫ t

τ
hr(T )(s) ds,

and as a result {xβi} is equicontinuous. Now follow the argument in the
proof of Theorem 3.1.
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