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Abstract. Classical results on weakly compactly generated (WCG)
Banach spaces imply the existence of projectional resolutions of iden-
tity (PRI) and the existence of many projections on separable sub-
spaces (SCP). We address the questions if these can be the only pro-
jections in a nonseparable WCG space, in the sense that there is a PRI
(Pα : ω ≤ α ≤ λ) such that any projection is the sum of an operator
in the closure of the linear span of countably many Pα’s (in the strong
operator topology) and a separable range operator. Wark’s modifica-
tion of Shelah’s and Steprāns’ construction provides an unconditional
example for λ = ω1. We note that it is impossible for λ > ω2.
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. The main result of the paper is that for λ = ω2, the second uncount-
able cardinal, the question is logically undecidable and depends on ad-
ditional axioms deciding the combinatorics on ω2; for example Chang’s
conjecture implies that there are other projections than the projections
mentioned above. The full strength results concern all linear operators
not just the projections.

1. Introduction

Let X be a weakly compactly generated (i.e., equal to the closure of
the linear span of a subset which is compact in the weak topology and
abbreviated WCG in the sequel) Banach space of density λ, where λ is an
infinite cardinal. Amir and Lindenstrauss [1] (see also [5]) showed that in
any WCG Banach space X there is a sequence of projections (Pα : ω ≤ α ≤
λ) called a projectional resolution of identity which satisfies for ω ≤ α ≤ λ:

i) ||Pα|| = 1,
ii) Pα ◦ Pβ = Pβ ◦ Pα = Pα whenever ω ≤ α ≤ β ≤ λ,
iii) the density of the range of Pα is not bigger than the cardinality of α,
iv)

⋃
{Pβ[X] : β < α} is norm dense in Pα[X] if α is a limit ordinal,

v) Pλ = IdX .
As a closed subspace Y is a range of a projection in a Banach space X if

and only if X = Y ⊕ Z for some closed subspace Z, i.e., if and only if Y is
complemented in X, the projectional resolution of identity provides a con-
tinuous, increasing, well-ordered sequence of small complemented subspaces
whose union is the entire space.

Amir and Lindenstrauss also proved that for any separable subspace Y of
X as above there is a range of a projection (i.e., a complemented subspace)
which is separable and includes Y . It is natural to ask if these projections
can generate, in a sense, all projections in X.

In [17] Shelah and Steprāns constructed a Banach space of density ω1
where any operator is a multiplication by a constant plus a separable range
operator. In [21] Wark modified it to obtain a WCG space with these
properties. Of course such a space has the property that for any PRI,
(Pα : ω ≤ α ≤ ω1) any projection is the sum of a multiple of Pω1 , and a
separable range projection. In [2] Argyros, Lopez-Abad and Todorčević were
able to eliminate many operators with separable ranges from such spaces.
Things complicate if we consider spaces of bigger densities λ > ω1, as Pω1

is an operator which is not a multiple of the identity plus a separable range
operator.

Definition 1.1. We say that a weakly compactly generated Banach space
X has few operators if and only if there is a PRI, (Pα : ω ≤ α ≤ λ) such
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that any operator T : X → X is of the form P +S where P is in the closure
of the linear span of countably many Pα’s (in the strong operator topology)
and S has a separable range.

In Section 2 we follow Wark’s modification of Shelah’s and Steprāns’
construction and obtain a consistent example of a WCG Banach space of
density ω2 which has few operators. The new feature is the use of a family
of countable subsets of ω2 which plays the role of the initial fragments of ω1
to define the norm. Such family is added in Section 3 by forcing (see [11]),
exists only consistently and can be considered as a version of a simplified
morass (see [20]).

In Section 4 we assume a model-theoretic statement known as Chang’s
Conjecture which implies the non-existence of the families of Section 2.
Under this assumption we prove that for any WCG Banach space X of
density λ = ω2 for any PRI there is a projection which witnesses the fact
that X has more than few operators. Thus the question of the existence of
WCG Banach space of density ω2 with few operators is undecidable based
on the usual axioms of set theory. Section 4 is concluded with remarks on
diagonal operators, some questions and the observation that there are no
WCG Banach spaces of density bigger than ω2 with few operators.

From the point of view of infinitary combinatorics we deal with a pair of
two cardinal invariants (κ, λ) on WCG Banach spaces, the density λ and κ
such that any operator is “nice” plus an operator with the range of density κ.
However the paper [17] does not mention it, the constructions for the pairs
of the form (κ, κ+) can be done in a similar way. (The paper [16] mentions
it, but in the context of some stronger assumption. There is still some
gray area concerning the assumptions needed for these constructions.) The
modification as in [21] can be done as well. In this paper we are interested
in the first pair of the form (κ, κ++) that is (ω, ω2) and later in the pairs
(ω, λ) for λ > ω2. This growth of the gap between cardinal invariants of the
structures and the logical and combinatorial phenomena which accompany
it, is a classical theme in infinitary combinatorics and the results we obtain
follow the general pattern for mathematical structures other than Banach
spaces (see for example [3], [9], [10], [18], [19], [22]). It is related to Ramsey
theoretic properties of the infinite cardinals.

The notation concerning infinitary combinatorics and forcing follows [11],
in particular κ, λ denote cardinals [X]κ denotes subsets ofX of cardinality κ,
[X]<ω denotes finite subsets of X. By models we mean models of fragments
of ZFC. Basics on the use of elementary submodels outside logic can be
found in [6].

The notation and terminology concerning Banach spaces follows for ex-
ample [4] in particular [Y ] denotes the norm closure of the linear space gener-
ated by Y in a Banach space; X∗ denotes the dual space; {(xα, fα) : α < κ}
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is called a Marcuševič’s basis if fα(xβ) = 1 if α = β and fα(xβ) = 0 if α 6= β,
[{xα : α < κ}] = X and fα(x) = 0 for all α ∈ κ implies that x = 0; strong
topology on the space of operators is the one of pointwise convergence (see
[7]).

2. The construction of the space

Let λ be an uncountable cardinal. In this section we follow the paper [17]
and its modification [21], some objects related to ω1 in [17] are appropriately
changed to objects related to some family in [λ]ω whose existence follow, for
λ = ω2, from strong negations of Chang’s Conjecture, which are discussed
in the following section. So, we assume the existence of families A, B, D and
F ; the families A, B, D correspond directly to the families from [17] and
the family F plays the role of the initial fragments of ω1. We will require
the following properties:
A1) A ⊆ [λ]<ω.
A2)

⋃
A = λ.

A3) A is closed under subsets.
B1) B ⊆ [λ]<ω.
B2) B is closed under subsets.

AB1) A ∩ B ⊆ [λ]1.
AB2) For every family {aξ : ξ < ω1} ⊆ [λ]2 of disjoint pairs and k ∈ ω there

are ξ1 < ξ2 < . . . < ξk < ω1 such that

{aξ1(1), . . . , aξk(1)} ∈ A,
{aξ1(0), . . . , aξk(0)} ∈ B

where aξ = {aξ(0), aξ(1)} for ξ ∈ ω1.
D1) D ⊆ [[λ]2]<ω and for every a, b ∈ D ∈ D we have either max(a) <

min(b) (a < b) or max(b) < min(a) (b < a); we express this property
by saying that elements of D consist of consecutive pairs.

D2) If D,D′ ∈ D are distinct, then there may be at most five pairs in D
which intersect other than itself pair from D′ i.e.,

|{a ∈ D : a ∩ (
⋃

(D′ − {a})) 6= ∅}| ≤ 5.

D3) Whenever {dξ : ξ < ω1} ⊆ [λ]2 is a collection of consecutive pairs and
k ∈ ω, then there are ξ1 < ξ2, . . . , < ξk < ω1 such that {dξi : 1 ≤ i ≤
k} ∈ D.

D4) Whenever D ∈ D and α < λ, and X ⊆ λ − α is countable, there is
D′ ∈ D such that

(
⋃
D′) ∩X = ∅, D ∩ [α]2 = D′ ∩ [α]2, (

⋃
D) ∩ α = (

⋃
D′) ∩ α.

AD1) Whenever a ∈ A and D ∈ D, then |a ∩ (
⋃
D)| ≤ 2.



PROJECTIONS IN WEAKLY COMPACTLY GENERATED BANACH SPACES 191

BD1) Whenever a ∈ B and D ∈ D, then |a ∩ (
⋃
D)| ≤ 2.

F1) F ⊆ [λ]ω is cofinal in [λ]ω.
DF1) Suppose that D ∈ D, d, d′, d′′ ∈ D and d < d′ < d′′ and moreover

that X ∈ F is such that d′ ∩X and d′′ ∩X are both nonempty. Then
d ⊆ X.

This completes the list of properties of the families. The reader might have
noted that if not for D3), the families D = ∅ and F = [λ]ω work. This is
exploited in the proof of Theorem 1.9.

Now, let us define our Banach space B. We start with the set λR, that
is, all functions from λ into the reals. Following [17] and [21], we define

||f ||A = sup{
√

Σ{f(α)2 : α ∈ a} : a ∈ A}
and

νD(f) = sup{
√

Σ{[f(α)− f(β)]2 : {α, β} ∈ D} : D ∈ D}.
We put B∗(A,D) = {f ∈λR : νD(f)+ ||f ||A is finite}. Using A1), A2)
and D1) one can calculate that (B∗(A,D), νD + || ||A) are Banach spaces.
Namely they are clearly linear spaces and the usual triangle inequality for
l2(λ) implies that they are normed spaces. Given a Cauchy sequence, one
gets its uniform coordinate-wise limit by the completness of l∞(λ), it has
to belong to the spaces since νD + || ||A can be approximated on finite sets
using terms of the sequence which must be norm-bounded.

For every X ⊆ λ, by 1X we denote the characteristic function of X. By
φ{α} we define the functional satisfying φ(f) = f(α) for α ∈ λ. For every
X ⊆ λ we define BX(A,D) to be the closure of the linear span {1{α} : α ∈
X} in B∗(A,D) with respect to the norm νD + || ||A. The main result will
concern the space (Bλ(A,D), νD+ || ||A), however we will consider the space
BX(A,D) for X ∈ F as in F1) and for X an ordinal less than λ, in the latter
case we will call this subspace an initial block. The projection on the initial
block α means the restriction of a function to α.

Lemma 2.1. Suppose A and B are such families that there exist families
D and F such that the properties A1)–DF1) with the possible exception of
the property D3) are satisfied, then the space (Bλ(A,D), νD+ || ||A) has the
following properties:

1) The sequence {(1{α}, φ{α}) : α < λ} is a Marcuševič basis for the space.
2) The space is weakly compactly generated and (Pα : ω ≤ α ≤ λ) is a

PRI for Bλ(A,D) where Pα is the projection on the initial block α.
3) Every operator defined on the space is of the sum of a separable

range operator and a diagonal operator with respect to the basis
{1{α} : α < λ}.

4) If additionally D satisfies D3) then every operator on the space is the
sum of a separable range operator and an operator in the closure (in
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the strong operator topology) of the space spanned by a countable set
of the projections Pα for ω ≤ α ≤ λ.

Proof. Let us fix the families satisfying the properties A1)–DF2) with the
possible exception of D3). Let us introduce the notation Bξ = Bξ(A,D),
B = Bλ, ν = νD and || || = ν + || ||A. So we are working with the space
(B, || ||). It is clear that the sequence {(1{α}, φ{α}) : α < λ} is a Marcuševič’s
basis i.e., 1) holds.

Note that if f ∈ l2(λ), then f ∈ B i.e., T : l2(λ)→ B defined as the formal
identity on l2(λ) is a well-defined injection. It is clear that it is linear and
ν(f) + ||f ||A ≤ 3(||f ||l2(λ)), that is, T is a bounded operator. All vectors
1{α} belong to l2(λ), i.e., the range of T is dense in B.

Now, by Banach-Alaoglu theorem the balls in the reflexive space l2(λ)
are weakly compact, and hence, their images under T are weakly compact
as well, but their union is dense in B, i.e., B is weakly compactly generated.
To complete the proof of 2) one needs to prove the following:

Claim 1. ||Pα|| ≤ 1.

Proof of the Claim 1. It is clear that ||Pα(f)||A ≤ ||f ||A. So we need to
prove that νD(Pα(f)) ≤ νD(f) for every f ∈ Bλ. Note that if f ∈ Bλ, then
{β ∈ λ : f(β) 6= 0} is at most countable. This follows from the fact that
the span of {1{β} : β ∈ λ} is norm dense in Bλ and all singletons belong to
A (which follows from A2) ed A3)).

So, given D ∈ D consider D′ ∈ D as in D4) for X = {β : f(β) 6= 0} − α.
It is enough to note that√

Σ{(Pα(f(β))− Pα(f(β′)))2 : {β, β′} ∈ D}

=
√

Σ{(f(β)− f(β′))2 : {β, β′} ∈ D′}.
But this follows directly from D4) which implies that the numbers appearing
in the above expressions are equal respectively.

Claim 2. If X ∈ F then πX : B → BX given by πX(f) = f |X is a bounded
operator.

Proof of the Claim 2. It will be enough to see that we have

||y|| ≤ 3||y + z||
for every y ∈ BX , z ∈ Bλ−X . It is easy to see (using A2)) that for y, z
as above, we have y(α) = (y + z)(α) for α ∈ X and z(α) = (y + z)(α) for
α ∈ λ−X. This implies that ||y||A ≤ ||y + z||A. We also have

ν(y) = sup{Σ{
√

[y(α)− y(β)]2 : {α, β} ∈ D} : D ∈ D}

≤ sup{Σ{
√

[(y + z)(α)− (y + z)(β)]2 : {α, β} ∈ D} : D ∈ D}



PROJECTIONS IN WEAKLY COMPACTLY GENERATED BANACH SPACES 193

+2 sup{
√
y(α)2 : {α, β} ∈ D} : α < ξ < β, D ∈ D}≤ν(y+z)+2||y||A.

Here we used the fact that there are at most two pairs in D ∈ D which are
separated by X (i.e., one element of the pair belongs to X and the other
does not) which follows from DF1), also A2) is used for the second term.
So we get

||y|| ≤ν(y + z) + 2||y||A + ||y||A ≤ ν(y + z) + 3||y + z||A ≤ 3(||y + z||).
This completes the proof of the claim.

Following the organization of the paper [17] we state now the following

Claim 3. There is a constant M such that ν(1b) ≤M for all b ∈ B.

Proof of the Claim 3. It follows directly from BD1).

Now we are ready to make a similar argument to that of Lemma 1 of
[17]. Suppose that T : B → B is a bounded operator which is not of the
desired (by 3)) form. Then there is a family {aξ : ξ < ω1} of disjoint pairs
of λ such that T (1{aξ(0)})(aξ(1)) 6= 0. To see why this is so, note that
otherwise there is a countable Y ⊆ λ such that whenever α ∈ λ − Y , then
T (1{α}) = rα1{α} + fα where fα ∈ BY . Since F is a cofinal family in [λ]ω,
we may w.l.o.g. assume that Y = X ∈ F . This implies that

T (x) = T (πX(x) + πλ−X(x))T (πX(x)) + T (πλ−X(x))

= T (πX(x)) + πX(T (πλ−X(x))) + πλ−X(T (πλ−X(x)))
= S1 + S2 +D

where D is diagonal and S1, S2 have separable ranges. The above operators
are also bounded by Claim 2.

Notice that the family of pairs may be thinned out so that

T (1{aξ(0)})(aη(1)) = 0 (∗)

for ξ 6= η. The reason is that otherwise there is an uncountable set Y ,
positive δ and η0 ∈ ω1 such that

|T (1{aξ(0)})(a{η0(1)})| > δ

for all ξ ∈ Y and all the numbers T (1{aξ(0)})(a{η0(1)}) have the same sign.
Let nδ ≥ (M + 1)||T ||. An application of AB2) yields X ∈ [Y ]n such
that {aξ(0) : ξ ∈ X} ∈ B and hence ν(1{aξ(0) : ξ∈X}) ≤ M by Claim 3, and
||(1{aξ(0) : ξ∈X}||A ≤ 1 by AB1), thus ||(1{aξ(0) : ξ∈X}|| ≤ 1+M . On the other
hand

||T (1{aξ(0) : ξ∈X})|| ≥ ||T (1{aξ(0) : ξ∈X})||A > nδ ≥ (M + 1)||T ||,

a contradiction.
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It may also be assumed that there is ρ > 0 such that |T (1{aξ(0)})(aξ(1))| >
ρ for ξ ∈ ω1 and all the numbers T (1{aξ(0)})(aξ(1)) have the same
sign. Choose k ∈ ω such that

√
kρ ≥ (M + 1)||T ||. Now use AB2)

to find X ∈ [ω1]k such that {aξ(0) : ξ ∈ X} ∈ B and {aξ(1) : ξ ∈
X} ∈ A. It follows from Claim 3 that ν(1{aξ(0) : ξ∈X}) ≤ M and then
from AB1) that ||(1{aξ(0) : ξ∈X}|| ≤ 1 + M . While (∗) above gives that
|T (1{aξ(0) : ξ∈X})(aξ′(1))| > ρ for any ξ′ ∈ X, so

||T (1{aξ(0) : ξ∈X})|| ≥ ||T (1{aξ(0) : ξ∈X})||A >
√
kρ ≥ (M + 1)||T ||,

which is a contradiction and completes the proof of 3).
To prove 4) we will assume that T is a diagonal operator, which can be

done by 3). First, note the following

Claim 4. If D ∈ D, then ν(1SD) ≤
√

5.

Proof of the Claim 4. It follows directly from D2).

We will also need the following

Claim 5. Suppose that T : B → B is a diagonal, bounded operator satisfy-
ing for α < λ

T (1{α}) = ρα1{α}.

Then, if T is not in the closure (in the strong operator topology) of the
linear span of countably many projections on initial blocks, then there are
uncountably many consecutive pairs {aξ : ξ < ω1} such that

|ραξ(0) − ραξ(1)| > 0

where aξ(0) < aξ(1).

Proof of the Claim 5. Consider maximal, with respect to inclusion, ordinal
intervals [α, β) such that ρα = ργ for all α ≤ γ < β. Clearly they are disjoint
when different and they cover λ. If there are uncountably many of them one
can choose a sequence of them ([αξ(0), αξ(1)))ξ<ω1 formed by consecutive
intervals. The maximality of the intervals implies that ραξ(0) 6= ραξ(1).

Otherwise, when there are only countably many such intervals, let us see
that T is in the closure of a countable set of linear combinations of projec-
tions on initial blocks. Let ([αξ(0), αξ(1))))ξ<η be an increasing enumeration
of all such intervals where η is a countable ordinal. Define for 0 < ξ ≤ η

Tξ = Psup{αθ(1) : θ<ξ} ◦ T

noting that Tη = T .
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Now we prove by transfinite induction on ξ ≤ η that Tξ is in the closure
of linear span of operators of the form ραξ(0)[Pαξ(1) − Pαξ(0)] for ξ < η. For
ξ < η we have

Tξ+1 = Tξ + ραξ(0)[Pαξ(1) − Pαξ(0)],

so the successor inductive step is clear. If ξ is a limit ordinal, fix an x ∈ B,
note that there is a (countable) strictly increasing sequence (ξn)n∈N such
whose supremum is ξ. The density of {1{α} : α < λ} implies that there is a
finite linear combination y of these vectors for which is close to x. Hence

Tξ(x)− Tξn(x) = (Tξ − Tξn+1)(x− y)

holds if n is large enough, so it is small as well since Tξ and Tξn are uni-
formly bounded. In other words Tξn ’s converge to Tξ in the strong operator
topology and so, the inductive assumption implies that Tξ is in the closure
of the linear span of operators of the form ραξ(0)[Pαξ(1) − Pαξ(0)] for ξ < η
which completes the proof of the claim. Note that we actually proved that
it is the limit of a transfinite sequence of these operators in the sense of
[15].

By the above claim we can assume the existence of the pairs as in the
claim, moreover we can assume that

|ραξ(0) − ραξ(1)| > ε

for some ε > 0. Now use D3) to find X ∈ [ω1]k such that {aξ : ξ ∈ X} ∈ D
where

√
kε ≥ (

√
2 +
√

5)||T ||. It follows from Claim 4 and AD1) that
ν(1SD) + ||1SD||A ≤

√
2 +
√

5, while on the other hand

ν(T (1SD)) ≥ Σ{|ρaξ(0) − ρaξ(1) | : ξ ∈ X} >
√
kε ≥ (

√
2 +
√

5)||T ||

which is a contradiction and which completes the proof of the lemma. 2

3. The consistency of the infinitary combinatorics needed

Theorem 3.1. It is relatively consistent with ZFC that there exists a WCG
Banach space of density ω2 which has few operators. For every cardinal λ
it is relatively consistent with ZFC that there exists a WCG Banach space
of density λ where all operators are sums of a separable range operator and
a diagonal operator with respect to a certain Marcuševič’s basis.

This theorem is an immediate consequence of Lemma 2.1 and the follow-
ing:
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Lemma 3.2. Let λ be any cardinal. There is a c.c.c. forcing notion P such
that in V P there are families A, B, D, F satisfying properties A1)–DF1)
with the exception of D3). It is consistent that there is a c.c.c. forcing notion
P such that in V P there are families A, B, D, F satisfying all properties
A1)–DF1) for λ = ω2.

Proof. Note that in order to obtain the first part of the lemma we can
choose D to be empty and F = [λ]ω, that is we just need to add families A
and B which satisfy the properties A1)–AB2). The c.c.c. forcing P required
by the theorem consists of the conditions p of the form (ap,Ap,Bp) where

1) ap ∈ [λ]<ω.
2) Ap ⊆ P(ap), Bp ⊆ P(ap).
3) Ap, Bp are closed under subsets.
4) Ap ∩ Bp ⊆ [ap]1.

The order is defined by p ≤ q if and only if ap ⊇ aq, Ap ⊇ Aq, Bp ⊇ Bq.

Claim 1. P satisfies the c.c.c.

Proof of the Claim 1. Suppose that (pξ : ξ < ω1) ⊆ P . We may w.l.o.g.
assume that (apξ : ξ < ω1) form a ∆-system with the root ∆ such that there
are order preserving bijections πξη : aξ → aη constant on ∆ which lift up to
isomorphisms π∗ξη of the conditions.

Choose any ξ < η < ω1. Let pξ = p, pη = q. We may define r ≤ p, q as
follows

r = (ap ∪ aq,Ap ∪ Aq,Bp ∪ Bq).
It is easy to see that the requirements 1)–4) are satisfied, which completes
the proof of Claim 1.

Let G be a P -generic filter over V . We define X =
⋃
{ap : p ∈ G}

A =
⋃
{Ap : p ∈ G} B =

⋃
{Bp : p ∈ G}. An easy density argument gives

that X = λ.
Clearly A1)–AB1) are satisfied for A, B and X as above. So to finish the

proof of the first part of Lemma 3.2 we need the following:

Claim 2. A, B satisfy AB2).

Proof of the Claim 2. Let (
:
bξ : ξ < ω1) be names for disjoint pairs of ele-

ments of λ in the generic extension. Let (bξ : ξ < ω1) be pairs of λ and
(pξ : ξ < ω1) ⊆ P such that pξ ‖−

:
bξ = b̌ξ and bξ = {bξ(0), bξ(1)} for ξ < ω1.

Choose ∆ and πξη as in the proof of Claim 1. By the disjointness of the
pairs in the extension and the c.c.c. of P we may w.l.o.g. assume that
bξ ⊆ aξ −∆. Fix k ∈ ω and consider ξ1, . . . , ξk, we put

r=(
⋃
i≤k
apξi ,

⋃
i≤k
Apξi∪P({bξ1(1), . . . , bξk(1)}),

⋃
i≤k
Bpξi∪P({bξ1(0), . . . , bξk(0)})).
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First we need to check that r ∈ P , but the conditions 1)–4) are trivially
satisfied. It is easy to see that the condition r forces that

{bξ1(1), . . . , bξk(1)} ∈ A,
{bξ1(0), . . . , bξk(0)} ∈ B

which completes the proof of Claim 2 and the first part of the lemma.

Claim 3. It is consistent that there is a function F : [ω2]2 → [ω2]≤ω with
the following two properties:
P1) Whenever (aξ : ξ < ω1) is a ∆-system of finite subsets of ω2 with root

∆ ⊆ ω2 and k ∈ ω, then there are ξ1 < . . . < ξk < ω1 such that

∀i, j ≤ k, i 6= j ∀α ∈ aξi −∆ ∀β ∈ aξj −∆

F (α, β) ⊇
⋃
{aξm ∩min(α, β) : m < i, j}.

P2) For every α < ω2, for every finite E ⊆ ω2 and every countable Z ⊆
ω2−α there is a finite E′ ⊆ ω2−Z such that there is an order preserving
bijection π : E → E′ which is the identity on E ∩ E′ and satisfies for
every α, β ∈ E:

π[F (α, β) ∩ E] = F (π(α), π(β)) ∩ E′. (∗∗)

Proof of the Claim 3. Function with the ∆-property of [3] has P1). Also
using the ideas of [18] one can conclude that if Chang’s Conjecture fails,
then there is such a function. To obtain P2) we fix the function with the
∆-property of [3] and recall that it is added by a σ-closed forcing. Thus, one
can assume that E and α and X as above are in the ground model of Section
9 of [3]. Given any condition p of the forcing of Section 9 of [3], construct
a copy q of p such that there is an increasing order-preserving bijection
π : base(p) → base(q) and base(p) ∩ α = base(q) ∩ α = base(p) ∩ base(q)
and Z ∩ (base(q)− base(p)) = ∅. Now amalgamate the two conditions as in
[3] to a condition r and note that r forces that E′ = π[E] satisfies (∗∗).

Let F : [ω2]2 → [ω2]≤ω be as in Claim 3. We construct a family F ⊆ [ω2]ω

and a c.c.c. forcing Q which adds A, B, D such that all the properties A1)–
DF1) are satisfied.

The conditions p of the forcing Q are of the form p = (ap,Ap,Bp,Dp)
where (ap,Ap,Bp) ∈ P from the beginning of the proof for λ = ω2 and
additionally we have:

5) Elements of Dp are sets of consecutive pairs of ap.
6) AD1) and BD1) of Section 2 are satisfied.
7) Whenever D1, D2 ∈ Dp; di1, di2 ∈ Di, di1 < di2, α ∈ d1

1 ∩ d2
1, β ∈ d1

2 ∩ d2
2,

then
(a) {d ∈ D1 : d < d1

1} = {d ∈ D2 : d < d2
1},
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(b)
⋃
{d ∈ D1 : d < d1

1} =
⋃
{d ∈ D2 : d < d2

1} ⊆ F (α, β).
(Note that D1 may be equal to D2 above.)

We need to prove that Q satisfies the c.c.c and adds the required families
A, B, D, F . The following claim uses F in a key way.

Claim 4. Q satisfies the c.c.c.

Proof of the Claim 4. Let (pξ : ξ < ω1) ⊆ Q. We may w.l.o.g. assume
that (apξ : ξ < ω1) form a ∆-system with the root ∆ such that there are
order preserving bijections πξη : aξ → aη constant on ∆ which lift up to
isomorphisms π∗ξη of the conditions.

Further thinning out, we may w.l.o.g. assume that F (δ1, δ2)∩(aξ−∆) = ∅
for any δ1, δ2 ∈ ∆. Choose any ξ < η < ω1. Let pξ = p, pη = q. We may
define r ≤ p, q as follows

r = (ap ∪ aq,Ap ∪ Aq,Bp ∪ Bq,Dp ∪ Dq).

It is easy to see that the requirements 1)–6) are satisfied. To see 7), let
D1, D2 ∈ Dr. we may w.l.o.g. assume that D1 ∈ Dp−Dq and D2 ∈ Dq−Dp.
Thus if α, β are like in 7), then they both belong to ∆. By 7) (b) for p and
q and by the choice of p and q we have that⋃

{d ∈ D1 : d < d1
1} ⊆ ∆,⋃

{d ∈ D2 : d < d2
1} ⊆ ∆,

so by the isomorphism of p and q we have 7) (a) and 7) (b), which completes
the proof of Claim 4.

Let G be a P -generic filter over V . We define X =
⋃
{ap : p ∈ G}, A =⋃

{Ap : p ∈ G}, B =
⋃
{Bp : p ∈ G}, D =

⋃
{Dp : p ∈ G}, F = {Y ∩X : Y

is closed under F} where for a set Y to be closed under F means that that
F (α, β) ⊆ Y whenever α, β ∈ Y . Clearly A1)–AB1), D1), AD1), BD1), F1)
are satisfied for A, B, D, F and X instead of λ = ω2. It is an easy density
argument to show that X has cardinality ω2, so it is enough to verify all
the properties from Section 2 for X instead of λ = ω2.

It is also an elementary argument that D2), D4) and DF1) follow from
7): for D2), suppose D2) fails and take the four upper pairs from D out
of the five which witness the failure of D2). This implies that at least two
distinct pairs of D′ are involved i.e., that the hypothesis of 7) is satisfied,
but 7) (a) implies that the fifth lowest pair belongs to both D and D′ which
contradicts the hypothesis of D2) and the consecutiveness of the pairs in
D′.

For D4) let p ∈ Q, and let
:
D and

:
X1,

:
α be Q-names for objects mentioned

in D4). Using the c.c.c of Q and the decision property of forcing, there are
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D ∈ [[λ]2]<ω, α ∈ λ and Y ⊆ [ω2 − α]≤ω such that D ∈ Dp and

p ‖−
:
D = Ď,

:
X1 ⊆ Y̌ ∩

:
X,

:
α = α̌.

Using (∗∗) we obtain E′ as in (∗∗) for E = ap and Z = Y ∪ (ap − α). Let
π : ap → E′ be the restriction of the bijection from (∗∗). Construct q ∈ Q
as follows

q = (aq, {π[a] : a ∈ Ap}, {π[b] : a ∈ Bp}, {{π[d] : d ∈ D} : D ∈ Dp}})
where aq = E′. Now, q is a condition of Q since p is a condition of Q and
by (∗∗).

It is enough to amalgamate p and q to a condition r ∈ Q. This is done
as in Claim 4 since π is the required bijection. It is clear that r forces that
D′ = π[D] and D satisfy D4), which completes the proof of D4).

For DF1) suppose Y is closed under F , i.e., X ∩ Y is in F and let D,
d, d′, d′′ be as in DF1). Let α ∈ d′ ∩ X and β ∈ d′′ ∩ X. Now by 7) (b)
applied for D2 = D1 = D, we have

d ⊆ F (α, β) ⊆ X
which was required. So, to finish the proof of Lemma 3.2 we need to verify
AB2) and D3).

Claim 5. A, B and X satisfy AB2).

Proof of the Claim 5. Let (
:
bξ : ξ < ω1) be names for disjoint pairs of ele-

ments of
:
X in the generic extension. Let (bξ : ξ < ω1) be pairs of ω2 and

(pξ : ξ < ω1) ⊆ Q such that pξ ‖−
:
bξ = b̌ξ and bξ = {bξ(0), bξ(1)} for ξ < ω1.

Choose ∆ and πξη as in the proof of Claim 4. By the disjointness of the
pairs and the c.c.c. of Q we may w.l.o.g. assume that bξ ⊆ apξ − ∆. Fix
k ∈ ω and consider ξ1, . . . , ξk, we put

r = (
⋃
i≤k

apξi ,
⋃
i≤k
Apξi ∪ P({bξ1(1), . . . , bξk(1)}),

⋃
i≤k
Bpξi ∪ P({bξ1(0), . . . , bξk(0)}),

⋃
i≤k
Dpξi ).

First we need to check that r ∈ P , but the conditions 1)–5) are trivially satis-
fied. Also 6) is not difficult to verify as for example both {bξ1(0), . . . , bξk(0)}
and {bξ1(1), . . . , bξk(1)} can intersect elements of Dr only in one element;
and if a ∈ Apξi and D ∈ Dpξj one can use the isomorphism among the
conditions and 6) for one of the conditions pξi or pξj . The verification of 7)
is as in Claim 4.

It is easy to see that the condition r forces that

{bξ1(1), . . . , bξk(1)} ∈ A,
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{bξ1(0), . . . , bξk(0)} ∈ B
which completes the proof of Claim 5.

The following claim uses F in a key way.

Claim 6. D and X satisfy D3).

Proof of the Claim 6. Let k ∈ ω and let (
:
dξ : ξ < ω1) be names for con-

secutive (and in particular disjoint) pairs of elements of
:
X in the generic

extension. Let (dξ : ξ < ω1) be pairs of ω2 and (pξ : ξ < ω1) ⊆ Q such
that pξ ‖−

:
dξ = ďξ. Choose ∆ and πξη as in the proof of Claim 4. By the

consecutiveness of the pairs and the c.c.c. of Q we may w.l.o.g. assume
that dξ ⊆ apξ −∆ and (dξ : ξ < ω1) are consecutive pairs (just take amal-
gamations as in Claim 5 to get the consecutiveness). Fix k ∈ ω and use the
property of F to obtain ξ1, . . . , ξk satisfying Claim 3 for (apξ : ξ < ω1) as
above; we put

r = (
⋃
i≤k

apξi ,
⋃
i≤k
Apξi ,

⋃
i≤k
Bpξi ,

⋃
i≤k
Dpξi ∪ {{dξi : i ≤ k}}).

First we need to check that r ∈ P , but the conditions 1)–5) are trivially
satisfied. Also 6) is not difficult to verify as for example {dξi : i ≤ k} can
intersect elements of Ar only in one pair; and if a ∈ Apξi and D ∈ Dpξj
one can use the isomorphism among the conditions and 6) for one of the
conditions pξi or pξj . Now let us verify 7). If D1, D2 ∈

⋃
i≤k Dpξi we

may use the same argument as in the proof of Claim 4. Now assume that
D1 = {{dξi : i ≤ k}} and D2 ∈ Dpξi for some 1 ≤ i ≤ k. But this implies
that the hypothesis of 7) fails.

Finally let D1 = D2 = {{dξi : i ≤ k}}. We need to verify 7) (b), but this
follows from the property of F in Claim 3.

It is also immediate that r forces that {{
:
dξi : 1 ≤ i ≤ k}} ∈ D. This

completes the proof of the lemma.

Remark. S. Todorčević ([19]) has shown that the existence of the above
families follows from the combinatorial principle ω1 via his ρ-function. It
follows that in particular one can have such a Banach space of density bigger
than 2ω.

4. Projections from Chang’s conjecture

Recall that if M together with some relations (including constants and
functions) is a structure for some first-order language, then N is an ele-
mentary substructure of M whenever for every x1, . . . , xn ∈ N the formula
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φ(x1, . . . x2) of the language is true in N if and only if it is true in M . El-
ementary submodels provide a quick way of obtaining substructures closed
under all finitary operations we consider. The reader may consult Section
1 of [6] for some more information. Chang’s conjecture (see [14], [8]) is the
statement which says that every structure of the form (M ;ω1, R1, . . . , Rk)
for M of cardinality ω2 has an elementary substructure with the universe N
which in uncountable and such that N ∩ω1 is countable. It is known that it
is independent of the axioms of ZFC (assuming the existence of some large
cardinals, see [14]). We will consider elementary substructures of fragments
H(θ) of the set-theoretic universe, for θ sufficiently large to contain all rel-
evant objects. The Löwenheim-Skolem-Tarski theorem provides elementary
submodels of such structures of size ω2, and so Chang’s conjecture can be
applied.

Recall (see e.g. [12]) that a Marcuševič’s basis ((xα, fα) : α < λ) of a
Banach space X is 1-countably norming if and only if

||x|| = sup{|f(x)| : {α : f(xα) 6= 0} is countable, ||f || ≤ 1, f ∈ X∗}.
It is noted in [12] (pp. 368–369) that any Marcuševič’s basis in a WCG
Banach spaces is countably 1-norming.

Lemma 4.1. Suppose that X is a weakly compactly generated space and
B = ((xα, fα) : α < λ) is its Marcuševič’s basis. Suppose that M is an
elementary substructure of

(H(θ);∈, ω1, λ,X, || ||X , B).

Then there is a norm-one projection P : X → X such that P (xα) = xα for
α ∈M ∩ λ and P (xα) = 0 for α ∈ λ−M .

Proof. First we will show that the sum
i) [{xα : α ∈M ∩ λ}]⊕ [{x : f(x) = 0 for all f ∈M ∩X∗, ||f || ≤ 1}],

is closed and the projection on the first factor is of norm one. We will follow
Lemmas VI 2.3 and VI 2.4 of [4] which imply the existence of the desired
projections. First we will check the following assertion which correspond to
(iii) of VI 2.3 from [4]:

ii) For all x ∈ [{xα : α ∈M ∩ λ}] we have

||x|| = sup{f(x) : ||f || ≤ 1, f ∈M ∩X∗}.
This can be obtained by the elementarity of M . If x ∈ [{xα : α ∈ M ∩ λ}],
there is a finite linear combination with rational coefficients

∑
qixαi with

αi ∈M ∩ λ such that ||x−
∑
qixαi || is small. Note that

∑
qixαi belongs to

M , and so, by the elementarity there is a norm-one functional f in M such
that f(

∑
qixαi) is close to the norm of

∑
qixαi , which completes the proof

of ii).
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So by ii) if x ∈ [{xα : α ∈M ∩λ}] and ε > 0, then there is an f ∈M ∩X∗
with ||f || ≤ 1 such that f(x) > ||x|| − ε, for such an f we have f(y) = 0 for
every y in the second factor of our direct sum i), so

||x|| − ε < f(x) = f(x+ y) ≤ ||x+ y||,

which implies that ||x|| ≤ ||x+ y||. As the interesection of the factors is {0}
a standard argument allows us to conclude that the projection of the first
factor is well-defined and is of norm one and so the sum i) is closed.

To conclude that the sum i) is the entire space X, we essentially follow
[12]. Whenever f is a functional in M , the countable (since the basis is
1-countably norming) set {α : f(xα) 6= 0} belongs to M and so, is included
in M (see [6, 1.6]), i.e., xβ is in the second factor if β ∈ λ−M and the span
of the vectors of any Marcuševič basis is norm dense in X. It also follows
that P (xβ) = 0 for β ∈ λ−M .

Theorem 4.2. Assume Chang’s Conjecture. Suppose that X is a WCG
Banach space of density ω2 and (Pα : ω ≤ α ≤ ω2) is a projectional resolu-
tion of identity on X. There is a norm-one projection on X which is not of
the form T + S, where T is in the closure (in the strong operator topology)
of the linear span of a countable set of Pα’s and S has separable range. In
particular X has more than few operators.

Proof. It is known that a WCG space has a Marcuševič’s basis (see [13]),
so let (xα, fα : α < λ) be such a basis.

Let M be an elementary substructure of

(H(θ);∈, ω1, λ,X, || ||X , B)

obtained from Chang’s Conjecture. Let P : X → X be as in the previous
lemma. Let us suppose that it is of the form T + S as in the theorem and
let us arrive at a contradiction.

As there is a countable ordinal α which does not belong to M , by the
elementarity, for any β ∈M∩ω2 we have that β+α 6∈M . On the other hand
M∩ω2 is uncountable. Thus it is easy to obtain a sequence ((βξ, αξ) : ξ < ω1)
of consecutive pairs of ordinals in ω2 such that βξ < αξ and βξ ∈ M while
αξ 6∈M (e.g. put αξ = βξ+α where α as above and thin the sequence out if
necessary). We may w.l.o.g. assume that all the vectors xβξ , xαξ for ξ < ω1
are not in the range of S. Let A ⊆ ω2 be the countable set of all ordinals α
in ω2 such that Pα appears in the finite linear combinations which have T
in the closure. Clearly there is a ξ < ω1 such that for every α ∈ A we have

α < βξ ⇔ α < αξ.
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This means that T (xβξ) = T (xαξ). However P (xβξ) = xβξ and P (xαξ) = 0,
i.e.,

T (xβξ) + S(xβξ) = xβξ ,

T (xαξ) + S(xαξ) = 0.

Subtracting these equations, we obtain

S(xβξ)− S(xαξ) = S(xβξ − xαξ) = xβξ ,

which contradicts the fact that xβξ is not in the range of S and completes
the proof of the theorem.

Theorem 4.3. Suppose that X is a WCG Banach space of density λ > ω2
and (Pα : ω ≤ α ≤ λ) is a projectional resolution of identity on X. There
is a norm-one projection on X which is not of the form T + S, where T is
in closure (in the strong operator topology) of the linear span of countably
many operators (Pα : ω ≤ α ≤ λ) and S has separable range. In particular
X has more than few operators.

Proof. We repeat the previous proof noting that the classical Löwenheim-
Skolem-Tarski theorem provides the desired elementary submodel. Indeed,
any elementary submodel M of a sufficiently large fragment of set-theory
which contains ω2, is of cardinality ω1 and such that the cofinality of M ∩λ
is uncountable provides the desired sequence ((αξ, βξ) : ξ < ω1) as in the
previous proof. Just take β ∈ ω2−M and construct by induction a sequence
(αξ)ξ<ω1 such that

αξ + β = βξ < αξ + ω2 ≤ αξ+1.

Theorem 4.4. Suppose that X is a WCG Banach space of density bigger
than 2ω1. Then for every Marcuševič’s basis of X there is an operator on X
which is not of the form a separable range operator plus a diagonal operator
with respect to the basis.

Proof. This is just a counting argument. Using the standard way of con-
structing projections in WCG spaces (see [5]) one can obtain (2ω1)+ distinct
projections PA on blocks A ⊆ λ of cardinality ω1. One can assume that A’s
form a ∆-system whose root is included in some B of cardinality ω1 on
which there is a projection. By subtracting PB from PA’s we may assume
that A’s are pairwise disjoint. Now, there are at most 2ω1 approximate be-
haviours of the norm on finite rational linear combinations of vectors from
a dense set in a Banach space of density ω1, i.e., we obtain that the ranges
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of two projections PA and PA′ are isomorphic. So consider T ◦ PA, where
T is the isomorphism. It is clear that it is not a diagonal plus a separable
range operator.

Remark. Note that Theorem 3.1 provides the consistency of the existence
of WCG spaces of density λ where every operators is the sum of a diagonal
operator plus a separable range operator for each cardinal λ in the usual
sense that the value of this cardinal on the exponential scale is unspecified.
Actually our proof of 3.1 gives λ ≤ 2ω. Theorem 4.1 shows that it cannot
be improved above 2ω1 , however the value of λ on the cardinal scale can be
arbitrarily large, i.e., e.g., we can have λ = ω5, ωω1 etc.

Remark. Note that the above results imply that the quantity of projec-
tions in WCG spaces depends on the quantity of elementary submodels.
It would be interesting to construct (without any aditional assumptions)
WCG Banach spaces of large densities where all projections are induced by
elementary submodels (of various cardinalities) obtaining an unconditional
version of Warks’s modification of Shelah’s and Steprāns’ space. This would
be probably the right notion of “few projections” in a WCG space. Also
one could try to control separable range operators (which are completely
arbitrary in our construction) as in [2].
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