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Abstract. Fritz John and Kuhn-Tucker type necessary optimality con-
ditions for a Pareto optimal (efficient) solution of a multiobjective con-
trol problem are obtained by first reducing the multiobjective control
problem to a system of single objective control problems, and then
using already established optimality conditions. As an application of
Kuhn-Tucker type optimality conditions, Wolfe and Mond-Weir type
dual multiobjective control problems are formulated and usual dual-
ity results are established under invexity/generalized invexity, relating
properly efficient solutions of the primal and dual problems. Wolfe and
Mond-Weir type dual multiobjective control problems with free bound-
ary conditions are also presented.

1. Introduction

Optimality conditions and duality constitute an essential part of study of
mathematical programming in the sense that these lay down the foundation
of algorithms for a solution of an optimization problem. In this paper we
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obtain Fritz John and Kuhn-Tucker type necessary optimality conditions
and duality for a multiobjective control problem. We derive these two sets
of optimality conditions by reducing the multiobjective control problem
to a system of single objective control problems and then using the Fritz
John and Kuhn-Tucker type necessary optimality conditions for a single
objective control problem, obtained by Chandra, Craven and Husain [1].
As an application of Kuhn-Tucker type optimality conditions, two distinct
duals to a multiobjective control problem are formulated and appropriate
duality theorems are proved under the hypotheses of invexity/generalized
invexity, relating properly efficient solutions of the primal and dual control
problems. A pair of dual multiobjective control problems with free boundary
conditions is also presented.

2. Preliminaries and the multiobjective control problem

Let f(t, x, u), where t ∈ I = [a, b] ⊂ R, x(t) ∈ Rn and u(t) ∈ Rr, be
a p-dimensional vector function. Here t is the independent variable and
the control variable u(t) is related to the state variable x(t) via the state
equation

:
x = h(t, x, u), where dot (·) denotes derivative with respect to t.

If λ ∈ Rp, then λT f(x) is a scalar valued function. Let (λT f)x and (λT f)u
denote gradient (column) vectors with respect to x and u respectively. Sub-
sequently, (λT f)xx, (λT f)xu, (λT f)ux and (λT f)uu denote respectively the
n × n, n × r, r × n and r × r matrices of second order partial derivatives.
The gradient of m-dimensional vector function g and n-dimensional vector
function h with respect to x are respectively the n×m and n×n matrices.
Gradients with respect to u are similarly defined. If y and z are in Rn, we
denote y = z ⇔ yi = zi (i = 1, . . . , n); y ≥ z ⇔ (y = z and y 6= z);
y > z ⇔ yi > zi (i = 1, . . . , n).

We consider the following multiobjective control problem:

Primal (CP): Minimize∫ b

a
f(t, x, u)dt =

[∫ b

a
f1(t, x, u)dt, · · · ,

∫ b

a
fp(t, x, u)dt

]
subject to

x(a) = α, x(b) = β, (1)
:
x(t) = h(t, x, u), t ∈ I, (2)

g(t, x, u) = 0, t ∈ I, (3)

where f, g and h are twice continuously differentiable functions. We shall
use K for the set of all feasible solutions of (CP).

We need the following definitions.
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Definition 2.1 ([3]). A point (x0, u0) ∈ K is said to be efficient for (CP)
if there exists no (x, u) ∈ K such that∫ b

a
f(t, x, u)dt ≤

∫ b

a
f(t, x0, u0)dt.

An efficient solution is also known as noninferior or nondominated or
Pareto optimal solution.

The point (x0, u0) ∈ K is said to be properly efficient if it is efficient for
(CP) and if there exists a scalar M > 0 such that, for each (x, u) ∈ K and
i ∈ {1, 2, · · · , p} satisfying

∫ b
a f

i(t, x, u)dt <
∫ b
a f

i(t, x0, u0)dt, we have∫ b

a
f i(t, x0, u0)dt−

∫ b

a
f i(t, x, u)dt

5M
(∫ b

a
f j(t, x, u)dt−

∫ b

a
f j(t, x0, u0)dt

)
for some j ∈ {1, 2, · · · , p} \ {i} such that∫ b

a
f j(t, x, u)dt >

∫ b

a
f j(t, x0, u0)dt.

Definition 2.2 ([8]). If there exist a vector functions η(t, x, w,
:
x,

:
w, u, v) ∈

Rn with η = 0 at t if x(t) = w(t) and ξ(t, x, w,
:
x,

:
w, u, v) ∈ Rr such that for

the scalar function θ(t, x,
:
x, u), the functional Θ(x,

:
x, u) =

∫ b
a θ(t, x,

:
x, u)dt

satisfies

Θ(x,
:
x, u)−Θ(w,

:
w, v)

=
∫ b

a

[
ηT θx(t, w,

:
w, v) +

(
dη

dt

)T
θ :x(t, w,

:
w, v) + ξT θu(t, w,

:
w, v)

]
dt,

then Θ is said to be invex in x,
:
x and u with respect to η and ξ on [a, b].

The functional Θ is said to be pseudo-invex in x,
:
x and u with respect

to η and ξ on [a, b] if∫ b

a

[
ηT θx(t, w,

:
w, v) +

(
dη

dt

)T
θ :x(t, w,

:
w, v) + ξT θu(t, w,

:
w, v)

]
dt = 0

⇒ Θ(x,
:
x, u) = Θ(w,

:
w, v).

Further Θ is said to be quasi-invex in x,
:
x and u with respect to η and ξ

on [a, b] if

Θ(x,
:
x, u) 5 Θ(w,

:
w, v)
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⇒
∫ b

a

[
ηT θx(t, w,

:
w, v) +

(
dη

dt

)T
θ :x(t, w,

:
w, v) + ξT θu(t, w,

:
w, v)

]
dt 5 0.

3. Necessary optimality conditions

In this section, Fritz John and Kuhn-Tucker type necessary Pareto opti-
mality conditions are derived by reducing the multiobjective control problem
stated in Section 1 to a system of single objective control problems and then
using the known optimality results for each problem. Here the approach of
derivation of these optimality conditions is very much in the spirit of [4].

The following proposition establishes the linkage between multiobjective
and single objective control problems. Its proof follows on the lines of
Lemma 3.1 in Kanniappan [6].

Proposition 3.1. A point (x0, u0) is an efficient solution of (CP ) if and
only if for each i ∈ {1, 2, · · · , p}, (x0, u0) is optimal to the single objective
control problem

(CP)i: Minimize
∫ b
a f

i(t, x, u)dt subject to

x(a) = α, x(b) = β,
:
x(t) = h(t, x, u), t ∈ I,
g(t, x, u) = 0, t ∈ I,∫ b

a
fk(t, x, u)dt 5

∫ b

a
fk(t, x0, u0)dt, k 6= i.

Consider the following single objective control problem, studied by Mond
and Hanson [7] and Chandra, Craven and Husain [1].

(CP)�: Minimize
∫ b
a φ(t, x, u)dt subject to

x(a) = α, x(b) = β,
:
x(t) = h(t, x, u), t ∈ I,
g(t, x, u) = 0, t ∈ I.

Here φ : I ×X × U → R is twice continuously differentiable.

Following Craven [2], the differential equation (2) for x(t) with initial
condition expressed as

x(t) = x(a) +
∫ t

a
h(s, x(s), u(s))ds, t ∈ I,

may then be written as
Dx = H(x, u),
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where the map H : X × U → C(I,Rn) is defined by

H(x, u)(t) = h(t, x(t), u(t)),

in which
(i) C(I,Rn) is the space of continuous functions from I into Rn, with the

norm, ‖φ(t)‖ = sup
t∈I
|φ(t)|,

(ii) X is the space of continuous state functions x : I → Rn such that
x(a) = α, x(b) = β, and

(iii) U is the space of piecewise continuous control functions u : I → Rr
with uniform norm ‖ · ‖∞.

In the following Fritz John type optimality theorem, established by
Chandra, Craven and Husain [1], the Fréchet derivative of Q(x, u) =
Dx−H(x, u), i.e.,

Q′ = Q′(x0, u0) =
[
D −Hx(x0, u0)−Hu(x0, u0)

]
is needed to be surjective in order to make the equality constraints locally
solvable.

Theorem 3.1 ([1]). If (x0, u0) is an optimal solution of (CP )φ and the
Fréchet derivative Q′ is surjective, then there exist Lagrange multipliers
ζ ∈ R and piecewise smooth functions z : I → Rn and y : I → Rm such that
for all t ∈ I,

ζφx(t, x0(t), u0(t))−z(t)Thx(t, x0(t), u0(t))−y(t)T gx(t, x0(t), u0(t))=
:
z(t),

ζφu(t, x0(t), u0(t))− z(t)Thu(t, x0(t), u0(t))− y(t)T gu(t, x0(t), u0(t)) = 0,

y(t)T g(t, x0(t), u0(t)) = 0,

y(t) = 0,

ζ = 0,

(ζ, z(t), y(t)) 6= 0.

Theorem 3.2 (Fritz John type necessary conditions). If (x0, u0) is an ef-
ficient solution of (CP ) and the Fréchet derivative Q′ is surjective, then
there exist Lagrangian multipliers λ = (λ1, λ2, · · · , λp) ∈ Rp and piecewise
smooth functions z : I → Rn and y : I → Rm such that

λT fx(t, x0(t), u0(t))−z(t)Thx(t, x0(t), u0(t))−y(t)T gx(t, x0(t), u0(t))=
:
z(t),

t ∈ I,
λT fu(t, x0(t), u0(t))− z(t)Thu(t, x0(t), u0(t))− y(t)T gu(t, x0(t), u0(t)) = 0,

t ∈ I,
y(t)T g(t, x0(t), u0(t)) = 0, t ∈ I,
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y(t) = 0, t ∈ I,
λ = 0,

(λ, z(t), y(t)) 6= 0, t ∈ I.

Proof. Suppose (x0, u0) is efficient for (CP). By Proposition 3.1, (x0, u0)
is optimal for the following single objective control problem

(CP)1: Minimize
∫ b
a f

1(t, x, u)dt subject to

x(a) = α, x(b) = β,
:
x
r(t) = hr(t, x, u), t ∈ I, r ∈ {1, 2, · · · , n},
gj(t, x, u) = 0, t ∈ I, j ∈ {1, 2, · · · ,m},∫ b

a
f i(t, x, u)dt 5

∫ b

a
f i(t, x0, u0)dt, i ∈ {2, 3, · · · , p}.

Hence by Theorem 3.1 there exist λ = (λ1, λ2, · · · , λp) ∈ Rp+, piecewise
smooth functions z : I → Rn with z = (z1, z2, · · · , zn)T and y : I → Rm+
with y = (y1, y2, · · · , ym)T such that

λ1f1
x +

p∑
i=2

λif ix −
n∑
r=1

zr(t)hrx −
m∑
j=1

yj(t)gjx =
:
z(t), t ∈ I

λ1f1
u +

p∑
i=2

λif iu −
n∑
r=1

zr(t)hru −
m∑
j=1

yj(t)gju = 0, t ∈ I,

λi
[∫ b

a
f i(t, x, u)dt−

∫ b

a
f i(t, x0, u0)dt

]
= 0, i ∈ {2, 3, · · · , p},

y(t)T g(t, x0, u0) = 0, t ∈ I,
(λ, z(t), y(t)) 6= 0, t ∈ I.

That is,

λT fx − z(t)Thx − y(t)T gx =
:
z(t), t ∈ I,

λT fu − z(t)Thu − y(t)T gu = 0, t ∈ I,
y(t)T g(t, x0, u0) = 0, t ∈ I,
y(t) = 0, t ∈ I,
λ = 0,

(λ, z(t), y(t)) 6= 0, t ∈ I.

This completes the proof.
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We shall use the following Kuhn-Tucker type necessary optimality con-
ditions for (CP)φ, obtained by Chandra, Craven and Husain [1]. Theorem
3.1 gives Kuhn-Tucker type necessary optimality conditions, if ζ = 1. Then
(x0, u0) will be called normal.

Theorem 3.3 ([1]). If (x0, u0) is an optimal solution for (CP )φ and is
normal, and the Fréchet derivative Q′ is surjective, then there exist piecewise
smooth functions z : I → Rn and y : I → Rm such that

φx(t, x0(t), u0(t))− z(t)Thx(t, x0(t), u0(t))− y(t)T gx(t, x0(t), u0(t)) =
:
z(t),

t ∈ I,
φu(t, x0(t), u0(t))− z(t)Thu(t, x0(t), u0(t))− y(t)T gu(t, x0(t), u0(t)) = 0,

t ∈ I,
y(t)T g(t, x0(t), u0(t)) = 0, t ∈ I,
y(t) = 0, t ∈ I.

In the following analysis, whenever we assume that the solution (x0, u0)
of (CP) is normal, we mean that it is normal to (CP)i, for each i ∈
{1, 2, · · · , p}. Also, the gradients fx, fu etc. are at (t, x0(t), u0(t)).

Theorem 3.4 (Kuhn-Tucker type necessary conditions). If (x0, u0) is effi-
cient for (CP ) and is normal, and the Fréchet derivative Q′ is surjective,
then there exist a vector λ ∈ Rp and piecewise smooth functions z : I → Rn
and y : I → Rm such that

λT fx − z(t)Thx − y(t)T gx =
:
z(t), t ∈ I,

λT fu − z(t)Thu − y(t)T gu = 0, t ∈ I,
y(t)T g(t, x0, u0) = 0, t ∈ I,
y(t) = 0, t ∈ I,
λ > 0, λT e = 1,

where e = (1, 1, · · · , 1)T ∈ Rp.

Proof. Since (x0, u0) is efficient for (CP), by Proposition 3.1, for each i ∈
{1, 2, · · · , p}, (x0, u0) is optimal to

(CP)i: Minimize
∫ b
a f

i(t, x, u)dt subject to

x(a) = α, x(b) = β,
:
x
r(t) = hr(t, x, u), t ∈ I, r ∈ {1, 2, · · · , n},
gj(t, x, u) = 0, t ∈ I, j ∈ {1, 2, · · · ,m},
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a
fk(t, x, u)dt 5

∫ b

a
fk(t, x0, u0)dt, k 6= i.

Then, by Theorem 3.3, there exist Lagrange multipliers aki, k =
1, 2, · · · , p, k 6= i; bri(t), i = 1, 2, · · · , n and cji(t), j = 1, 2, · · · ,m such
that

f ix +
p∑

k=1
k 6=i

akifkx −
n∑
r=1

bri(t)hrx −
m∑
j=1

cji(t)gjx =
(
:
b
1i

(t), · · · ,
:
b
ni

(t)
)T

,

t ∈ I, (4)

f iu +
p∑

k=1
k 6=i

akifku −
n∑
r=1

bri(t)hru −
m∑
j=1

cji(t)gju = 0, t ∈ I, (5)

cji(t)gj(t, x0, u0) = 0, j ∈ {1, 2, · · · ,m} and t ∈ I. (6)

Setting aii = 1 for i = 1, 2, · · · , p, equations (4) and (5) can be written as
p∑

k=1

akifkx −
n∑
r=1

bri(t)hrx −
m∑
j=1

cji(t)gjx =
(
:
b
1i

(t), · · · ,
:
b
ni

(t)
)T

, t ∈ I,

p∑
k=1

akifku −
n∑
r=1

bri(t)hru −
m∑
j=1

cji(t)gju = 0, t ∈ I.

Adding these equations for all i, we get
p∑

k=1

(
ak1 + ak2 + · · ·+ akp

)
fkx −

n∑
r=1

(
br1(t) + br2(t) + · · ·+ brp(t)

)
hrx

−
m∑
j=1

(
cj1(t)+cj2(t)+· · ·+cjp(t)

)
gjx=

(
p∑
i=1

:
b
1i

(t), · · · ,
p∑
i=1

:
b
ni

(t)

)T
, t∈I

and
p∑

k=1

(
ak1 + ak2 + · · ·+ akp

)
fku −

n∑
r=1

(
br1(t) + br2(t) + · · ·+ brp(t)

)
hru

−
m∑
j=1

(
cj1(t) + cj2(t) + · · ·+ cjp(t)

)
gju = 0, t ∈ I.

Now let

ak =
p∑
i=1

aki, br(t) =
p∑
i=1

bri(t) and cj(t) =
p∑

i=1

cji(t).



OPTIMALITY CONDITIONS AND DUALITY 233

Hence there exist ak > 0, k ∈ {1, 2, · · · , p} and piecewise smooth br(t),
r ∈ {1, 2, · · · , n} and cj(t) = 0, j ∈ {1, 2, · · · ,m} such that

p∑
k=1

akfkx −
n∑
r=1

br(t)hrx −
m∑
j=1

cj(t)gjx =
(
:
b
1
(t), · · · ,

:
b
n
(t)
)
, t ∈ I,

p∑
k=1

akfku −
n∑
r=1

br(t)hru −
m∑
j=1

cj(t)gju = 0, t ∈ I,

cj(t)gj(t, x0, u0) = 0, j ∈ {1, 2, · · · ,m} and t ∈ I.

Now let α =
∑p

k=1 a
k. Dividing the above equations throughout by α(> 0)

and by taking

ak

α
= λk > 0,

br(t)
α

= zr(t) and
cj(t)
α

= yj(t),

we have,

λT fx − z(t)Thx − y(t)T gx =
:
z(t), t ∈ I,

λT fu − z(t)Thu − y(t)T gu = 0, t ∈ I,
y(t)T g(t, x, u) = 0, t ∈ I,
y(t) = 0, t ∈ I,
λ > 0, λT e = 1.

4. Wolfe type duality

For the problem (CP), we consider the following Wolfe type dual problem
(WCD).

Wolfe Dual (WCD): Maximize∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
}
e
]
dt

subject to

x(a) = α, x(b) = β, (7)

λT fx(t, x, u)− z(t)Thx(t, x, u)− y(t)T gx(t, x, u) =
:
z(t), t ∈ I, (8)

λT fu(t, x, u)− z(t)Thu(t, x, u)− y(t)T gu(t, x, u) = 0, t ∈ I, (9)

y(t) = 0, t ∈ I, (10)

λ > 0, λT e = 1. (11)



234 T. R. GULATI, I. HUSAIN AND A. AHMED

If p = 1, the problems (CP) and (WCD) reduce to the pair of single objective
dual control problems with invexity, treated by Mond and Smart [8].

Let F be the feasible region of (WCD). We shall now see that appropriate
duality results hold between (CP) and (WCD).

Theorem 4.1 (Weak duality). Let (x0, u0) ∈ K and (x, u, z, y, λ) ∈ F . If∫ b
a λ

T fdt, −
∫ b
a z(t)

T
(
h− :

x
)
dt and −

∫ b
a y(t)T gdt, are all invex with respect

to the same vector functions η and ξ, then∫ b

a
f(t, x0, u0)dt

�
∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
}
e
]
dt.

Proof. By invexity of
∫ b
a λ

T f(t, x, u)dt,∫ b

a
λT f(t, x0, u0)dt−

∫ b

a
λT f(t, x, u)dt

=
∫ b

a

{
ηT (λT f)x(t, x, u) + ξT (λT f)u(t, x, u)

}
dt

=
∫ b

a
ηT
{ :
z(t) +

(
z(t)Th

)
x

(t, x, u) +
(
y(t)T g

)
x

(t, x, u)
}
dt

+
∫ b

a
ξT
[(
z(t)Th

)
u

(t, x, u) +
(
y(t)T g

)
u

(t, x, u)
]
dt,

(using dual constraints (8) and (9))

= ηT z(t)|t=bt=a −
∫ b

a

(
dη

dt

)T
z(t)dt

+
∫ b

a

[
ηT
(
z(t)Th

)
x

(t, x, u) + ηT
(
y(t)T g

)
x

(t, x, u)
]
dt

+
∫ b

a
ξT
[(
z(t)Th

)
u

(t, x, u) +
(
y(t)T g

)
u

(t, x, u)
]
dt

(integrating the first term by parts)

=
∫ b

a

[
ηT
(
z(t)Th

)
x

(t, x, u)−
(
dη

dt

)T
z(t) + ηT

(
y(t)T g

)
x

(t, x, u)

]
dt

+
∫ b

a
ξT
[(
z(t)Th

)
u

(t, x, u) +
(
y(t)T g

)
u

(t, x, u)
]
dt,

(as fixed conditions give η = 0 at t = a and t = b)
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=
∫ b

a

[
ηT
(
z(t)Th

)
x

(t, x, u)−
(
dη

dt

)T
z(t) + ξT

(
z(t)Th

)
u

(t, x, u)

]
dt

+
∫ b

a

[
ηT
(
y(t)T g

)
x

(t, x, u) + ξT
(
y(t)Th

)
u

(t, x, u)
]
dt

=
∫ b

a
z(t)T

[(
h(t, x0, u0)− :

x
0(t)
)
−
(
h(t, x, u)− :

x(t)
)]
dt

+
∫ b

a
y(t)T

[
g(t, x0, u0)− g(t, x, u)

]
dt

(by invexity of −
∫ b

a
z(t)T

(
h− :

x
)
dt and −

∫ b

a
y(t)T gdt)

=
∫ b

a

[
−z(t)T

(
h(t, x, u)− :

x(t)
)
− y(t)T g(t, x, u)

]
dt

(by (2), (3) and (10)).

Therefore,∫ b

a
λT f(t, x0, u0)dt

=
∫ b

a

[
λT f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
}]
dt,

which, because of λT e = 1, gives

λT
(∫ b

a
f(t, x0, u0)dt

)
= λT

∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+y(t)T g(t, x, u)
}
e
]
dt. (12)

That is,∫ b

a
f(t, x0, u0)dt

�
∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
}
e
]
dt.

Theorem 4.2 (Strong duality). Let (x0, u0) be a properly efficient solution
for (CP ) and be normal, and let the Fréchet derivative Q′ be surjective.
Then there exist λ0, z0(t) and y0(t) such that (x0, u0, z0, y0, λ0) ∈ F and the
two vector objective functionals are equal. Also, if the invexity hypotheses of
Theorem 4.1 are satisfied for every (x, u, z, y, λ) ∈ F , then (x0, u0, z0, y0, λ0)
is a properly efficient solution of (WCD).
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Proof. Since (x0, u0) is a properly efficient solution for (CP), it is also
efficient. Therefore, by Theorem 3.4, there exist λ0 ∈ Rp and piecewise
smooth functions z0 : I → Rn and y0 : I → Rm such that

λ0T fx(t, x0, u0)− z0(t)Thx(t, x0, u0)− y0(t)T gx(t, x0, u0) =
:
z

0(t),

t ∈ I, (13)

λ0T fu(t, x0, u0)− z0(t)Thu(t, x0, u0)− y0(t)T gu(t, x0, u0) = 0,

t ∈ I, (14)

y0(t)T g(t, x0, u0) = 0, t ∈ I, (15)

y0(t) = 0, t ∈ I, (16)

λ0 > 0, λ0T e = 1. (17)

From (13), (14), (16) and (17), it follows that (x0, u0, z0, y0, λ0) ∈ F . Since
:
x

0(t) = h(t, x0, u0) and y0(t)T g(t, x0, u0) = 0, the dual objective functional
has the same value as the primal objective functional.

Now we claim that (x0, u0, z0, y0, λ0) is an efficient solution of (WCD). If
not, then there exists (x̄, ū, z̄, ȳ, λ̄) ∈ F such that∫ b

a

{
f r(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

>

∫ b

a
f r(t, x0, u0)dt, for some r ∈ {1, 2, · · · , p}, and∫ b

a

{
f i(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

=
∫ b

a
f i(t, x0, u0)dt, for all i ∈ {1, 2, · · · , p} \ {r}.

The right hand side in the above inequalities contains only one term since
:
x

0(t) = h(t, x0, u0) and y0(t)T g(t, x0, u0) = 0. These inequalities contra-
dict the conclusion of Theorem 4.1. Hence (x0, u0, z0, y0, λ0) is an efficient
solution of (WCD).

Assume now that it is not a properly efficient solution of (WCD). Then
there exist (x̄, ū, z̄, ȳ, λ̄) ∈ F and i ∈ {1, 2, · · · , p} such that∫ b

a

{
f i(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

>

∫ b

a
f i(t, x0, u0)dt
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and ∫ b

a

{
f i(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

−
∫ b

a
f i(t, x0, u0)dt > M

[∫ b

a
f j(t, x0, u0)dt

−
∫ b

a

{
f j(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

]
for all M > 0 and all j 6= i satisfying∫ b

a
f j(t, x0, u0)dt >

∫ b

a

{
f j(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
−ȳ(t)T g(t, x̄, ū)

}
dt.

This means that∫ b

a

{
f i(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

−
∫ b

a
f i(t, x0, u0)dt

can be made arbitrarily large, whereas∫ b

a
f j(t, x0, u0)dt−

∫ b

a

{
f j(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
dt

is finite for all j 6= i. Therefore,

λ̄i
∫ b

a

[{
f i(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}
− f i(t, x0, u0)

]
dt >

∑
j 6=i

λ̄j
∫ b

a

[
f j(t, x0, u0)

−
{
f j(t, x̄, ū)− z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
− ȳ(t)T g(t, x̄, ū)

}]
dt,

or

λ̄T
∫ b

a

[
f(t, x̄, ū)−

(
z̄(t)T

(
h(t, x̄, ū)−

:
x̄(t)

)
+ ȳ(t)T g(t, x̄, ū)

)
e
]
dt

> λ̄T
∫ b

a
f(t, x0, u0)dt.

This contradicts inequality (12). Hence (x0, u0, z0, y0, λ0) is a properly effi-
cient solution of (WCD).
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For validating a converse duality theorem, we may rewrite the problem
(WCD) in minimization form as follows:
Minimize ψ(x, u(t), z(t), y(t), λ) subject to

x(a) = α, x(b) = β,

ψ1(t, x(t), u(t), z(t),
:
z(t), y(t), λ) = 0, t ∈ I,

ψ2(t, x(t), u(t), z(t), y(t), λ) = 0, t ∈ I,
y(t) = 0, t ∈ I,
λ > 0, λT e = 1,

where

ψ(t, x, u, z, y, λ) =
∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+y(t)T g(t, x, u)
}
e
]
dt,

ψ1(t, x, u, z,
:
z, y, λ)=λT fx(t, x, u)−z(t)Thx(t, x, u)−y(t)T gx(t, x, u)− :z(t)

and

ψ2(t, x, u, z, y, λ) = λT fu(t, x, u)− z(t)Thu(t, x, u)− y(t)T gu(t, x, u).

Consider ψ1(·, x(·), u(·), z(·), :z(·), y(·), λ) as defining a mapping Q(1) : X×
U × Z × Y × Rp → B1, where

(i) Z is the space of piecewise smooth functions z : I → Rn,
(ii) Y is the space of piecewise smooth functions y : I → Rm, and
(iii) B1 is a Banach space.

Also consider ψ2(·, x(·), u(·), z(·), y(·), λ) as defining a mapping Q(2) : X×
U × Z × Y × Rp → B2, where B2 is another Banach space. In order to
apply Theorem 3.2 to (WCD), some restrictions are required on the equality
constraints ψ1(·) = 0 and ψ2(·) = 0. It suffices if the Fréchet derivatives,

Q′
(1) =

[
Qx

(1)(x0, u0, z0, y0, λ0), Qu(1)(x0, u0, z0, y0, λ0),

Qz
(1)(x0, u0, z0, y0, λ0), Qy(1)(x0, u0, z0, y0, λ0),

Qλ
(1)(x0, u0, z0, y0, λ0)

]
and

Q′
(2) =

[
Qx

(2)(x0, u0, z0, y0, λ0), Qu(2)(x0, u0, z0, y0, λ0),

Qz
(2)(x0, u0, z0, y0, λ0), Qy(2)(x0, u0, z0, y0, λ0),

Qλ
(2)(x0, u0, z0, y0, λ0)

]
have weak∗ closed range.
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Theorem 4.3 (Converse duality). Let (x0, u0, z0, y0, λ0) be a properly effi-
cient solution of (WCD) and let

(H1): the Fréchet derivatives Q′(1) and Q′(2) have weak∗ closed range, and
(H2): the matrix[

λ0T fxx − z0(t)Thxx − y0(t)T gxx, λ0T fux − z0(t)Thux − y0(t)T gux
λ0T fxu − z0(t)Thxu − y0(t)T gxu, λ0T fuu − z0(t)Thuu − y0(t)T guu

]
be positive or negative definite for all t ∈ I. Then (x0, u0) ∈ K and the two
objective values are equal. Also, if the invexity hypotheses of Theorem 4.1
are satisfied for (x0, u0, z0, y0, λ0) ∈ F , then (x0, u0) is a properly efficient
solution of (CP ).

Proof. Since (x0, u0, z0, y0, λ0) is a properly efficient solution of (WCD),
by Theorem 3.2, there exist ξ ∈ Rp, θ ∈ Rp+, η ∈ R, and piecewise smooth
functions β : I → Rn, γ : I → Rr and δ : I → Rm such that

ξT fx − (ξT e)
{
z0(t)Thx + y0(t)T gx +

:
z

0(t)
}

− β(t)T
{
λ0T fxx − z0(t)Thxx − y0(t)T gxx

}
− γ(t)T

{
λ0T fux − z0(t)Thux − y0(t)T gux

}
= 0, t ∈ I, (18)

ξT fu − (ξT e)
{
z0(t)Thu + y0(t)T gu

}
− β(t)T

{
λ0T fxu − z0(t)Thxu − y0(t)T gxu

}
− γ(t)T

{
λ0T fuu − z0(t)Thuu − y0(t)T guu

}
= 0, t ∈ I, (19)

(ξT e)
(
h− :

x
0
)
− β(t)Thx + β(t)− γ(t)Thu = 0, t ∈ I, (20)

(ξT e)g − β(t)T gx − γ(t)T gu − δ(t) = 0, t ∈ I, (21)

β(t)T f ix + γ(t)T f iu + θi + η = 0, t ∈ I, i ∈ {1, 2, · · · , p}, (22)

δ(t)T y0(t) = 0, t ∈ I, (23)

θTλ0 = 0, (24)

(ξ, θ, δ(t)) = 0, (ξ, θ, η, β(t), γ(t), δ(t)) 6= 0, t ∈ I. (25)

The relations (18) with (8), and (19) with (9) respectively yield(
ξ − (ξT e)λ0)T fx − β(t)T

{
λ0T fxx − z0(t)Thxx − y0(t)T gxx

}
− γ(t)T

{
λ0T fux − z0(t)Thux − y0(t)T gux

}
= 0, t ∈ I (26)
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and (
ξ − (ξT e)λ0)T fu − β(t)T

{
λ0T fxu − z0(t)Thxu − y0(t)T gxu

}
− γ(t)T

{
λ0T fuu − z0(t)Thuu − y0(t)T guu

}
= 0, t ∈ I. (27)

The equations (26) and (27) can now be written in the matrix form:[
fTx (ξ − (ξT e)λ0)
fTu (ξ − (ξT e)λ0)

]
−

[
λ0T fxx − z0(t)Thxx − y0(t)T gxx, λ0T fux − z0(t)Thux − y0(t)T gux
λ0T fxu − z0(t)Thxu − y0(t)T gxu, λ0T fuu − z0(t)Thuu − y0(t)T guu

]

×

β(t)

γ(t)

 = 0, t ∈ I. (28)

The relation (24), because of θ = 0 and λ0 > 0 implies θ = 0.
Multiplying (22) by

(
ξi − (ξT e)λ0i

)
and summing over i = 1, 2, · · · , p,

we have

β(t)T
p∑
i=1

f ix

(
ξi − (ξT e)λ0i

)
+ γ(t)T

p∑
i=1

f iu

(
ξi − (ξT e)λ0i

)
+ η

p∑
i=1

(
ξi − (ξT e)λ0i

)
= 0

or

β(t)T fTx
(
ξ − (ξT e)λ0)+ γ(t)T fTu

(
ξ − (ξT e)λ0) = 0 using (11),

which can be written asβ(t)

γ(t)

T fTx (ξ − (ξT e)λ0
)

fTu
(
ξ − (ξT e)λ0

)
 = 0, t ∈ I. (29)

Multiplying (28) by
(
β(t)T , γ(t)T

)
and then using (29), we haveβ(t)

γ(t)

T

×

[
λ0T fxx − z0(t)Thxx − y0(t)T gxx, λ0T fux − z0(t)Thux − y0(t)T gux
λ0T fxu − z0(t)Thxu − y0(t)T gxu, λ0T fuu − z0(t)Thuu − y0(t)T guu

]

×

β(t)

γ(t)

 = 0, t ∈ I.
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This, in view of the hypothesis (H2) implies

β(t) = 0 = γ(t), t ∈ I. (30)

Therefore, equations (20), (21) and (22) respectively yield

(ξT e)
(
h(t, x0, u0)− :

x
0(t)
)

= 0, t ∈ I, (31)

(ξT e)g(t, x0, u0)− δ(t) = 0, t ∈ I, (32)

and
η = 0.

Now suppose ξ = 0, then from (32), we get δ(t) = 0, t ∈ I. Thus

(ξ, θ, η, β(t), γ(t), δ(t)) = 0, t ∈ I,
a contradiction to (25). Hence ξ ≥ 0 and therefore

ξT e > 0. (33)

Using (33), equations (31) and (32) respectively give
:
x

0(t) = h(t, x0, u0), t ∈ I, (34)

and

g(t, x0, u0) =
δ(t)

(ξT e)
= 0, t ∈ I. (35)

Equation (23) and the equality in (35) imply

y0(t)T g(t, x0, u0) = 0, t ∈ I. (36)

From (34) and (35), we have (x0, u0) ∈ K. Also, in view of (34) and (36),
the two objective values are equal.

Now assume that (x0, u0) is not efficient for (CP). Then there exists
(x̂, û) ∈ K such that∫ b

a
f(t, x̂, û)dt ≤

∫ b

a
f(t, x0, u0)dt.

Using (34) and (36), we get∫ b

a
f(t, x̂, û)dt

≤
∫ b

a

[
f(t, x0, u0)dt−

{
z0(t)T

(
h(t, x0, u0)− :

x
0
)

+y0(t)T g(t, x0, u0)
}
e
]
dt,

a contradiction to the weak duality theorem. Hence (x0, u0) is efficient.
If (x0, u0) is improperly efficient, then there exists a point (x̂, û) ∈ K and

an i ∈ {1, 2, · · · , p} such that∫ b

a
f i(t, x̂, û)dt <

∫ b

a
f i(t, x0, u0)dt,
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and [∫ b

a
f i(t, x̂, û)dt−

∫ b

a
f i(t, x0, u0)dt

]
< M

[∫ b

a
f j(t, x0, u0)dt−

∫ b

a
f j(t, x̂, û)dt

]
,

for all M > 0 and all j 6= i satisfying∫ b

a
f j(t, x0, u0)dt <

∫ b

a
f j(t, x̂, û)dt.

Similar to the proof in the last theorem, these inequalities yield,

λ0T
∫ b

a
f(t, x̂, û)dt < λ0T

∫ b

a
f(t, x0, u0)dt,

which, in view of equations (34) and (36) contradicts inequality (12). Hence
(x0, u0) is a properly efficient solution of (CP).

5. Multiobjective control problem with free boundary conditions

The above results may also be applied to the multiobjective control prob-
lem with free boundary conditions. If the targets x(a) and x(b) are not
restricted, we obtain the following primal problem:

(CPF): Minimize
∫ b
a f(t, x, u)dt subject to
:
x(t) = h(t, x, u), t ∈ I,
g(t, x, u) = 0, t ∈ I.

The following dual (WCDF) to (CPF) includes the transversality condi-
tion z(t) = 0, at t = a and t = b as new constraints.

(WCDF): Maximize∫ b

a

[
f(t, x, u)−

{
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
}
e
]
dt

subject to

λT fx(t, x, u)− z(t)Thx(t, x, u)− y(t)T gx(t, x, u) =
:
z(t), t ∈ I,

λT fu(t, x, u)− z(t)Thu(t, x, u)− y(t)T gu(t, x, u) = 0, t ∈ I,
y(t) = 0, t ∈ I,
λ > 0,

λT e = 1,

z(a) = 0, z(b) = 0.
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For these problems, the duality theorems of the preceding section can
easily be validated. However, in Theoem 4.1, the term ηT z(t)|t=bt=a vanishes
using z(a) = 0 = z(b) instead of the conditions x(a) = α = x0(a) and
x(b) = β = x0(b).

6. Mond-Weir type duality

The Mond-Weir type dual for (CP) is as follows:

Mond-Weir Dual (MCD): Maximize
∫ b
a f(t, x, u)dt subject to

x(a) = α, x(b) = β,

λT fx(t, x, u)− z(t)Thx(t, x, u)− y(t)T gx(t, x, u) =
:
z(t), t ∈ I,

λT fu(t, x, u)− z(t)Thu(t, x, u)− y(t)T gu(t, x, u) = 0, t ∈ I,∫ b

a

(
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
)
dt 5 0, t ∈ I,

y(t) = 0, t ∈ I,
λ > 0.

Denoting by G the set of feasible solutions of (MCD), we state the fol-
lowing Theorems 6.1–6.3 that can be proved as for Wolfe’s type dual.

Theorem 6.1 (Weak duality). Let (x0, u0) ∈ K and (x, u, z, y, λ) ∈ G.
Assume that

∫ b
a λ

T fdt is pseudo-invex and
∫ b
a

(
z(t)T (h− :

x) + y(t)T g
)
dt is

quasi-invex with respect to the same η and ξ. Then∫ b

a
f(t, x0, u0)dt �

∫ b

a
f(t, x, u)dt.

Theorem 6.2 (Strong duality). Let (x0, u0) be a properly efficient solu-
tion for (CP ) and be normal, and that the Fréchet derivative Q′ be sur-
jective. Then there exist Lagrange multiplier λ0, z0(t) and y0(t) such that
(x0, u0, z0, y0, λ0) ∈ G and the vector objective functionals of (CP ) and
(MCD) are equal at these points. Also, if the invexity hypotheses of The-
orem 6.1 are satisfied for every (x, u, z, y, λ) ∈ G, then (x0, u0, z0, y0, λ0) is
a properly efficient solution of (MCD).

Theorem 6.3 (Converse duality). Let (x0, u0, z0, y0, λ0) be a properly effi-
cient solution of (MCD). Assume that

(I1) the Fréchet derivatives Q′(1) and Q′(2) have weak∗ closed range,
(I2) the set {f1

x , · · · , f
p
x} or {f1

u , · · · , f
p
u} is linearly independent, and
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(I3) the matrix[
λ0T fxx − z0(t)Thxx − y0(t)T gxx, λ0T fux − z0(t)Thux − y0(t)T gux
λ0T fxu − z0(t)Thxu − y0(t)T gxu, λ0T fuu − z0(t)Thuu − y0(t)T guu

]
is nonsingular for all t ∈ I. Then (x0, u0) ∈ K and the two objective
values are equal. Also, if the hypotheses of Theorem 6.1 are satisfied for
(x0, u0, z0, y0, λ0) ∈ G, then (x0, u0) is a properly efficient solution of (CP ).

The duality results similar to Theorems 6.1–6.3 can also be established for
the following pair of dual multiobjective control problems with free bound-
ary conditions in view of the modifications described in the preceding sec-
tion.

Primal (CPF): Minimize
∫ b
a f(t, x, u)dt subject to

:
x(t) = h(t, x, u), t ∈ I,
g(t, x, u) = 0, t ∈ I.

Dual (MCDF): Maximize
∫ b
a f(t, x, u)dt subject to

λT fx(t, x, u)− z(t)Thx(t, x, u)− y(t)T gx(t, x, u) =
:
z(t), t ∈ I,

λT fu(t, x, u)− z(t)Thu(t, x, u)− y(t)T gu(t, x, u) = 0, t ∈ I,∫ b

a

(
z(t)T

(
h(t, x, u)− :

x(t)
)

+ y(t)T g(t, x, u)
)
dt 5 0, t ∈ I,

y(t) = 0, t ∈ I,
λ > 0,

z(a) = 0, z(b) = 0.

7. Mathematical programming

If f , h and g are independent of t and u, then (CP), (WCD) and (MCD)
reduce the following problems:

Primal (SP): Minimize f(x) subject to

h(x) = 0,

g(x) = 0.

Wolfe Dual (WSD): Maximize f(x)−
[
zTh(x) + yT g(x)

]
e

subject to

λT fx(x)− zThx(x)− yT gx(x) = 0,

y = 0,
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λ > 0,

λT e = 1.

Mond-Weir Dual (MSD): Maximize f(x) subject to

λT fx(x)− zThx(x)− yT gx(x) = 0,

zTh(x) + y(t)T g(x) 5 0,

y = 0,
λ > 0.

The optimality and duality for the above problems have been discussed
in [4, 5].
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