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1. Introduction

It is known that the periodic Korteweg-de Vries (KdV) equation can be
interpreted as a geodesic flow of the right invariant metric on the Bott-
Virasoro group, which at the identity is given by the L2-inner product [25,
26, 27, 30].

Recently Misiolek [23] showed that an analogous correspondence can be
established for the Camassa-Holm equation [7]. It gives rise to a geodesic
flow of a certain right invariant Sobolev metric H1 on the Bott-Virasoro
group. In fact another well known equation, the Hunter-Saxton (or Harry-
Dym) equation, also follows from geodesic flow [12, 16] on the Bott-Virasoro
group.

Thus we see the KdV and the Camassa-Holm equations arise in a unified
geometric construction, both are integrable systems which describe geodesic
flows on the Bott-Virasoro group. Earlier it was known that both the KdV
and the Camassa-Holm are obtained from different regularisations of the
Euler equation for a one dimensional compressible fluid. The Euler equa-
tion [5], of course, describes geodesic motion on the group of orientation
preserving diffeomorphisms of the circle Diff(S1) with respect to L2 metric
[9].
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In this paper we study integrable systems associated with the semi-direct
product group [cf. 8] Diff(S1) ⋉ C∞(S1). The Lie algebra of Diff(S1) ⋉

C∞(S1) is known in physical literature [4, 13, 15, 21]. It has a three dimen-
sional extension (explained in the next section) Vect(S1) ⋉ C∞(S1) ⊕ R3,
where Vect(S1) = Lie(Diff(S1)) is the Lie algebra of smooth vector fields on
S1. The Lie algebra Vect(S1) admits a nontrivial one-dimensional central
extension defined by the Gelfand-Fuchs 2-cocycle

ω(f1, f2) =

∫

S1

f ′
1(x)f ′′

2 (x) dx,

where fi(x)
d

dx
is the Lie algebra of Vect(S1). The classical Virasoro algebra

is the central extension of Vect(S1). Then a typical element of this algebra
would be

(f
d

dx
, u(x), α) where f

d

dx
∈ Vect(S1), u(x) ∈ C∞(S1), α ∈ R

3.

It was shown by Ovsienko and Roger [25] that the cocycles define the
universal central extension of the Lie algebra of Vect(S1) ⋉ C∞(S1). This

means H2(Vect(S1) ⋉ C∞(S1)) = R3. The ̂Diff(S1) ⋉ C∞(S1) is the non-
trivial extension of Diff(S1) ⋉ C∞(S1).

In this paper we investigate geodesic flows [5, 22] on the
̂Diff(S1) ⋉ C∞(S1), which at the identity is given by the L2 inner product.

These are all completely integrable coupled nonlinear third order partial
differential equations.

1.1. Brief history and formulation of coupled KdV type systems.

Since 80’s, the coupled KdV systems are considered to be important math-
ematical models. These set of equatios are used in various physical phe-
nomena. In 1981, Fuchssteiner [10] made a detailed study of four coupled
KdV equation and formulated the bihamiltonian structure of them. One
of them turned out to be a complex version of the KdV. Immediately after
that Hirota and Satsuma1 introduced a coupled KdV equations

pt + pxxx + ppx − qqx = 0 ,

qt + qxxx + pqx + pxq = 0 . (1)

Researchers have studied the bihamiltonian structures and Lax pairs of
these class of systems. So it became necessary to have a Lie algebraic frame-
work to study such systems. Given an isospectral flow of an appropriate
eigenvalue problem, it is known that the strong symmetry constructed via

1The history and detail structure of these equations can be found in Ablowitz and
Clarkson [1] and J. P. Wang’s review [29].
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the spectral gradient approach is a hereditary operator provided spectral
gradient functions are dense.

In late eighties Antonowicz and Fordy [3] investigated second order en-
ergy dependent spectral parameter and found their isospectral flows have
multi-Hamiltonian structure. This approach gave a very simple and elegant
construction of the associated Hamiltonian operators. This method can be
applied to Kuperschmidt’s [19] nonstandard Lax operators and also to super
Lax equations.

Let us apply the Antonowicz-Fordy scheme to Kuperschmidt’s nonstan-
dard Lax operators

Lφ = (ε∂2 − r∂ + q)φ = 0, (2)

where ε, r and q are now polynomials in λ and construct the associated
Hamiltonian operators. Equations (1) follow directly from the compatibility
condition of (2) and

φt = Pφ ≡ 1

2
(P∂ + Q)φ, (3)

where P and Q are functions of ui and the spectral parameter λ.
Taking some special values of εi, they derive a tri-Hamiltonian dispersive

water waves hierarchy. The first nontrivial member of this hierarchy is

u0t =
1

4
u1xxx +

1

2
u1u0x + u0u1x ,

u1t = u0x +
3

2
u1u1x . (4)

An invertible change of variables

q = u0 +
1

4
u1

2 − 1

2
u1x ,

r = u1 . (5)

transforms equation (4) into a standard dispersive water waves equation

qt =
1

2
(qx + 2qr)x ,

rt =
1

2
(rx + 2q + r2)x . (6)

The hierarchy has a tri-Hamiltonian structure and is the first among a new
kind of integrable system which have come to be known in the literature as
non-standard integrable systems.

The Antonowicz-Fordy scheme can be used to generate several interesting
coupled integrable systems. Recently, Alber et. al. showed that in case of
certain potentials, a limiting procedure can be applied to generate solutions,
which results in solutions with peaks [2 and references therein].
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Finally, it must be worth to note that the the another class of coupled
systems can be obtained from the L2 geodesic flows on the superconformal
group. The geodesic flow on superconformal group yields super KdV (sKdV)
equation

ut = 6uux − uxxx + 3φφx ,

φt = 3uxφ + 6uφx − 4φxxx , (7)

where u, x and t are even (commutating), while φ is odd (anticommutating).
We also compute the Lie-Poisson structure of the Antonowicz-Fordy sys-

tem. It turns out that the mode expansion of these brackets yield the classi-
cal analogue of twisted Heisenberg-Virasoro algebra [4, 6]. This algebra has
an infinite-dimensional Heisenberg subalgebra and a Virasoro subalgebra
[17, 18].

The twisted Heisenberg-Virasoro algebra has been studied by Arbarello
et. al. in [4]. They established a connection between the second cohomology
of certain moduli space of curves and the second cohonology of this Lie
algebra of differential operators of orcer at most one.

1.2. Motivation and result.

In this paper we study various coupled KdV type systems. We show that
one class of systems can be derived straight from the geodesic flows on the
Bott-Viarsoro group. These are known as Hirota-Satsuma systems.

We demontrate that almost all the coupled KdV type systems derived
from the Antonowicz-Fordy scheme can be obtained from the geodesic flows

on the ̂Diff(S1) ⋉ C∞(S1).
There are several equations arose from their scheme can be manifested

as geodesics flows on ̂Diff(S1) ⋉ C∞(S1). Thus we unify all these coupled
KdV systems geometrically. In our earlier papers [11, 13] we have already
shown that the Ito and various dispersive water waves equations follow

from the geodesic flows on ̂Diff(S1) ⋉ C∞(S1). We have also studied [14]
the bihamiltonian structures of these flows.

Let us state the results of our paper.

Theorem 1. Let t 7→ Ĉ be a curve in the ̂Diff(S1) ⋉ C∞(S1). Let Ĉ =
(e, e, 0) be the initial point, directing to the vector

Ĉ(0) = (u(x)
d

dx
, v(x), c),

where c ∈ R3. Then Ĉ(t) is a geodesic of the L2 metric
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(A) if and only if (u(x, t)
d

dx
, v(x, t), c) satisfies the dispersive water waves

type equation when the motion is restricted to hyperplane c = (−1, 0,
1

2
)

ut = vxxx + 3(uv)x + uvx

vt = ux + 4vvx (8)

(B) if and only if (u(x, t)
d

dx
, v(x, t), c) satisfies the Ito equation when the

motion is restricted to hyperplane c = (−1, 0, 0)

ut = uxxx + 6uux + 2vvx

vt = 2(uv)x (9)

(C) if and only if (u(x, t)
d

dx
, v(x, t), c) satisfies the Kaup-Boussinesq sys-

tem when the motion is restricted to hyperplane c = (−1

4
, 0,

1

2
)

ut = uux + vx

vt =
1

4
uxxx + (uv)x (10)

(D) if and only if (u(x, t)
d

dx
, v(x, t), c) satisfies the Broer-Kaup system

when the motion is restricted to hyperplane c = (0,−1,−1)

ut = −uxx + 2(uv)x + uux

vt = vxx + 2vvx − 2ux (11)

Theorem 2. The Fourier expansion of the Lie-Poisson brackets associated
with the Antonowicz-Fordy Hamiltonian structure

O =

(
−c1D

3 + 2uD + ux vD + c2D
2

vx + vD − c2D
2 2c3D

)

yield the classical analogue of twisted Heisenberg-Virasoro algebra.

We also derive the Hirota-Satsuma, the Nutku-Oguz and the Hénon-
Heiles systems as an Euler-Poincaré flows on the Bott-Virasoro group.

This paper is organized as follows: In Section 2 we discuss the geodesic

flows on ̂Diff(S1) ⋉ C∞(S1) with respect to L2 metric. This construction
yields several examples of coupled KdV equations considered by Antonowicz
and Fordy. In Section 3 we present lots of examples. Section 4 is devoted
to the Lie-Poisson structures of the Antonowicz-Fordy system. In Section 5
we discuss another class of coupled KdV equations follow from the geodesic
flows on the Bott-Virasoro group. Section 6 is devoted geodesic flows with
respect to H1 metric.
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2. Coupled KdV type equations and L2 metric on Bott-Virasoro

group

Let Diff(S1) be the group of orientation preserving diffeomorphisms of a
circle. It is known that the group Diff(S1) as well as its Lie algebra of vector
fields on S1, Tid Diff(S1) = Vect(S1), have non-trivial one-dimensional cen-

tral extensions, the Bott-Virasoro group D̂iff(S1) and the Virasoro algebra
V ir respectively [16, 17].

The Lie algebra Vect(S1) is the algebra of smooth vector fields on S1.
This satisfies the commutation relations

[f
d

dx
, g

d

dx
] := (f(x)g′(x) − f ′(x)g(x))

d

dx
. (12)

One parameter family of Vect(S1) acts on the space of smooth functions
C∞(S1) by

L
(µ)

f(x) d

dx

a(x) = f(x)a′(x) − µf ′(x)a(x), (13)

where

L
(µ)

f(x) d

dx

= f(x)
d

dx
− µf ′(x)

is the derivative with respect to the vector field f(x)
d

dx
.

The Lie algebra of Diff(S1)⋉C∞(S1) is the semidirect product Lie algebra

G = Vect(S1) ⋉ C∞(S1).

An element of G is a pair (f(x)
d

dx
, a(x)), where f(x)

d

dx
∈ Vect(S1) and

a(x) ∈ C∞(S1).
It is known that this algebra has a three dimensional central extension

given by the non-trivial cocycles

ω1((f
d

dx
, a), (g

d

dx
, b)) =

∫

S1

f ′(x)g′′(x)dx (14)

ω2((f
d

dx
, a), (g

d

dx
, b)) =

∫

S1

f ′′(x)b(x) − g′′a(x))dx (15)

ω3((f
d

dx
, a), (g

d

dx
, b)) =2

∫

S1

a(x)b′(x)dx. (16)

The first cocycle ω1 is the well known Gelfand-Fuchs cocycle. The Vira-
soro algebra is the unique non-trivial central extension of Vect(S1) via this
ω1 cocycle. Hence we define the Virasoro algebra

V ir = Vect(S1) ⊕ R.
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The space C∞(S1) ⊕ R is identified with a part of the dual space to the
Virasoro algebra. It is called the regular part, and the pairing between this
space and the Virasoro algebra is given by:

〈(u(x), a), (f(x)
d

dx
, α)〉 =

∫

S1

u(x)f(x)dx + aα.

Similarly we consider an extension of G. This extended algebra is given
by

Ĝ = Vects(S1) ⋉ C∞(S1) ⊕ R
3. (17)

Definition 1. The commutation relation in Ĝ is given by

[(f
d

dx
, a, α), (g

d

dx
, b, β)] := ((fg′ − f ′g)

d

dx
, fb′ − ga′, ω) (18)

where α = (α1, α2, α3), β = (β1, β2, β3) ∈ R3, ω = (ω1, ω2, ω3) are the two
cocycles.

The dual space of smooth functions C∞(S1) is the space of distributions

(generalized functions) on S1. Of particular interest are the orbits in Ĝ∗
reg.

In the case of current group, Gelfand, Vershik and Graev have constructed
some of the corresponding representations.

Definition 2. The regular part of the dual space Ĝ∗ to the Lie algebra Ĝ
as follows: consider

Ĝ∗
reg = C∞(S1) ⊕ C∞(S1) ⊕ R

3

and fix the pairing between this space and Ĝ, 〈·, ·〉 : Ĝ∗
reg ⊗ Ĝ → R:

〈û, f̂〉 =

∫

S1

f(x)u(x)dx +

∫

S1

a(x)v(x)dx + αγ, (19)

where û = (u(x), v, γ), f̂ = (f
d

dx
, a, α).

Extend this to a right invariant metric on the semi-direct product group
̂Diff(S1) ⋉ C∞(S1) by setting

〈û, f̂〉ξ̂ = 〈dξ̂Rξ̂−1û, dξ̂Rξ̂−1 f̂〉L2 (20)

for any ξ̂ ∈ Ĝ and û, f̂ ∈ Tξ̂Ĝ, where

Rξ̂ : Ĝ −→ Ĝ

is the right translation by ξ̂.
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We shall show that the Antonowicz-Fordy equation is precisely the Euler-
Poincaré equation on the dual space of Ĝ associated with the L2 inner
product.

Given any three elements

f̂ = (f
d

dx
, a, α), ĝ = (g

d

dx
, b, β), û = (u

d

dx
, v, c), in Ĝ.

Lemma 1.

ad∗
f̂
û =




2f ′(x)u(x) + f(x)u′(x) + a′v(x) − c1f
′′′ + c2a

′′

f ′v(x) + f(x)v′(x) − c2f
′′(x) + 2c3a

′(x)
0




Proof. This follows from

〈ad∗
f̂
û, ĝ〉L2 = 〈û, [f̂ , ĝ]〉L2

= 〈(u(x)
d

dx
, v(x), c), [(fg′ − f ′g)

d

dx
, fb′ − ga′, ω)〈L2

= −
∫

S1

(fg′ − f ′g)u(x)dx −
∫

S1

(fb′ − ga′)vdx − c1

∫

S1

f ′(x)g′′(x)dx

− c2

∫

S1

(f ′′(x)b(x) − g′′(x)a(x))dx − 2c3

∫

S1

a(x)b′(x)dx.

Since f, g, u are periodic functions, hence integrating by parts we obtain

R.H.S. =〈(2f ′(x)u(x) + f(x)u′(x) + a′(x)v(x) − c1f
′′′(x)

+ c2a
′′(x), f ′(x)v(x) + f(x)v′(x) − c2f

′′b(x) + 2c3a
′(x), 0)〉

The Hamiltonian structure associated with the coadjoint action is given
by

O =

(
−c1D

3 + 2uD + ux vD + c2D
2

vx + vD − c2D
2 2c3D

)
. (21)

This is most general Hamiltonian structure for the Antonowicz-Fordy
system. So all other Hamiltonian structures follow from this.

The Euler-Poincaré equation is the Hamiltonian flow on the coadjoint
orbit in Ĝ∗, generated by the Hamiltonian

H(û) ≡ H(u, v) = 〈(u(x), v(x)), (u(x), v(x))〉, (22)

given by

dû

dt
= ad∗ûû. (23)
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Let V be a vector space and assume that the Lie group G acts on the left
by linear maps on V , thus G acts on the left on its dual space V ∗ [5, 22].

Proposition 1. Let G ⋉ V be a semidirect product space (possibly infinite
dimensional), equipped with a metric 〈·, ·〉 which is right translation. A
curve t → c(t) in G ⋉ V is a geodesic of this metric if and only if û(t) =
dc(t)Rc(t)−1

.

c(t) satisfies the Euler-Poincaré equation.

If we assume
δH

δu
= 2v,

δH

δv
= u,

then we prove the first part of the theorem.

3. Examples of Euler-Poincaré flows on semidirect product group

In this section we construct several examples of Euler-Poincaré flows on

the semidirect product group ̂Diff(S1) ⋉ C∞(S1).

3.1. Dispersive water waves equation.

We begin with a prototypical example, the dispersive water waves equa-
tion

w0t = w1xxx + 3(w1w0)x + w0w1x ,

w1t = w0x + 4w1w1x . (24)

We show that this is a geodesic flow on the extension of the Bott-Virasoro
group, and this flow

(
w0t

w1t

)
=

(
D3 + Dw0 + w0D w1D

Dw1 D

)



δH

w0

δH

w1


 (25)

is connected to a hyperplane in the coadjoint orbit of the Bott-Virasoro
group.

It is possible to define a Miura map for this system

u = w1 ,

v = w0 +
3

4
w2

1 . (26)

The Miura map transformed this equation to

vt = uxxx + uvx + 2(uv)x − 3

2
u2ux,

ut = vx . (27)
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It is easy to see that the Hamiltonian structure also transformed to

O =

(
1

2
D3 + D(v − 2u2) + (v − 2u2)D + 2vx uD

Du D

)

with the Hamiltonian functionals satisfy

δH1

δv
= 2u ,

δH1

δu
= v − 2u2 . (28)

3.2. The Ito equation.

Let us choose the hyperplane in the dual space. The coadjoint action
leaves the parameter space invariant. Let us consider a hyperplane c1 = −1,
c2 = c3 = 0.

Corollary 1.

ad∗
f̂
û =




2f ′(x)u(x) + f(x)u′(x) + a′v(x) + f ′′′

f ′v(x) + f(x)v′(x)
0


 .

The Hamiltonian structure of the well known Ito system

ut =uxxx + 6uux + 2vvx

vt =2(uv)x

is given by

OIto =

(
D3 + 4uD + 2ux 2vD

2vx + 2vD 0

)
,

where
δH

δu
= u,

δH

δv
= v.

This system is connected to a hyperplane c1 = −1, c2 = c3 = 0.

3.3. Modified dispersive water wave equation.

When we restrict to a hyperplane c1 = 0, c2 = 1, c3 = 0, we obtain the
modified dispersive water wave equation

ut = 6uux + 2vvx + vxx ,

vt = 2(vu)x − uxx. (29)

Thus the Hamiltonian structure of the modified dispersive water wave is

O2 =

(
4uD + 2ux 2vD

2vx + 2vD + D2 0

)
.
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3.4. The Kaup-Boussinesq system.

The Kaup-Boussinesq equation

ut = uux + vx, vt = (uv)x +
1

4
uxxx

is another system apart from KdV which is often model for the shallow
water undular bose. The KB system has a natural two wave structure,
which enables one to capture the effects of interaction of unmodular bores
or rarefaction waves araising in the decay of an jump discontinuity. This
equation is also related to a hyperplane c1 = 1/4 and c3 = 1/2 in the
coadjoint orbit of the extension of the Bott-Virasoro group. Its Hamiltonian
structure is

O2 =

(
2vD + vx +

1

4
D3 uD

Du D

)
,

with
δH

δv
= u and

δH

δu
= v.

3.5. The Broer-Kaup system.

The Broer-Kaup system

ut = −uxx + 2(uv)x + uux, vt = vxx + 2vvx − 2ux

is a geodesic flow associated to the hyperplane c2 = −1 and c3 = −1. Hence
the Hamiltonian structure is

OBK =

(
uDx + Dxu −D2

x + vDx

D2
x + Dxv −2Dx

)
, with H =

∫

S1

uv.

3.6. The Wadati-Konno-Ichikawa system.

In late seventies, Wadati et. al. [28] proposed two highly nonlinear equations

ut = D2
x(

u√
1 + uv

), vt = −D2
x(

v√
1 + uv

).

The Hamiltonian structure of this pair is associated to the hyperplane c2 =
κ, where κ is very large. Then the Hamiltonian structure becomes

(
uDx + Dxu −κD2

x + vDx

κD2
x + Dxv 0

)
−→
κ→0

∼
(

0 −D2
x

D2
x 0

)
≡ OWKI.

If we use H = 2
√

1 + uv, then we obtain WKI system. Thus the above
Hamiltonian structure OWKI can be obtained from frozen bracket [14, 16]
at (u(x), v(x), c) ≡ (0, 0, c), where c = (0, 1, 0).
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4. Twisted Heisenberg-Virasoro algebra and Lie-Poisson

structure

The Hamiltonian operator associated with the Antonowicz-Fordy system
give rise to Kac-Moody algebras. There is an explicit algorithim for the
construction of Kac-Moody algebras from the Hamiltonian operator which
is essentially based on Fourier analysis.

4.1. Lie-Poisson brackets.

It is now customary to define a Lie-Poisson bracket as

{f, g} =

∫
∇f OAF∇g dx, (30)

where ∇f denotes the gradient of the functional f with respect to (u, v),
and OAF is the Hamiltonian operator of the Antonowicz-Fordy system

OAF =

(
−c1D

3 + 2uD + ux vD + c2D
2

vx + vD − c2D
2 2c3D

)
.

Let us calculate the Lie-Poisson brackets of u(x) and v(x).

Proposition 2.

{u(x), u(x′)} = −c1δ
′′′(x−x′)+2uδ′(x−x′)+u′δ(x−x′), (31)

{u(x), v(x′)} = c2δ
′′(x − x′) + vδ′(x − x′), (32)

{v(x), v(x′)} = 2c3δ
′(x − x′). (33)

Proof. It follows directly from the formula, for example,

{u(x), u(x′)}

=

∫

S1

dx1




δu(x)

δu(x1)

δu(x)

δv(x1)




T

(
−c1D

3 + 2uD + ux vD + c2D
2

vx + vD − c2D
2 2c3D

)



δu(x′)

δu(x1)

δv(x′)

δv(x1)




=

∫ 1

S
dx1

(
δ(x − x1)

0

)T

OAF

(
δ(x′ − x1)

0

)

etc.
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4.2. Fourier expansion and twisted Heisenberg-Virasoro algebra.

Let us perform the Fourier expansion of u(x) and v(x), given by

u(x) =

∞∑

p=1

Lpe
ipx + α, (34)

v(x) =
∞∑

p=1

Spe
ipx + β. (35)

Hence we obtain the twisted Heisenberg-Virasoro algebra corresponding
to the above Lie-Poisson brackets

Proposition 3.

i{Ln, Lm} =(n − m)Ln+m + (c1n
3 − αn)δn+m,0,

i{Ln, Sm} = − mSn+m − (nβ + ic2 n2)δn+m,0,

i{Sn, Sm} =2c3nδn+m,0.

Proof. By direct computation.

This Lie algebra is the classical analogue of the twisted Heisenberg-
Virasoro algebra. It has an infinite-dimensional Heisenberg subalgebra
and a Virasoro subalgebra intertwined with the cocycle (15). The infinite-
dimensional Heisenberg algebra has the basis {Sj , c |j ∈ Z} and the Lie
bracket is given by (38), and c3 is a central term. By the direct exponenti-
ation we construct the Heisenberg group:

{exp(κ c3) exp(
∑

j≤0

ajSj) exp(
∑

j≤0

ajSj)},

where ak ∈ R with finitely many non-zero ak.
The center of the twisted Heisenberg-Virasoro algebra is four dimensional

and is spanned by {S0, c1, c2, c3}.

5. The Euler-Poincaré framework of the Hirota-Satsuma type

equation

Another class of coupled KdV equations can be derived as Euler-Poincaré
flows on Bott-Virasoro group using complex fields. This is different from
the Antonowicz and Fordy classes. In this section we consider such classes
of coupled KdV systems.
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5.1. Diffeomorphism and Virasoro algebra.

Let us consider the Lie algebra of vector fields on S1, Vect(S1). The dual of
this algebra is identified with space of quadratic differential forms u(x)dx⊗2

by the following pairing,

〈u(x), f(x)〉 =

∫ 2π

0
u(x) f(x)dx

where

f(x)
d

dx
∈ Vect(S1).

The Virasoro algebra V ir has a unique non-trivial central extension by
means of R

0 −→ R −→ V ir −→ Vect(S1)

described by the Gelfand-Fuchs cocycle

ω1(f, g) =
1

2

∫

S1

f ′g′′dx.

The elements of V ir can be identified with the pairs (2π periodic function,
real number). The commutator in V ir takes the form

[(f(x)
d

dx
, a), (g(x)

d

dx
, b)] = ((fg′ − gf ′)

d

dx
,

∫

S1

f ′g′′).

The dual space V ir∗ can be identified to the set {(µ, udx2)|µ ∈ R}.
A pairing between a point

(λ, f(x)
d

dx
) ∈ V ir

and a point (µ, udx⊗2) is given by

λµ +

∫

S1

f(x)u(x) dx.

The next theorem follows from the work of Lazutkin and Pankratova [20].

Theorem 3. The space V ir∗ can be identified with the V ir-module of Hill’s

operators {µ d2

dx2
+ u(x)} acting on distributions of weight −1

2
as D̂iff+(S1)

modules.

This is verifiable by the direct computaion of the action of V ir∗ on its
dual.
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5.2. Coadjoint action and Hamiltonian structure of Hirota-

Satsuma system.

It is known from the work of Kirillov that the dual of Virasoro algebra is a
Diff+(S1) module.

Lemma 2.

Ad∗(λ, φ)(µ, u) = (µ,Ad∗(φ)u + λΛ(φ))

where Λ(φ) = S(φ)◦φ−1, S(φ) is called Schwarzian derivative of an analytic
function φ and it is defined by

1

2

(
φ′′′

φ′
− 3

2

(
φ′′

φ′

)2
)

.

The infinitesimal version of this action is given by

Lemma 3.

ad∗
(λ,f(x) d

dx
)
(µ, u) = (µ,

1

2
µf ′′′ + 2f ′u + fu′) ≡ (µ, ũ). (36)

Proof. It follows from the definition

〈ad∗(λ,f)(µ, u), (ν, g)〉 =〈(µ, u), ad(λ, f)(ν, g)〉

=〈(µ, u), (
1

2

∫

S1

f ′g′′dx, [f
d

dx
, g

d

dx
])〉.

Alternatively, we know that the Hill’s operator maps

∆: F1/2 −→ F−3/2, (37)

where Fλ can be interpreted as a tensor-densities on S1 of degree −λ.
The action of Vect(S1) on the space of Hill’s operator ∆ is defined by the

commutation with the Lie derivative

Lλ
f(x) d

dx

= f(x)
d

dx
− λf ′(x),

given by

[Lf(x) d

dx

,∆] := L−3/2

f(x) d

dx

◦ ∆ − ∆ ◦ L1/2

f(x) d

dx

. (38)

The above equation yields the coadjoint action of Vect(S1).
Hence the Hamiltonian operator of the KdV equation equation is given

by

OKdV ≡ ad∗u = (
1

2
∂3

x + 2u∂x + ux). (39)
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In the Hirota-Satsuma case the unknown variable is

u(x, t) = p(x, t) + iq(x, t),

where p(x, t) is the real part of u(x, t), q(x, t) is the imaginary part of u(x, t).
Then the Hirota-Satsuma type equation follows from this scheme.

Proposition 4. The Hamiltonian structure of the Hirota-Satsuma system
can be written as

OHS =




1

2
∂3 + 2p∂ + px 0

0
1

2
∂3 + 2q∂x + qx


 (40)

5.3. Example: the Nutku-Oguz system.

There are several systems closely related to this system. A few years ago Y.
Nutku and O. Oguz [24] proposed a new class of coupled KdV type system

qt = qxxx + 2aqqx + ppx + (qp)x

pt = pxxx + 2bppx + qqx + (qp)x, (41)

where a+ b = 1. If we change the variables to u = q + p and v = q + p, then
the above set is boiled down to

ut = uxxx + uux + vvx

vt = vxxx + λvvx + (uv)x, (42)

where λ is a parameter which is assumed as real. If λ = 0, the ystem is
a completely coupled KdV system discussed by Fuchssteiner. This system
can be easily incorporated in our programme.

The symmetrically coupled system

ut = uxxx + vxxx + 6uux + 4uvx + 2uxv

vt = uxxx + vxxx + 6vvx + 4vux + 2vxu (43)

is also a geodesic flow on the space of the Bott-Virasoro group. This can be
easily checked if one replaces

λ = u + v and H =
1

2
(u + v)2 =

1

2
λ2.
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6. H1 metric and integrable equation

Let us introduce H1 norm on the algebra Ĝ

〈f̂ , ĝ〉H1 =

∫

S1

f(x)g(x)dx +

∫

S1

a(x)b(x)dx

∫

S1

∂xf(x)∂xg(x)dx

+

∫

S1

∂xa(x)∂xb(x)dx + αβ,

where ĝ and f̂ are defined as above.
Now we compute:

Lemma 4. The coadjoint operator for H1 norm is given by

ad∗
f̂
û

=




2f ′(x)(1−∂2
x)u(x)+f(x)(1−∂2

x)u′(x)+a′(1−∂2
x)v(x)−c1f

′′′+c2a
′′

f ′(1 − ∂2
x)v(x) + f(x)(1 − ∂2

x)v′(x) − c2f
′′b(x) + 2c3a

′(x)
0


 .

Proof. From the definition it follows that

〈ad∗
f̂
û, ĝ〉H1

= −
∫

S1

(fg′ − f ′g)u(x)dx −
∫

S1

(fb′ − ga′)vdx − c1

∫

S1

f ′(x)g′′(x)dx

− c2

∫

S1

(f ′′(x)b(x) − g′′(x)a(x))dx − 2c3

∫

S1

a(x)b′(x)dx

−
∫

S1

∂x(fg′ − f ′g)u(x)dx −
∫

S1

∂x(fb′ − ga′)vdx.

In the preceding section we have already computed the first five terms.
After computing the last two terms by integrating by parts and using the
fact that the functions f(x), g(x), u(x) and a(x), b(x), v(x) are periodic, this
expression can be expressed as above.

Let us compute now the left hand side:

L.H.S. =

∫

S1

(ad∗
f̂
û)ĝdx +

∫

S1

(ad∗
f̂
û)′ĝ′dx

=

∫

S1

[(1 − ∂2)ad∗
f̂
û]ĝdx.

Thus by equating the R.H.S. and L.H.S. we obtain the above formula.
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Corollary 2.

ad∗
f̂
û =




2f ′(x)(1 − ∂2
x)u(x) + f(x)(1 − ∂2

x)u′(x) + a′(1 − ∂2
x)v(x) + f ′′′

f ′(1 − ∂2
x)v(x) + f(x)(1 − ∂2

x)v′(x)
0


 .

Hence the Hamiltonian operator is
(

1

2
D3 + Dw̃0 + w̃0D w̃1D

Dw̃1 D

)
, (44)

where w̃i = (1 − ∂2
x)wi.

Thus we prove:

Theorem 4. Let D̂iff
s
(S1) be the group of orientation preserving Sobolev

Hs diffeomorphisms of a circle. Let t 7→ ĉ be a curve in the
̂Diffs(S1) ⋉ C∞(S1). Let ĉ = (e, e, 0) be the initial point, directing to the

vector

ĉ(0) = (w0(x)
d

dx
,w1(x), γ0),

where γ0 ∈ R3. Then ĉ(t) is a geodesic of the H1 metric if and only if

(w0(x, t)
d

dx
,w1(x, t), γ) satisfies

w0t−w0xxt =w1xxx+3(w0w1)x+w0w1x−2(w0xxw1)x−2w0xxw1x−w1xxw0x

w1t−w1xxt =w0x + 4w1w1x − 2(w1w1xx)x. (45)

Thus one can obtain the H1 flows of other integrable systems following
this prescription.

7. Conclusion and outlook

There are various ways to derive coupled KdV systems. Firstly, one class
of systems can be derived as geodesic flows with respect to the L2 metrics
on the Bott-Virasoro groups using complexified field. These systems are
called Hirota-Satsuma type systems.

One can also generate coupled KdV from the geodesic flows on the Super-

conformal group, super analogue of geodesic flows on ̂Diff(S1) ⋉ C∞(S1).
These are known as super KdV systems. These are coupled integrable sys-
tems.

Finally, we have seen that the most interesting class of coupled KdV sys-
tems can be derived as geodesic flows with respect to the L2 metrics on

̂Diff(S1) ⋉ C∞(S1). These are known as Antonowicz-Fordy systems. We
have seen that the mode expansion of the Lie-Poisson brackets of the AF
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system is related to the twisted Heisenberg-Virasoro algebra. This algebra
has an infinite-dimensional Heisenberg subalgebra and a Virasoro subalge-
bra. These subalgebras do not form a semidirect product, but instead, the
natural action of the Virasoro subalgebra on a Heisenberg subalgebra is
twisted with a two cocycle. It would be rather interesting to study such
algebra from the super analogue of our construction. Finally, we have also
briefly discussed the method to obtain the H1 analogue of these flows.

Figure 1. Various methods of constructing coupled KdV systems
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