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Abstract. We study a mathematical problem describing the friction-
less adhesive contact between an elastic body and a foundation. The
adhesion process is modelled by a surface variable, the bonding field,
and the contact is modelled with a normal compliance condition; the
tangential shear due to the bonding field is included; the elastic consti-
tutive law is assumed to be nonlinear and the process is quasistatic. The
problem is formulated as a nonlinear system in which the unknowns are
the displacement, the stress and the bonding field. The existence of a
unique weak solution for the problem is established by using arguments
for differential equations followed by the construction of an appropriate
contraction mapping.

1. Introduction

The adhesive contact between bodies, when a glue is added to pre-
vent relative motion of the surfaces, has received recently increased at-
tention in the mathematical literature. Basic modelling can be found in
[5, 7, 8]. Analysis of models for frictionless adhesive contact can be found in
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[1, 2, 3, 4, 6, 9, 11, 12, 18]. The models studied in [1, 2, 9] and [18] involve
special geometries or settings; indeed, in [9] the problem of a beam in adhe-
sive contact can be found, in [1, 2] the adhesive contact of a membrane was
investigated in the quasistatic and dynamic case, respectively, and in [18]
a model of antiplane adhesive contact for linearly elastic materials problem
was shown to have a weak solution. Moreover, a novel application of the
theory is in the medical field of prosthetic limbs where the bonding be-
tween the bone-implant and the tissue is of considerable importance, since
debonding may lead to decrease in the persons ability to use the artificial
limb or joint (see [15, 16] and references therein).

The novelty in these papers is the introduction of a surface internal vari-
able, the bonding field, which describes the pointwise fractional density of
active bonds on the contact surface, and sometimes referred to as the ‘in-
tensity of adhesion’. We refer the reader to the extensive bibliography on
the subject in [14, 15, 17].

In this paper we continue the investigation of adhesive problems begun
in [3, 4, 6, 11, 12]. There, models for dynamic or quasistatic process of
frictionless adhesive contact between a deformable body and a foundation
have been analyzed and simulated; the contact was described with normal
compliance or was assumed to be bilateral, and the behavior of the material
was modeled with a nonlinear Kelvin–Voigt viscoelastic constitutive law;
the models included the bonding field as an additional dependent variable,
defined and evolving on the contact surface. The existence of a unique
weak solution to the models have been obtained by using arguments of
evolutionary equations in Banach spaces and fixed-point theorems.

In this paper we deal with the quasistatic process of frictionless adhesive
contact, using the bonding field and the normal compliance contact condi-
tion, too. However, we consider the case of nonlinear elastic materials, which
consists the trait of novelty of the present paper. We derive a variational
formulation of the model and prove the existence a unique weak solution
to the model. To this end we use similar arguments as in [3, 4, 6, 11, 12]
but with a different choice of functionals and operators, since the physical
setting here and in the above mentioned papers is different. Moreover, the
existence result we obtain in this paper is valid only when the sizes of some
constants are restricted, which quite often is a feature in contact problems
involving inviscid materials. Indeed, it was found in [11] that even vanishing
amounts of viscosity allow to prove the well-posedness of the model, without
any smallness assumptions on the constitutive contact functions.

Our paper is structured as follows. In Section 2 we present some notation
and preliminary material. In Section 3 we state the mechanical model of
elastic frictionless contact with adhesion and normal compliance. In Section
4 we list the assumptions on the data, derive the variational formulation to
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the problem and state our main existence and uniqueness result, Theorem
4.1. The proof of this theorem is given in Section 5; it is carried out in
several steps and is based on arguments for differential equations and a
fixed point theorem.

2. Notations and preliminaries

Everywhere in this paper we denote by S the space of second order
symmetric tensors on Rd (d = 1, 2, 3); “ · ” and | · | represent the inner
product and the Euclidean norm on Rd and S, respectively. Thus, for ev-
ery u,v ∈ Rd, u · v = uivi, |v| = (v · v)1/2, and for every σ, τ ∈ S,
σ · τ = σijτij , |τ | = (τ · τ )1/2. Here and below, the indices i, j, k, h run
between 1 and d and the summation convention over repeated indices is
adopted.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ. In
what follows we use the standard notation for the Lebesgue and Sobolev
spaces associated to Ω and Γ, and the index that follows a comma indicates
a derivative with respect to the corresponding component of the spatial
variable x ∈ Ω. We shall also use the notation

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω)}, H1 = {u = (ui) | ui ∈ H1(Ω)},
H = {σ = (σij) | σij = σji ∈ L2(Ω)}, H1 = {σ ∈ H | σij,j ∈ L2(Ω)}.

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the inner
products given by

(u,v)H =
∫

Ω
uivi dx, (σ, τ )H =

∫
Ω
σijτij dx,

(u,v)H1 = (u,v)H+(ε(u), ε(v))H, (σ, τ )H1 = (σ, τ )H+(Divσ,Div τ )H ,

respectively. Here ε : H1 → H and Div : H1 → H are the deformation
and the divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2

(ui,j + uj,i), Divσ = (σij,j).

The associated norms on the spaces H, H, H1 and H1 are denoted by ‖·‖H ,
‖ · ‖H, ‖ · ‖H1 and ‖ · ‖H1 , respectively.

Since the boundary Γ is Lipschitz continuous, the unit outward normal
vector ν on the boundary is defined a.e. For every vector field v ∈ H1 we
use the notation v for the trace of v on Γ and we denote by vν and vτ the
normal and the tangential components of v on the boundary, given by

vν = v · ν, vτ = v − vνν.
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For a regular (say C1) stress field σ, the application of its trace on the
boundary to ν is the Cauchy stress vector σν. We define, similarly, the
normal and tangential components of the stress on the boundary by the
formulas

σν = (σν) · ν, στ = σν − σνν
and we recall that the following Green’s formula holds:

(σ, ε(v))H + (Divσ,v)H =
∫

Γ
σν · v da ∀v ∈ H1. (2.1)

Finally, for every real Banach space X we use the classical notation for
the spaces Lp(0, T ;X) and Wm,p(0, T ;X), 1 ≤ p ≤ +∞, m = 1, 2, . . . , and
we use the dot above to indicate the derivative with respect to the time
variable. Moreover, for a real number r, we use r+ to represent its positive
part, that is r+ = max{0, r}.

3. Problem statement

We consider an elastic body which occupies the bounded domain Ω ⊂ Rd
with a Lipschitz continuous outer surface Γ that is divided into three disjoint
measurable parts Γ1, Γ2 and Γ3 such that measΓ1 > 0. Let T > 0 and
let [0, T ] denote the time interval of interest. The body is clamped on
Γ1 × (0, T ) and, therefore, the displacement field vanishes there. A volume
force of density f0 acts in Ω× (0, T ) and surface tractions of density f2 act
on Γ2 × (0, T ). The body is in adhesive contact with an obstacle, the so
called foundation, over the potential contact surface Γ3.

We denote by u the displacement field, by σ the stress tensor field and
by ε(u) the linearized strain tensor. We assume that the material is elastic
and obeys the constitutive law

σ = E(ε(u)) in Ω× (0, T ), (3.1)

where E is a given nonlinear constitutive function which will be described
below. To simplify the notation, here and below we do not indicate explicitly
the dependence of various functions on the variables x ∈ Ω∪Γ and t ∈ [0, T ].

As examples of nonlinear constitutive functions E we may consider

E(ε) = Aε+ β (ε− PKε) (3.2)

in which A is a fourth-order tensor, β > 0, K is a closed convex subset of
S such that 0 ∈ K and PK : S → K denotes the projection map. A second
example is provided by a nonlinear Hencky material when

E(ε) = κ (tr ε) Id + ψ(|εD|2) εD. (3.3)
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Here, κ > 0 is a material coefficient, Id is the identity tensor of the second
order, ψ : R → R is a constitutive function and εD = εD(u) denotes the
deviatoric part of ε = ε(u) that is

εD = ε− 1
d

(tr ε) Id.

We describe now the conditions on the contact surface Γ3.
Following [7, 8], we introduce the surface state variable β, called the

bonding field, which is a measure of the fractional intensity of adhesion
between the surface and the foundation. This variable is restricted to values
between β = 0, when there are no active bonds, and β = 1 when all the
bonds are active. When 0 < β < 1 it measures the fraction of active bonds,
that is partial adhesion takes place.

We assume that the normal stress satisfies the condition of normal com-
pliance with adhesion,

− σν = pν(uν)− γνβ2(−RL(uν))+ on Γ3 × (0, T ). (3.4)

Here pν is a prescribed and nonnegative function such that pν(r) = 0 for r ≤
0 and the normal displacement uν , when positive, represents the penetration
of the body into the foundation. The second term is the contribution of the
bonding to the surface tension in which γν is the bonding stiffness constant,
L > 0 is a characteristic lenght of the bonds (see, e.g. [14]) and RL : R→ R
is the truncation function defined by

RL(s) =


−L if s ≤ −L
s if |s| < L

L if s ≥ L.
(3.5)

The introduction of RL is motivated by the observation that if the extension
is more than L, the glue extends plastically without offering additional
tensile traction. However, by choosing L sufficiently large, say larger than
the size of the system, we recover the case where the traction is linear
in the extension. Thus, the contribution of the adhesive to the normal
traction is represented by γνβ2(−RL(uν))+; the adhesive traction is tensile,
and is proportional, with proportionality coefficient γν , to the square of the
intensity of adhesion, and to the normal displacement, but as long as it does
not exceed the bond length L. The maximal tensile traction is γνL.

As examples of normal compliance functions we may consider

pν(r) = cr+ (3.6)

or

pν(r) =

{
c r+ if r ≤ α
cα if r > α,

(3.7)
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where c > 0 and α > 0 are surface parameters. Using (3.6) in (3.4) it
follows that uν > 0 ⇒ −σν = c uν , that is the reaction of the obstacle is
proportional to the penetration. Using (3.7) in (3.4) it follows that uν >
α ⇒ −σν = c α which shows that if the penetration exceeds the value α
then the obstacle offers no additional resistance to penetration.

As in [4, 11] we assume that the resistance to tangential motion is gen-
erated mainly by the glue, and the frictional traction can be neglected. In
particular, when all the adhesive bonds are inactive, or broken, the motion
is frictionless. A different assumption, taking friction into account, can be
found in [14, 15, 16]. Thus, the tangential traction depends only on the
bonding field and on the tangential displacement, that is

− στ = pτ (β,uτ ) on Γ3 × (0, T ). (3.8)

In particular, we can consider the case

pτ (β, r) =


qτ (β) r if |r| ≤ L

qτ (β)
L

|r|
r if |r| > L,

(3.9)

where L > 0 is the characteristic length of the bond and qτ is a nonnegative
tangential stiffness function. Note that in this case the tangential traction
is opposite to the tangential displacement.

As in [4, 11] we assume that the evolution of the bonding field is governed
by the differential equation

:
β = Had(β,RL(|u|)) on Γ3 × (0, T ), (3.10)

where Had is a general function discussed below, which may change sign.
This condition allows for rebonding after debonding took place and it al-
lows for possible cycles of debonding and rebonding. As examples of such
functions consider

Had(β, r) = −γ0 β+ r
2 (3.11)

or

Had(β, r) = −γ0
β+

1 + β+
r2, (3.12)

where γ0 > 0 is a bonding coefficient.
Let β0 be the initial bonding field. We assume that the process is qua-

sistatic and therefore, using (3.1), (3.4), (3.8) and (3.10), we obtain the
following mechanical model for the elastic frictionless contact problem with
adhesion and normal compliance.
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Problem P . Find a displacement field u : Ω × [0, T ] → Rd, a stress field
σ : Ω× [0, T ]→ S and a bonding field β : Γ3 × [0, T ]→ [0, 1] such that

σ =E(ε(u)) in Ω× (0, T ), (3.13)

Divσ + f0 =0 in Ω× (0, T ), (3.14)

u =0 on Γ1 × (0, T ), (3.15)

σν =f2 on Γ2 × (0, T ), (3.16)

−σν = pν(uν)− γνβ2(−RL(uν))+ on Γ3 × (0, T ), (3.17)

−στ =pτ (β,uτ ) on Γ3 × (0, T ), (3.18)
:
β =Had(β,RL(|u|)) on Γ3 × (0, T ), (3.19)

β(0) =β0 on Γ3. (3.20)

Note that here (3.14) are the equilibrium equations, (3.15) and (3.16) are
the displacement and traction boundary conditions, respectively, and (3.20)
represent the initial condition for the bonding field.

4. Variational formulation

We turn now to the variational formulation of Problem P . To this end
we denote by V the closed subspace of H1 defined by

V = {v ∈ H1 | v = 0 on Γ1}.

Since measΓ1 > 0, Korn’s inequality holds and there exists a constant
CK > 0, that depends only on Ω and Γ1, such that ‖ε(v)‖H ≥ CK‖v‖H1

for all v ∈ V. A proof of Korn’s inequality may be found in [13, p. 79]. On
V we consider the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H ∀u, v ∈ V.

It follows from Korn’s inequality that ‖ ·‖H1 and ‖ ·‖V are equivalent norms
on V and therefore (V, ‖ · ‖V ) is a real Hilbert space. Moreover, by the
Sobolev trace theorem, there exists a constant c0, depending only on Ω, Γ1
and Γ3, such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (4.1)

In the study of the mechanical problem (3.13)–(3.20), we assume that the
elasticity operator satisfies:
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(a) E : Ω× S → S;

(b) There exists LE > 0 such that
|E(x, ε2)− E(x, ε2)| ≤ LE |ε1 − ε2|
∀ε1, ε2 ∈ S, a.e. x ∈ Ω;

(c) There exists mE > 0 such that
(E(x, ε1)− E(x, ε2)) · (ε1 − ε2) ≥ mE |ε1 − ε2|2

∀ ε1, ε2 ∈ S, a.e. x ∈ Ω;

(d) The mapping x 7→ E(x, ε) is Lebesgue measurable on Ω,
for any ε ∈ S;

(e) The mapping x 7→ E(x,0) ∈ H.

(4.2)

Clearly, a family of elasticity operators satisfying condition (4.2) is pro-
vided by the linearly elastic materials

σij = Aijhk εhk

if the elasticity tensor A = (Aijhk) : S → S is symmetric and positive
definite. Also, if A satisfies the conditions above, by using the properties of
the projection map, it can be proved that the operator E defined by (3.2)
satisfies conditions (4.2). Finally, recall that under appropriate assumptions
on the constitutive function ψ it can be shown that the operator E defined
in (3.3) satisfies conditions (4.2), see [10, p. 125] for details. We conclude
that our results below are valid for the adhesive contact problems associated
with these elastic constitutive laws.

The normal compliance function pν and the tangential contact function
pτ satisfy:



(a) pν : Γ3 × R→ R+;

(b) There exists Lν > 0 such that
|pν(x, r1)− pν(x, r2)| ≤ Lν |r1 − r2|
∀r1, r2 ∈ R, a.e. x ∈ Γ3;

(c) The mapping x 7→ pν(x, r) is Lebesgue measurable
on Γ3, for any r ∈ R;

(d) r ≤ 0⇒ pν(x, r) = 0, a.e. x ∈ Γ3.

(4.3)
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(a) pτ : Γ3 × R× Rd → Rd;

(b) There exists Lτ > 0 such that
|pτ (x, β1, r1)− pτ (x, β2, r2)| ≤ Lτ (|β1 − β2|+ |r1 − r2|)
∀β1, β2 ∈ R, r1, r2 ∈ Rd, a.e. x ∈ Γ3;

(c) The mapping x 7→ pτ (x, β, r) is Lebesgue measurable
on Γ3, for any β ∈ R, r ∈ Rd;

(d) The mapping x 7→ pτ (x, 0, 0) ∈ L∞(Γ3)d;

(e) pτ (x, β, r) · ν(x) = 0 for any r ∈ Rd such that r · ν(x) = 0,
a.e. x ∈ Γ3.

(4.4)

Clearly, the normal compliance functions (3.6) and (3.7) satisfy condition
(4.3) and, if qτ : R → R is a bounded Lipschitz continuous function, then
the tangential contact function (3.9) satisfies condition (4.4). We conclude
that our results below are valid for the corresponding contact problems.

Next, we assume that the adhesion rate function satisfies:

(a) Had : Γ3 × R× R+ → R;

(b) There exists LHad > 0 such that
|Had(x, b1, r1)−Had(x, b2, r2)|
≤ LHad (|b1 − b2|+ |r1 − r2|)
∀ b1, b2 ∈ R, ∀r1, r2 ∈ [0, L], a.e. x ∈ Γ3;

(c) The mapping x 7→ Had(x, b, r) is Lebesgue measurable
on Γ3, for any b ∈ R, r ∈ [0, L];

(d) The mapping (b, r) 7→ Had(x, b, r) is continuous on
R× [0, L], a.e. x ∈ Γ3;

(e) Had(x, 0, r) = 0 ∀ r ∈ [0, L], a.e. x ∈ Γ3;

(f) Had(x, b, r) ≥ 0 ∀ b ≤ 0, r ∈ [0, L], a.e. x ∈ Γ3 and
Had(x, b, r) ≤ 0 ∀ b ≥ 1, r ∈ [0, L], a.e. x ∈ Γ3.

(4.5)

These conditions are chosen to ensure the restriction 0 ≤ β ≤ 1 for the
bonding field, see the proof of Lemma 5.1 below for details. Moreover, it
is straightforward to see that if the bonding energy constant γν is positive,
then the functions Had in examples (3.11) and (3.12) satisfy (4.5). We
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conclude that all the results below are valid for the models involving the
corresponding evolutions of the adhesion process.

Finally, the body forces and surface tractions density satisfy

f0 ∈ L∞(0, T ;H), f2 ∈ L∞(0, T ;L2(Γ2)d) (4.6)

and the initial bonding field is such that

β0 ∈ L∞(Γ3), 0 ≤ β0(x) ≤ 1 a.e. x ∈ Γ3. (4.7)

Next, we define the function f : [0, T ]→ V by the equality

(f(t),v)V =
∫

Ω
f0(t) · v dx+

∫
Γ2

f2(t) · v da ∀v ∈ V,

a.e. t ∈ (0, T ), (4.8)

and let j : L∞(Γ3)× V × V → R be the contact functional

j(β,u,v) =
∫

Γ3

pν(uν) vν da−
∫

Γ3

γν β
2(−RL(uν))+ vν da

+
∫

Γ3

pτ (β,uτ ) · vτ da ∀β ∈ L∞(Γ3), ∀u, v ∈ V. (4.9)

Keeping in mind (4.3), (4.4) and (4.6), it follows that the integrals in (4.8),
(4.9) are well defined and, moreover,

f ∈ L∞(0, T ;V ). (4.10)

We now assume that u, σ, β are regular functions which satisfy (3.13)–
(3.20) and let v ∈ V, t ∈ [0, T ]. Using (2.1) and (3.14) we have

(σ(t), ε(v))H =
∫

Ω
f0(t) · v dx+

∫
Γ
σ(t)ν · v da,

and by (3.15), (3.16) and (4.8) we find

(σ(t), ε(v))H = (f(t),v)V +
∫

Γ3

σ(t)ν · v da. (4.11)

Using now (3.17), (3.18), (4.9) and (4.11) yields

(σ(t), ε(v))H + j(β(t),u(t),v) = (f(t),v)V . (4.12)

To conclude, from (3.13), (3.19), (3.20) and (4.12) we obtain the following
variational formulation of the problem P .

Problem PV . Find a displacement field u : [0, T ] → V , a stress field σ :
[0, T ]→ H1, and a bonding field β : [0, T ]→ L∞(Γ3) such that

σ(t) = E(ε(u(t))) a.e. t ∈ (0, T ), (4.13)
:
β(t) = Had(β(t), RL(|u(t)|)), a.e. t ∈ (0, T ), (4.14)
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(σ(t), ε(v))H+j(β(t),u(t),v)=(f(t),v)V ∀v ∈ V,
a.e. t ∈ (0, T ),

(4.15)

β(0) = β0. (4.16)

The existence of the unique solution of Problem PV is stated now and
the proof is provided in the next section.

Theorem 4.1. Assume that (4.2)–(4.7) hold and

c2
0(Lν + Lτ + γν)

mE
<

1√
2e
. (4.17)

Then there exists a unique solution {u, σ, β} of problem PV . Moreover, the
solution satisfies

u ∈ L∞(0, T ;V ), (4.18)

σ ∈ L∞(0, T ;H1), (4.19)

β ∈W 1,∞(0, T ;L∞(Γ3)), (4.20)

0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3. (4.21)

Theorem 4.1 states the well posedness of the variational problem PV . By
this theorem we conclude that, under the assumptions (4.2)–(4.7) and if
moreover the smallness assumption (4.17) holds, the mechanical problem P
has a unique weak solution with regularity (4.18)–(4.20).

Note that the result in Theorem 4.1 is obtained by restricting the size of
the coefficients involved in the constitutive law and in the contact conditions.
Whether it is a limitation of the mathematical approach, which is based on
a fixed point argument, or intrinsic feature of the elastic contact models
with adhesion is an open question. There seems to be some numerical and
theoretical evidence that the difficulties are related to the intrinsic structure
of the problem. On the other hand, the existence and uniqueness of the
solution for the corresponding adhesive contact with viscoelastic materials
have been established without any size restrictions, see [11] for details.

5. Proof

The proof of Theorem 4.1 is carried out in several steps that we present
in what follows. Everywhere below we assume that (4.2)–(4.7) hold. We
use Riesz’s representation theorem to define the operator E : V → V by

(Eu,v)V = (E(ε(u)), ε(v))H ∀u, v ∈ V. (5.1)
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It follows from (4.2) that E is a strongly monotone Lipschitz continuous
operator. Therefore E is invertible and, moreover, its inverse E−1 : V → V
satisfies

‖E−1(w1) − E−1(w2)‖V ≤
1
mE
‖w1 − w2‖V ∀w1, w2 ∈ V. (5.2)

Let η be an arbitrary element of the space L∞(0, T ;V ) and denote

uη(t) = E−1(f(t)− η(t)) a.e. t ∈ (0, T ). (5.3)

It follows from (4.10) that

uη ∈ L∞(0, T ;V ) (5.4)

and, moreover, (5.1) and (5.3) imply that

(E(ε(uη(t))), ε(v))H + (η(t),v)V = (f(t),v)V ∀v ∈ V,
a.e. t ∈ (0, T ). (5.5)

In the first step we consider the following evolutionary problem.

Problem P ηV . Find a bonding field βη : [0, T ]→ L∞(Γ3) such that
:
βη(t) = Had(βη(t), RL(|uη(t)|)) a.e. t ∈ (0, T ), (5.6)

βη(0) = β0. (5.7)

We have the following result.

Lemma 5.1. There exists a unique solution βη of problem P ηV and it sat-
isfies (4.20). Moreover,

0 ≤ βη(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3. (5.8)

Proof. For the sake of simplicity we suppress the dependence of various
functions on x ∈ Γ3. Notice that the equalities and inequalities below are
valid a.e. x ∈ Γ3. We consider the mapping F : (0, T )×L∞(Γ3)→ L∞(Γ3)
defined by

F (t, β) = Had(β,RL(|uη(t)|)) a.e. t ∈ (0, T ), ∀β ∈ L∞(Γ3).

Clearly, the mapping is well defined since if β ∈ L∞(Γ3) and r : Γ3 →
R is a measurable function then conditions (4.5) imply that x 7→
Had(x, β(x), RLr(x)) ∈ L∞(Γ3). Moreover, it is easy to check that F is
Lipschitz continuous with respect to the second variable, uniformly in time;
also, for all β ∈ L∞(Γ3), t 7→ F (t, β) belongs to L∞(0, T ;L∞(Γ3)). Thus,
the existence of a unique function βη which satisfies (5.6)–(5.7) follows from
a version of the Cauchy-Lipschitz theorem.

To check (5.8) we suppose that βη(t0) < 0 for some t0 ∈ [0, T ]. By
assumption (4.7) we have 0 ≤ βη(0) ≤ 1 and therefore t0 > 0; moreover,
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since the mapping t 7→ β(t) : [0, T ]→ R is continuous, we can find t1 ∈ [0, t0)
such that βη(t1) = 0. Now, let t2 = sup {t ∈ [t1, t0] |βη(t) = 0}; then
t2 < t0, βη(t2) = 0 and βη(t) < 0 for t ∈ (t2, t0]. Assumption (4.5)(f) and
equation (5.6) imply that

:
βη(t) ≥ 0 for t ∈ (t2, t0] and therefore βη(t0) ≥

βη(t2) = 0, which is a contradiction. We conclude that βη(t) ≥ 0 for all
t ∈ [0, T ]. A similar argument shows that βη(t) ≤ 1 for all t ∈ [0, T ].

We now study the dependence of the solution of problem P ηV with respect
to η.

Lemma 5.2. Let ηi ∈ L∞(0, T ;V ) and let βi denote the solutions of prob-
lems P ηiV , i = 1, 2. Then,

‖βη1(t)− βη2(t)‖2L2(Γ3) ≤
L2
Had

c2
0

m2
E

T e2T LHad

∫ t

0
‖η1(s)− η2(s)‖2V ds

∀t ∈ [0, T ]. (5.9)

Proof. Let t ∈ [0, T ]. The equalities and inequalities below are valid a.e.
x ∈ Γ3 and, as usual, we do not depict the dependence on x explicitly.
Using (5.6) and (5.7) we can write

βi(t) = β0 +
∫ t

0
Had(βi(s), RL(|ui(s)|) ds, i = 1, 2

where ui = uηi . Using now the properties (4.5) of the adhesion rate function
Had and the definition (3.5) of the truncation function RL, we obtain

|β1(t)− β2(t)| ≤ LHad
(∫ t

0
|β1(s)− β2(s)| ds+

∫ t

0
|u1(s)− u2(s)| ds

)
.

We apply now Gronwall’s inequality to deduce that

|β1(t)− β2(t)| ≤ LHad e
T LHad

∫ t

0
|u1(s)− u2(s)| ds,

which implies that

|β1(t)− β2(t)|2 ≤ L2
Had

T e2T LHad

∫ t

0
|u1(s)− u2(s)|2 ds.

Integrating the last inequality over Γ3 we find

‖β1(t)− β2(t)‖2L2(Γ3) ≤ L
2
Had

T e2T LHad

∫ t

0
‖u1(s)− u2(s)‖2L2(Γ3)d ds,

and keeping in mind (4.1), (5.2) and (5.3), we obtain (5.9).
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We consider now the operator Λ : L∞(0, T ;V )→ L∞(0, T ;V ) given by

(Λη(t),v)V = j(βη(t), uη(t), v) ∀v ∈ V, a.e. t ∈ (0, T ), (5.10)

where βη denotes the solution of problem P ηV , uη is given by (5.3) and j is
defined by (4.9).

We have the following result.

Lemma 5.3. Under the smallness assumption (4.17), there exists a unique
element η∗ ∈ L∞(0, T ;V ) such that Λη∗ = η∗.

Proof. Let ηi ∈ L∞(0, T ;V ), ui = uηi and let βi denote the solution of
problem P ηiV , i = 1, 2. The equalities and inequalities below are valid for
all v ∈ V, a.e. t ∈ (0, T ). Using (5.10), (4.9) and the properties of the
functions pν and pτ we obtain

|(Λη1(t)− Λη2(t),v)V | ≤
∫

Γ3

Lν |u1
ν(t)− u2

ν(t)| |vν |da

+
∫

Γ3

γν |β2
1(t)(−RL(u1

ν(t)))+ − β2
2(t)(−RL(u2

ν(t)))+| |vν |da

+
∫

Γ3

Lτ (|β1(t)− β2(t)|+ |u1
τ (t)− u2

τ (t)|) |vτ |da.

Keeping in mind (3.5) and (5.8), after some algebra the previous inequality
leads to

|(Λη1(t)− Λη2(t),v)V | ≤
∫

Γ3

(Lν + Lτ + γν)|u1(t)− u2(t)| |v|da

+
∫

Γ3

(Lτ + 2 γν L)|β1(t)− β2(t)| |v|da,

which implies that

|(Λη1(t)− Λη2(t),v)V | ≤ (Lν + Lτ + γν)‖u1(t)− u2(t)‖L2(Γ3)d‖v‖L2(Γ3)d

+ (Lτ + 2γνL)‖β1(t)− β2(t)‖L2(Γ3)‖v‖L2(Γ3)d .

We use now (4.1) and the previous inequality to obtain

‖Λη1(t)− Λη2(t)‖V ≤ c2
0(Lν + Lτ + γν)‖u1(t)− u2(t)‖V

+ c0(Lτ + 2γνL)‖β1(t)− β2(t)‖L2(Γ3). (5.11)

Using now (5.11), (5.3), (5.2) and (5.9) we deduce that

‖Λη1(t)− Λη2(t)‖2V ≤ k‖η1(t)− η2(t)‖2V (5.12)

+M

∫ t

0
‖η1(s)− η2(s)‖2V ds
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where

k =
2 c4

0 (Lν + Lτ + γν)2

m2
E

,

M =
2L2

Had
c4

0(Lτ + 2 γν L)2 T e2T LHad

m2
E

.

(5.13)

We introduce now the notation:

I0(t) = ‖η1(t)− η2(t)‖2V , (5.14)

I1(t) =
∫ t

0
‖η1(s)− η2(s)‖2V ds, (5.15)

Ij(t) =
∫ t

0

∫ sj−1

0
. . .

∫ s1

0
‖η1(r)− η2(r)‖2V dr ds1 . . . dsj−1

∀j ∈ N, j ≥ 2. (5.16)

Notice that

Ij(t) ≤
tj

j !
‖η1 − η2‖2L∞(0,T ;V ), ∀j ∈ N. (5.17)

Reiterating the inequality (5.12), by using (5.14)–(5.16) we deduce that

‖Λpη1(t)− Λpη2(t)‖2V ≤
p∑
j=0

Cjp k
p−jM j Ij(t), ∀p ∈ N, p ≥ 2

and, keeping in mind (5.17), we obtain

‖Λpη1(t)− Λpη2(t)‖2V

≤
( p∑
j=0

Cjp k
p−jM

j T j

j !

)
‖η1 − η2‖2L∞(0,T ;V ). (5.18)

It is easy to check that
p∑
j=0

Cjp k
p−jM

j T j

j !
≤ (k p+M T )p

p !

and therefore, (5.18) implies

‖Λpη1 − Λpη2‖2L∞(0,T ;V ) ≤
(k p+M T )p

p !
‖η1 − η2‖2L∞(0,T ;V ). (5.19)

Assume now that (4.17) hold. It follows from (5.13) that 0 < k < 1/e and,

therefore, the series
∑∞

p=1
(k p+M T )p

p !
is convergent. Consequently,

lim
p→∞

(k p+M T )p

p !
= 0. (5.20)
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It follows from (5.19) and (5.20) that for a sufficiently large p the mapping
Λp is a contraction in the Banach space L∞(0, T ;V ). Therefore, there exists
a unique η∗ ∈ L∞(0, T, V ) such that Λp η∗ = η∗ and, moreover, η∗ is the
unique fixed point of Λ.

We have now all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1.
Existence. Let η∗ ∈ L∞(0, T ;V ) be the fixed point of the operator Λ and let
u, β be defined by (5.3), (5.6) and (5.7) for η = η∗, i.e. u = uη

∗
, β = βη∗ .

We also denote by σ the function given by (4.13). Clearly, (4.13), (4.14)
and (4.16) hold. Since Λη∗ = η∗, we deduce that

(Λη∗(t),v)V = (η∗(t),v)V ∀v ∈ V, a.e. t ∈ (0, T )

and, keeping in mind (5.5) and (5.10) we deduce that (4.15) holds, too. The
regularity of the solution given in (4.18) follows from (5.4), while (4.20)
and property (4.21) are consequences of Lemma 5.1 Moreover, since u ∈
L∞(0, T ;V ), it follows from (4.2) that σ ∈ L∞(0, T ;H). Choosing now
v = ϕ where ϕ ∈ C∞0 (Ω)d in (4.15) and using (4.8) yields

Div σ(t) + f0(t) = 0, a.e. t ∈ (0, T ). (5.21)

Now, (4.6) and (5.21) imply that Divσ ∈ L∞(0, T ;H) which in turn implies
(4.19). We conclude that the triple {u, σ, β} is a solution of problem PV
and it satisfies (4.18)–(4.21).
Uniqueness. The uniqueness part is a consequence of the uniqueness of
the fixed point of the operator Λ. Indeed, let {u, σ, β} be a solution of
problem PV with (4.18)–(4.20) and consider the element η ∈ L∞(0, T ;V )
defined by

η(t) = f(t)− Eu(t) a.e. t ∈ (0, T ). (5.22)

It follows from (5.3) and (5.22) that

u = uη (5.23)

and, since Lemma 5.1 states that problem P ηV has a unique solution denoted
βη, (4.14) and (4.16) imply that

β = βη. (5.24)

We now use (5.10), (4.15), (4.13) and (5.22) to see that

(Λη(t),v)V = (η(t),v)V ∀v ∈ V, a.e. t ∈ (0, T ),

which shows that Λη = η. As Λ has a unique fixed point we conclude that

η = η∗. (5.25)
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The uniqueness part of Theorem 4.1 is now a consequence of equalities
(5.23)–(5.25) and (4.13).
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[8] Frémond, M., Adhérence des solides, J. Méc. Théor. Appl. 6 (1987), 383–407.
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