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EXISTENCE OF SOLUTIONS FOR
NONLOCAL BOUNDARY VALUE PROBLEM
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Abstract. In this paper, we prove existence results for singular prob-
lem(

x(n)(t) + f(t, x(t), . . . , x(n−2)(t)) = 0, 0 < t < 1,
x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(n−2)(1) =

R 1
0 x

(n−2)(s)dg(s).

Here the positive Carathédory function f may be singular at the zero
value of all its phase variables. Proofs are based on the Leray-Schauder
degree and Vitali’s convergence theorem.

1. Introduction

Let J = [0, 1], R− = (−∞, 0), R+ = (0,∞), R0 = R \ {0}.
We investigate the existence of solutions for singular boundary value prob-

lem

x(n)(t) + f
(
t, x(t), . . . , x(n−2)(t)

)
= 0, 0 < t < 1, (1.1)

2000 Mathematics Subject Classification. 34B16, 34B18.
Key words and phrases. Singular higher-order differential equation, regularization, Vi-

tali’s convergence theorem.
Supported by National Natural Sciences Foundation of P. R. China (10371006)

ISSN 1425-6908 c© Heldermann Verlag.



94 Y. TIAN AND W. GE

x(i)(0) = 0, 0 ≤ i ≤ n− 2, x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s), (1.2)

where n ≥ 2, the integral is in the sense of Riemann-Stieltjes and nonlinear
term f satisfies local Carathédory conditions on J × D

(
f ∈ Car(J × D)

)
with

D = R+ × · · · × R+︸ ︷︷ ︸
n−2

.

The function f in (1.1) may be singular at the zero value of all its phase
variables.

Definition 1.1. A function x ∈ ACn−1(J) (i.e. x has absolutely continu-
ous the (n− 1)st derivative on J) is said to be a solution of boundary value
problem (1.1)–(1.2), if x(i)(t) > 0 on (0, 1] for 0 ≤ i ≤ n− 2, x satisfies the
boundary condition (1.2) and (1.1) holds a.e. on J .

The purpose of this paper is to give conditions which guarantee the exis-
tence of a positive solution to BVP (1.1), (1.2).

This paper is mainly motivated by the works [8]–[9], [13], where the ex-
istence of two-point higher order BVPs with singularities in phase variables
was studied. In [3], Agarwal et al. consider the existence of solutions for
Lidstone boundary value problem as follows{

(−1)nx(2n)(t) = f
(
t, x(t), . . . , x(2n−2)(t)

)
, t ∈ (0, T ),

x(2j)(0) = x(2j)(T ) = 0, 0 ≤ j ≤ n− 1,
(1.3)

where f ∈ Car(J × D), and satisfying for a.e. t ∈ J and for each
(x0, . . . , x2n−2) ∈ D,

f(t, x0, . . . , x2n−2) ≤ φ(t) +
2n−2∑
j=0

qj(t)ωj(|xj |) +
2n−2∑
j=0

hj(t)|xj |,

where φ, hj ∈ L1(J) and qj ∈ L∞(J) are nonnegative, ωj : R+ → R+ are
non-increasing, and

S =
n−1∑
i=0

T 2(n−i)−3

6n−i−1

∫ T

0
t(T − t)h2i(t)dt

+
n−2∑
i=0

T 2(n−i−2)

6n−i−2

∫ T

0
t(T − t)h2i+1(t)dt < 1

and ∫ T

0
ωj(s)ds <∞, ωj(uv) ≤ Λωj(u)ωj(v),

for 0 ≤ j ≤ 2n− 2 and u, v ∈ R+ with a positive constant Λ.
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Another motivation for this paper is the work [8] and [9], where the
nonlocal boundary value problem was considered. But nonlinear term f in
all these papers have not singularity. For example, in [9] the existence of a
solution of the following boundary value problem

x(n)(t) = f
(
t, x(t), x′(t), . . . , x(n−1)(t)

)
, t ∈ (0, 1),

x(i)(0) = 0 for i = 0, 1, . . . , k − 1,

x(j)(1) =
∫ 1

0
x(j)(s)dGn−j(s) for j = k, . . . , n− 1

(1.4)

was studied, where f : [0, 1] × (Rm)n → Rm is a Carathéodory function, f
has not singularity in phase variables, k ∈ {1, . . . , n − 1}, the function Gi
(i = k, . . . , n− k) takes value in linear space of all m×m square matrices.
The method used in [9] is Leray-Schauder degree theory.

Besides, there are many papers studied singular boundary value prob-
lems. For example second order singular boundary value problems was
investigated in Agarwal [2], Liu Bing [10], Zhang Zhongxin [13] and the
references therein. The existence of positive solutions for higher order sin-
gular boundary value problem was considered in [1]. Generality speaking,
nonlinear term f(t, x0, x1, . . . , xq) satisfies the following conditions:

(1) f(t, x0, x1, . . . , xq) is non-increasing in xi for each fixed
(t, x0, x1, . . . , xi−1, xi+1, . . . , xq), 0 ≤ i ≤ q;

(2) limxi→∞ f(t, x0, x1, . . . , xq) = 0 uniformly on compact subsets of
(0, 1)× (0,∞)n−2, 1 ≤ i ≤ n− 1.

By using Leray-Schauder degree theory we get a new result on the ex-
istence of solution to boundary value problem (1.1)–(1.2). Meanwhile we
remove the restraint (1) and (2) on nonlinear term f . The approaches to
estimate a priori bound of the solutions to boundary value problem (1.1)–
(1.2) are different from the corresponding ones of the past work [8, 9]. At
last we give an example to illustrate our results.

From now on, ‖x‖ = max{|x(t)| : t ∈ J}, ‖x‖L1 =
∫ 1

0 |x(t)|dt and ‖x‖∞ =
ess max{|x(t)| : 0 ≤ t ≤ 1} stand for the norm in C0(J), L1(J), and L∞(J),
respectively. For any measurable set M ⊂ R, µ(M) denotes the Lebesgue
measure of M.

The following assumptions imposed upon the function in (1.1) will be
used in the paper:
(H1) f ∈ Car(J ×D) and there exists nonnegative functions φ, qi ∈ L1(J),

φ(t) 6≡ 0, hi ∈ C(J × R) and non-increasing nonnegative function
ωi ∈ L1(R+), 0 ≤ i ≤ n− 2 such that for (t, x) ∈ J ×D,

f(t, x0, . . . , xn−2) = φ(t) +
n−2∑
i=0

qi(t)ωi(|xi|) +
n−2∑
i=0

hi(t, xi)
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and hi satisfies

lim
|xi|→∞

sup
t∈[0,1]

hi(t, xi)
|xi|

= αi ≥ 0, αi are any constants in (0, 1),

0 ≤ i ≤ n− 2,
(1.5)

ωi satisfies

ωi(xy) ≤ Λωi(x)ωi(y) for x, y ∈ (0,∞),
Λ > 0 is a positive constant,

(1.6)∫ 1

0
ωi

(∫ t

0
(t− s)n−3−is(1− s)ds

)
dt <∞, 0 ≤ i ≤ n− 3,∫ 1

0
ωn−2(s(1− s))ds <∞;

(1.7)

(H2) g is Lebesgue measurable, increasing on J and satisfies g(0) = 0,
g(1) < 1.

The paper is organized as follows. Section 2 presents priori bound of
solutions for BVP (1.1)–(1.2). Besides, we prove that some sets of functions
containing solutions of our auxiliary regular BVPs are uniformly absolutely
continuous on J . Section 3 we prove the existence of solution for boundary
value problem (1.1)–(1.2). Proof is based on the Arzelà-Ascoli theorem and
the Vitali’s convergence theorem, see, e.g. [5], [6], [11]. Section 4 present
an example to illustrate our main result.

2. Auxiliary results

Lemma 2.1. Let φ ∈ L1(J) be nonnegative and φ(t) 6≡ 0. Suppose x ∈
ACn−1(J) satisfy (1.2) and

φ(t) ≤ −x(n)(t), t ∈ J. (2.1)

Then we have on J for 0 ≤ i ≤ n− 1

x(i)(t) ≥ ‖x(n−2)‖
(n− 3− i)!

∫ t

0
(t− s)n−3−is(1− s)ds, 0 ≤ i ≤ n− 3,

x(n−2)(t) ≥‖x(n−2)‖t(1− t).

Proof. By (1.2) we have

x(i)(t) =
∫ t

0
x(i+1)(s)ds, i = 0, . . . , n− 3. (2.2)
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By (2.1), we have x(n−2)(t) is concave on J . So

min
t∈[0,1]

x(n−2)(t) = min{x(n−2)(0), x(n−2)(1)}.

We claim x(n−2)(1) ≥ 0. If not,

x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s) ≥ min

t∈[0,1]
x(n−2)(s)

∫ 1

0
dg(s)

=x(n−2)(1)g(1) > x(n−2)(1),

a contradiction. Thus we obtain x(n−2)(t) ≥ 0 for t ∈ J . So

x(n−2)(t) ≥ ‖x(n−2)‖t(1− t). (2.3)

By (2.1)–(2.2) we have

x(i)(t) ≥ ‖x(n−2)‖
(n− 3− i)!

∫ t

0
(t− s)n−3−is(1− s)ds.

Lemma 2.2. Let φ ∈ L1(J) be nonnegative and φ(t) 6≡ 0. Then there exists
a positive constant c = c(φ) such that for each function x ∈ ACn−1(J)
satisfying (1.2) and

φ(t) ≤ −x(n)(t), for a.e. t ∈ J,
the estimate ‖x(n−2)‖ ≥ c holds.

Proof. By −x(n)(t) ≥ φ(t) ≥ 0, we know x(n−2)(t) is concave on J . If
x(n−2)(t) ≡ 0, t ∈ J , then x(n)(t) ≡ 0, t ∈ J , which contradicts that
−x(n)(t) ≥ φ(t) and φ(t) be nonnegative and φ(t) 6≡ 0.

Remark 2.1. It follows from Lemma 2.1 and Lemma 2.2 that for any so-
lution of BVP (1.1)–(1.2)

|x(i)(t)| ≥ c

(n− 3− i)!

∫ t

0
(t− s)n−3−is(1− s)ds, i = 0, . . . , n− 3,

x(n−2) ≥ct(1− t),
where c = c(φ).

For each m ∈ N, define Xm, and fm ∈ Car(J × Rn) by the formulas

Xm(u) =


u, for u ≥ 1

m
,

1
m
, for u <

1
m
,
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and

fm(t, x0, x1, . . . , xn−2) =φ(t) +
n−2∑
i=0

qi(t)ωi
(
Xm(xi)

)
+
n−2∑
i=0

hi(t, xi)

(2.4)

for (t, x0, . . . , xn−2) ∈ J × Rn−1. Hence

0 < φ(t) ≤fm(t, x0, . . . , xn−2)

≤φ(t) +
n−2∑
i=0

qi(t)ωi(|xi|) +
n−2∑
i=0

hi(t, xi)
(2.5)

for a.e. t ∈ J and each (x0, . . . , xn−2) ∈ Rn−1
0 .

Consider auxiliary regular differential equation

x(n)(t) + fm
(
t, x(t), . . . , x(n−2)(t)

)
= 0 (2.6)

and

x(n)(t) + λfm
(
t, x(t), . . . , x(n−2)(t)

)
= 0, λ ∈ [0, 1] (2.7)

depending on the parameters m ∈ N.

Lemma 2.3. Let h : [0, 1]→ R+ be continuous. Suppose x(t) is a solution
of the following boundary value problemx

(n)(t) + h(t) = 0, t ∈ (0, 1),

x(i)(0) = 0, i = 0, . . . , n− 2, x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s).

Then x(t) can be uniquely expressed as

x(t) =
Atn−1

(n− 1)!
−
∫ t

0

(t− s)n−1

(n− 1)!
h(s)ds

where

A =
1

1−
∫ 1

0
sdg(s)

(∫ 1

0
(1− s)h(s)ds−

∫ 1

0

(∫ r

0
(r − s)h(s)ds

)
dg(r)

)
.

Proof. Sufficiency. First integrating both sides of equation x(n)(t)+h(t) =
0 on [0, t], we have

x(n−1)(t) = x(n−1)(0)−
∫ t

0
h(s)ds.
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Integrating again the above equation on [0, t] and using the second boundary
condition we get

x(n−2)(t) = x(n−1)(0)t−
∫ t

0
(t− s)h(s)ds.

It follows that∫ 1

0
x(n−2)(s)dg(s) = x(n−1)(0)

∫ 1

0
sdg(s)−

∫ 1

0

(∫ r

0
(r − s)h(s)ds

)
dg(r).

Noticing boundary condition

x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s),

we obtain the following equality

x(n−1)(0)−
∫ 1

0
(1− s)h(s)ds =x(n−1)(0)

∫ 1

0
sdg(s)

−
∫ 1

0

(∫ r

0
(r − s)h(s)ds

)
dg(r),

holds, which means

x(n−1)(0) =
1

1−
∫ 1

0
sdg(s)

(∫ 1

0
(1−s)h(s)ds−

∫ 1

0

(∫ r

0
(r−s)h(s)ds

)
dg(r)

)

=A.

So

x(n−2)(t) = At−
∫ t

0
(t− s)h(s)ds.

Integrating the above equation on [0, t] for n− 2 times, we get

x(t) =
Atn−1

(n− 1)!
−
∫ t

0

(t− s)n−1

(n− 1)!
h(s)ds

holds.
Necessity. From the expression of x, it is easy to obtain x is a solution of
boundary value problem in Lemma 2.3.

Lemma 2.4. Let m ∈ N. If there exists a positive constant K such that

‖x(j)‖ ≤ K, 0 ≤ j ≤ n− 1 (2.8)

for any solution x of BVP (2.7), (1.2) with λ ∈ [0, 1], then BVP (2.6), (1.2)
has a solution x satisfying (2.8).
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Proof. By Lemma 2.3 we know that solving (2.7), (1.2) is equivalent to
find x ∈ Cn−1(J) satisfying

x(t) = λ
Atn−1

(n− 1)!
− λ

∫ t

0

(t− s)n−1

(n− 1)!
fm(s, x(s), . . . , x(n−1)(s))ds, (2.9)

where A is defined in Lemma 2.3. It is easy to see that

S : Cn−1(J)→ Cn−1(J),

(Sx)(t) =
Atn−1

(n− 1)!
−
∫ t

0

(t− s)n−1

(n− 1)!
fm(s, x(s), . . . , x(n−1)(s))ds

is a completely continuous operator. Since we can rewrite (2.9) as

x = λSx, λ ∈ [0, 1]. (2.10)

By our assumption, (2.10) holds for any solution of (2.7), there exists a
solution x of the operator equation x = Sx by [6]. Of course, x is a solution
of BVP (2.6), (1.2) satisfying (2.8).

For convenience we denote

Γ :=
∫ 1

0

(
φ(s)+Λ

n−3∑
i=0

qi(s)ωi

(
c

(n−3−i)!

)
ωi

(∫ s

0
(s−θ)n−3−iθ(1−θ)dθ

)

+ qn−2(s)Λωn−2(c)ωn−2
(
s(1− s)

))
ds.

Lemma 2.5. Let assumptions (H1)–(H2) be satisfied. Furthermore, the
following inequality is satisfied

(H3)
n−2∑
i=0

αi
(n− i− 1)!

< 1.

Then there exists a positive constant P such that ‖x(j)‖ ≤ P , 0 ≤ j ≤ n− 1
for any solution x of BVP (2.7), (1.2) with m ∈ N.

Proof. Let x be a solution of BVP (2.7), (1.2) for some m ∈ N.
In what follows we will prove ‖x(i)‖ ≤ P , 0 ≤ j ≤ n − 1. The proof of

this lemma is divided into three steps.
Step 1. It follows from boundary condition that

x(i)(t) =
∫ t

0

(t− θ)n−i−2

(n− i− 2)!
x(n−1)(θ)dθ, t ∈ J, 0 ≤ i ≤ n − 2. (2.11)

Thus we have

‖x(i)‖ ≤ 1
(n− i− 1)!

‖x(n−1)‖, 0 ≤ i ≤ n− 2. (2.12)
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Step 2. Prove there exists a positive constant P such that

‖x(n−1)‖ ≤ P.

We claim there exists ξ ∈ [0, 1] such that x(n−1)(ξ) = 0.
Otherwise, if x(n−1)(t) ≥ 0, t ∈ [0, 1], then

x(n−2)(1) = max
t∈J

x(n−2)(t).

But

x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s) ≤ max

t∈J
x(n−2)(t)g(1) < x(n−2)(1),

a contradiction;
if x(n−1)(t) ≤ 0, t ∈ [0, 1], then x(n−2)(t) ≤ 0 for t ∈ J . But

x(n−2)(1) =
∫ 1

0
x(n−2)(s)dg(s) ≥ min

t∈J
x(n−2)(t)g(1) > x(n−2)(1),

a contradiction.
Noticing x(n−1)(t) is decreasing on [0, 1], one has

x(n−1)(t) > 0 for t ∈ [0, ξ), x(n−1)(t) < 0 for t ∈ (ξ, 1]. (2.13)

Let sufficiently small ε > 0 be such that
n−2∑
i=0

αi + ε

(n− i− 1)!
< 1. (2.14)

Then for this ε > 0, there is δ > 0 so that

|hi(t, xi)| < (αi + ε)|xi| uniformly for t ∈ [0, 1],

and |xi| > δ, i = 0, . . . , n− 2.
(2.15)

Let, for i = 0, . . . , n− 2,

∆1,i = {t : t ∈ [0, 1], |xi(t)| ≤ δ},
∆2,i = {t : t ∈ [0, 1], |xi(t)| > δ},

hδ,i = max
t∈[0,1],|xi|≤δ

hi(t, xi).

On the one hand, integrating both sides of (2.7) from t to ξ, (t ∈ [0, ξ]),
using (2.5), Remark 2.1, (2.11) and (2.15) we have

x(n−1)(t) =λ
∫ ξ

t
fm
(
s, x(s), . . . , x(n−2)(s)

)
ds

≤λ
∫ ξ

t

(
φ(s) +

n−2∑
i=0

qi(s)ωi
(
|x(i)(s)|

))
ds
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+
n−2∑
i=0

∫
[t,ξ]∩∆1,i

hi(s, x(i)(s))ds+
n−2∑
i=0

∫
[t,ξ]∩∆2,i

hi(s, x(i)(s))ds

≤
∫ ξ

t

[
φ(s) +

n−3∑
i=0

qi(s)Λωi

(
c

(n− 3− i)!

)
× ωi

(∫ s

0
(s− θ)n−3−iθ(1− θ)dθ

)
+ qn−2(s)Λωn−2(c)ωn−2

(
s(1− s)

)]

+
n−2∑
i=0

∫
[t,ξ]∩∆1,i

hi
(
s, x(i)(s)

)
ds+

n−2∑
i=0

∫
[t,ξ]∩∆2,i

hi
(
s, x(i)(s)

)
ds,

thus we have for t ∈ [0, ξ], noticing (2.12)

x(n−1)(t) ≤ Γ +
n−2∑
i=0

hδ,i +
∫ ξ

t

n−2∑
i=0

(αi + ε)|x(i)(s)|ds

≤ Γ +
n−2∑
i=0

hδ,i +
n−2∑
i=0

αi + ε

(n− i− 1)!
‖x(n−1)‖,

i.e.

x(n−1)(0) ≤ Γ +
n−2∑
i=0

hδ,i +
n−2∑
i=0

αi + ε

(n− i− 1)!
‖x(n−1)‖. (2.16)

On the other hand, integrating both sides of (2.7) from ξ to t, (t ∈ [ξ, 1]),
using (2.5), Remark 2.1 , (2.11), (2.15), we have

|x(n−1)(t)| =λ
∫ t

ξ
fm
(
s, x(s), . . . , x(n−2)(s)

)
ds

≤λ
∫ t

ξ

(
φ(s) +

n−2∑
i=0

qi(s)ωi(|x(i)(s)|)

)
ds

+
n−2∑
i=0

∫
[ξ,t]∩∆1,i

hi
(
s, |x(i)(s)|

)
+
n−2∑
i=0

∫
[ξ,t]∩∆2,i

hi
(
s, |x(i)(s)|

)
ds

≤λ
∫ t

ξ

[
φ(s) +

n−2∑
i=0

qi(s)Λωi

(
c

(n− 3− i)!

)
× ωi

(∫ s

0
(s− θ)n−3−iθ(1− θ)dθ

)
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+ qn−2(s)Λωn−2(c)ωn−2
(
s(1− s)

)]
ds (2.17)

+
n−2∑
i=0

∫
[ξ,t]∩∆1,i

hi
(
s, x(i)(s)

)
+
n−2∑
i=0

∫
[ξ,t]∩∆2,i

hi
(
s, x(i)(s)

)
ds,

thus for t ∈ [ξ, 1], noticing (2.12) we have

|x(n−1)(s)| ≤ Γ +
n−2∑
i=0

hδ,i +
n−2∑
i=0

∫ t

ξ
(αi + ε)|x(i)(s)|ds

≤ Γ +
n−2∑
i=0

hδ,i +
n−2∑
i=0

αi + ε

(n− i− 1)!
‖x(n−1)‖,

i.e.

|x(n−1(1)| ≤ Γ +
n−2∑
i=0

hδ,i +
n−2∑
i=0

αi + ε

(n− i− 1)!
‖x(n−1)‖. (2.18)

By x(n−1) is decreasing on J , it follows from (2.16) (2.18) that

‖x(n−1)‖ = max{x(n−1)(0), |x(n−1)|} ≤ Γ+
n−2∑
i=0

hδ,i+
n−2∑
i=0

αi + ε

(n− i− 1)!
‖x(n−1)‖

we have

‖x(n−1)‖ ≤
Γ +

n−2∑
i=0

hδ,i

1−
n−2∑
i=0

αi + ε

(n− i− 1)!

:= P.

By (H1), (H3) we have P <∞.
Step 3. Prove ‖x(i)‖ ≤ P for i = 0, 1, . . . , n− 1.

By Step 1 the result is clear. This completes the proof.

Lemma 2.6. Let assumptions (H1), (H3) be satisfied. Let {xm} be a se-
quence of solutions to BVP (2.7), (1.2) for each m ∈ N. Then the sequence

{fm
(
t, xm(t), . . . , x(n−2)

m (t)
)
} ⊂ L1(J)

is uniformly absolutely continuous on J , that is for each ε > 0 there exists
δ > 0 such that ∫

M
fm
(
t, xm(t), . . . , x(n−2)

m (t)
)
dt < ε

for any measurable set M⊂ J , µ(M) < δ.
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Proof. With respect to (2.5) and properties of measurable sets, it is suffi-
cient to verify that for every ε > 0, there exists δ > 0 such that for any at
most countable set {(aj , bj)}j∈J of mutually disjoint intervals {(aj , bj)}j∈J
with

∑
j∈J(bj − aj) < δ, we have for each m ∈ N,∑

j∈J

∫ bj

aj

[
φ(t) +

n−2∑
i=0

qi(t)ωi(|x(i)
m |) +

n−2∑
i=0

hi(t, x(i)
m )

]
dt < ε. (2.19)

By (2.5) we have

φ(t) ≤ fm
(
t, x(t), . . . , x(n−2)(t)), t ∈ J.

Thus the conditions in Lemma 2.1 and Lemma 2.2 are satisfied. There exists
c = c(φ) such that

x(i)
m (t) ≥ c

(n− i− 3)!

∫ t

0
(t− s)n−3−is(1− s)ds,

i = 0, . . . , n− 3, t ∈ J,
(2.20)

x(n−2)
m (t) ≥ct(1− t), t ∈ [0, 1]. (2.21)

In addition by Lemma 2.5 one has

‖x(i)
m ‖ ≤ P, i = 0, . . . , n− 2. (2.22)

It follows from (2.20)–(2.22) that∑
j∈J

∫ bj

aj

[
φ(t) +

n−2∑
i=0

qi(t)ωi(|x(i)
m |) +

n−2∑
i=0

hi(t, x(i)
m )

]
dt

≤
∑
j∈J

∫ bj

aj

[
φ(t)+Λ

n−3∑
i=0

qi(t)ωi

(
c

(n−3−i)!

)
ωi

(∫ t

0
(t−s)n−3−is(1−s)ds

)

+Λ
n−2∑
i=0

qi(t)ωi(c)ωi(t(1− t)) +
n−2∑
i=0

max
(t,xi)∈[0,1]×[0,P ]

hi(t, xi)

]
dt.

By (H1), we have φ, qi, hi,∈ L1(J) and (1.6) hold. Consequently, for each
ε > 0 there exists δ > 0 such that for any at most countable set {(aj , bj)}j∈J
of mutually disjoint intervals (aj , bj) ⊂ J with

∑
j∈J(bj − aj) < δ, (2.19)

holds. This completes the proof.

3. Existence results

Theorem 3.1. Suppose the assumptions (H1), (H2) and (H3) be satisfied.
Then there exists a solution x such that x ∈ AC(n−1)(J), x(i)(t) ≥ 0, t ∈ J
for BVP (1.1), (1.2).
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Proof. For each m ∈ N, there exists a solution xm of BVP (2.6), (1.2) by
Lemma 2.4, Lemma 2.5. Consider the solution sequence {xm}. Lemma 2.5
shows that {xm} is bounded in Cn−1(J). Lemma 2.1 and Lemma 2.2 means
that

x(i)
m (t) ≥c

∫ t

0
(t− s)n−3−is(1− s)ds, 0 ≤ i ≤ n− 3, (3.1)

x(n−2)
m (t) ≥ct(1− t), t ∈ J. (3.2)

The Arzelà-Ascoli theorem guarantees the existence of a subsequence {xmk}
converging in Cn−2(J). Lemma 2.2 means that c is independent m, so (3.1)
and (3.2) gives

x(i)(t) ≥c
∫ t

0
(t− s)n−3−is(1− s)ds, i = 0, . . . , n− 3,

x(n−2)(t) ≥ct(1− t), t ∈ J.

Moreover,

lim
m→∞

x(i)
m (0) =x(i)(0) = 0, i = 0, . . . , n− 2,

lim
m→∞

x(n−2)
m (1) =x(n−2)(1).

(3.3)

By Riemann-Stieltjes dominated convergence theorem we have

lim
m→∞

∫ 1

0
x(n−2)
m (s)dg(s) =

∫ 1

0
x(n−2)(s)dg(s). (3.4)

(3.3), (3.4) means x satisfies the boundary condition (1.2).
From fmk ∈ Car(J × Rn), and their construction, it follows that there

exists M ∈ J , µ(M) = 0 such that fmk(t, ·, . . . , ·) are continuous on Rn−1

for each t ∈ J \M, which implies that

lim
k→∞

fmk
(
t, xmk(t), . . . , x(n−2)

mk
(t)
)

= f
(
t, x(t), . . . , x(n−2)(t)

)
for t ∈ J \M∪ {0}.

By Lemma 2.6 {fmk
(
t, xmk(t), . . . , x(n−2)

mk (t)
)
} is uniformly absolutely

continuous on J . Hence f ∈ L1(J) and

lim
k→∞

∫ t

0
fmk

(
s, xmk(s), . . . , x(n−2)

mk
(s)
)
ds =

∫ t

0
f
(
s, x(s), . . . , x(n−2)(s)

)
ds

for t ∈ J by the Vitali’s convergence theorem. Since {x(n−1)
mk } is bounded,

we can assume that it is convergent, say

lim
k→∞

x(n−1)
mk

(0) = C.



106 Y. TIAN AND W. GE

Taking limits as k →∞ in the following equalities

x(n−2)
mk

(t) = x(n−1)
mk

(0)t−
∫ t

0

∫ s

0
fmk(r, xmk(r), . . . , x(n−2)

mk
(r))drds, t ∈ J

we get

x(n−2)(t) = Ct−
∫ t

0

∫ s

0
f(r, x(r), . . . , x(n−2)(r))drds, t ∈ J.

Then x ∈ ACn−1(J) and

x(n)(t) + f(t, x(t), . . . , x(n−1)(t)) = 0, for a.e. t ∈ J.

Therefore, x is a solution of BVP (1.1), (1.2).

4. Example

Let us consider the following third-order boundary value problemx
(3) + φ(t) +

q0(t)

x
1/4
0

+
q1(t)

x
1/2
1

+ a0(t) sin(|x0|) + a1(t)|x1| = 0,

(0) = x′(0) = 0, x′(1) =
∫ 1

0 x
′(s)dg(s)

(4.1)

with φ, qi ∈ L1(J), ai ∈ C(J) be positive for i = 0, 1, g is Lebesgue mea-
surable, increasing on J and satisfies g(0) = 0, g(1) < 1. Corresponding to
BVP (1.1)–(1.2), we have

f(t, x0, x1) = φ(t) +
q0(t)

x
1/4
0

+
q1(t)

x
1/2
1

+ a0(t) sin(|x0|) + a1(t)|x1|,

ω0(|x0|) =
1

x
1/4
0

, ω1(x1) =
1

x
1/2
0

,

h0(t, x0) = a0(t) sin(|x0|), h1(t, x1) = a1(t)|x1|.

Assume

sup
t∈[0,1]

a1(t) < 1 (4.2)

holds. Then (4.1) has at least one positive solution x ∈ C2(J), x′′ ∈ AC(J).
To see that (4.1) has a positive solution x ∈ C2(J), x′′ ∈ AC(J), we

notice∫ 1

0
ω0

(∫ t

0
s(1−s)ds

)
dt = 4
√

6
∫ 1

0

1
4
√

3t2−2t3
<

4
√

6
∫ 1

0

1√
t
dt = 2 4

√
6 <∞,∫ 1

0
ω1(s(1− s))ds =

∫ 1

0

1√
s(1− s)

ds <∞,
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so (H1) is satisfied. (H2) is clear to be satisfied. It is easy to see (H3) are
true since (4.2) hold. Theorem 3.1 now guarantees that BVP (4.1) has a
solution x ∈ ACn−1(J), x(i)(t) ≥ 0, i = 0, 1.
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[12] Rachunková, I., Staněk, S., A singular boundary value problem for odd-order differ-
ential equations, J. Math. Anal. Appl. 291 (2004), 741–756.

[13] Zhang, Zhongxin, Wang, Junyu, The upper and lower solution method for a class
of singular nonlinear second order three-point boundary value problems, J. Comput.
Appl. Math. 147 (2002), 41-52.

Yu Tian Weigao Ge

Department of Applied Department of Applied

Mathematics Mathematics

Beijing Institute of Technology Beijing Institute of Technology

Beijing 100081 Beijing 100081

P. R. China P. R. China

e-mail: tianyu2992@163.com


