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Abstract. The existence of at least one solution to a nonlinear sec-
ond order differential equation in Rk on the semi-infinite with the first
derivative vanishing at infinity is proved by using topological methods.
The second boundary condition is x(0) = 0 or x′(0) = 0.

1. Introduction

Asymptotic boundary value problems for second order ordinary differen-
tial equations appear when we look for radial solutions of nonlinear elliptic
equations in unbounded domains with prescribed behaviour at infinity. Es-
pecially, the Dirichlet problem on the exterior of the ball with a bounded
solution was studied by R. Stańczy [12]. Here, we are seeking a solution
which has a bounded derivative at infinity and satisfies the Dirichlet or
Neumann conditions on the boundary of the ball. It gives the following
boundary value problems:
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x′′ =f
(
t, x, x′

)
, x (0) =0, lim

t→∞
x′ (t) =0,

x′′ =f
(
t, x, x′

)
, x′ (0) =0, lim

t→∞
x′ (t) =0.

The first of them is nonresonant — the problem x′′ = 0, x(0) = 0 =
limt→∞ x

′(t) has no nontrivial solutions. Thus, we can write down an inte-
gral operator with fixed points being solutions of the problem (comp. [6]).
The second problem is resonant, since the corresponding homogeneous lin-
ear problem: x′′ = 0, x′(0) = 0 = limt→∞ x

′(t) has nontrivial solutions
— constant functions. Hence, there is no equivalent integral equation. The
existence of a solutions must be obtained by other topological tools. Similar
boundary value problems have been studied by different methods in many
papers. We mention only [1, 2, 3, 4, 5, 8, 9, 11].

In [10], the asymptotic boundary condition limt→∞ x
′ (t) = 0 is replaced

by x ∈ H2(R+) that is close but not the same as our one. Assumption are
of completely different kind.

Although the radial solutions of elliptic equations take values in R, we
will consider x ∈ Rk. Such problems for ordinary differential equations are
of an independent interest.

2. The choice of the space

In order to apply known topological methods, we need an appropriate
Banach space. Let U be a Banach space

U =
{
x : R+ → Rk | x ∈ C1 ([0,∞)) , lim

t→∞
x′ (t) = 0

}
with the norm

‖x‖U = max

{
|x (0)| , sup

t∈R+

∣∣x′ (t)∣∣} .
The convergence of the sequence (xn) in the space U means: (xn |K) is
uniformly convergent for any compact set K ⊂ [0,∞) and (x′n) is uniformly
convergent.

Observe that U is a space of functions such that:

Lemma 2.1. Let x ∈ U and ‖x‖U = M , then |x (t)| ≤ M (t+ 1) for any
t ∈ [0,∞).

Proof. Observe that

|x (t)| = |x (t)− x (0) + x (0)| ≤ |x (t)− x (0)|+ |x (0)|
≤t sup

t∈R+

∣∣x′ (t)∣∣+ |x (0)| ≤M (t+ 1) ,

and the lemma follows.



ON AN ASYMPTOTIC BOUNDARY VALUE PROBLEM 111

The following theorem gives a compactness criterion in U.

Theorem 2.1. For a set A ⊂ U to be relatively compact, it is necessary
and sufficient that:

(1) there exists M > 0 that for any x ∈ A and t ∈ [0,∞) we have
|x′ (t)| ≤M and |x (0)| ≤M ,

(2) for each a > 0, the family Aa := {x′ | [0, a] : x ∈ A} is equicontinuous,
(3) for any ε > 0 there exists S > 0 such that if t ≥ S then |x′ (t)| ≤ ε.

Proof. Necessity. If A ⊂ U is relatively compact then the Ascoli-Arzelà
theorem implies (1) and (2). If (3) were not satisfied, there would be ε0 > 0,
sequence tn →∞ and function x ∈ A such that |x′n(t)| ≥ ε0 what contradicts
limt→∞ x

′(t) = 0.
Sufficiency. Let us consider a sequence (xn) ⊂ A. By (1) we know that

|x′n(t)| ≤M for t ≥ 0. We may extract a subsequence x′n
1 which is uniformly

convergent on [0, 1]. Now, from x′n
1 we extract subsequence x′n

2 which is
uniformly convergent on [0, 2]. Analogously, we get a sequence x′n

k which
is uniformly convergent on [0, k]. Let y′n := x′n

n. This sequence is almost
uniformly convergent.

By (1) we also have that |yn(0)| ≤ M . So we can extract a convergent
subsequence ynl(0). Moreover, by (3), we get∣∣y′nl(t)− y′nm(t)

∣∣ ≤ ∣∣y′nl(t)∣∣+
∣∣y′nm(t)

∣∣ ≤ 2ε,

for t ≥ S. Hence the sequence y′nl(t) is uniformly convergent for t ≥ 0. Since
ynl(0) is convergent and y′nl is uniformly convergent, so we get that (ynl |K)
is uniformly convergent for any compact set K ⊂ [0,∞). Then the sequence
(xn) ⊂ A has a convergent subsequence. Hence A is relatively compact.

3. The nonresonant problem

Let us consider an asymptotic BVP

x′′ = f
(
t, x, x′

)
, x (0) = 0, lim

t→∞
x′ (t) = 0, (3.1)

where f : R+ × Rk × Rk → Rk is continuous function.
The problem is nonresonant, i.e. for f = 0, there is no nontrivial solu-

tions, it follows that the Green function exists and (3.1) is equivalent to the
integral equations

x (t) := −
∫ ∞

0
min (t, s) f

(
s, x (s) , x′ (s)

)
ds.

We will show that problem (3.1) has at least one solution.
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We will need the following assumption:

(i) |f (t, x, y)| ≤ a (t) |x|+b (t) |y|+c (t), where
∫∞

0 (s+ 1) a (s) ds <∞,∫∞
0 b (s) ds <∞,

∫∞
0 c (s) ds <∞.

Now, we consider the nonlinear integral operator T : U→ U given by

Tx (t) := −
∫ ∞

0
min (t, s) f

(
s, x (s) , x′ (s)

)
ds. (3.2)

We will show that under assumptions (i) operator T is well defined and
continuous. Let∫ ∞

0
(s+ 1) a (s) ds = M1,

∫ ∞
0

b (s) ds = M2,

∫ ∞
0

c (s) ds = M3. (3.3)

Since x ∈ U, thus by Lemma 2.1 there exists M > 0 such that |x (t)| ≤
M (t+ 1). Observe that∫ ∞

t

∣∣f (s, x (s) , x′ (s)
)∣∣ ds ≤ ∫ ∞

0

∣∣f (s, x (s) , x′ (s)
)∣∣ ds

≤
∫ ∞

0
a (s) |x (s)| ds+

∫ ∞
0

b (s)
∣∣x′ (s)∣∣ ds+

∫ ∞
0

c (s) ds

≤M
∫ ∞

0
(s+ 1) a (s) ds+ +M

∫ ∞
0

b (s) ds+
∫ ∞

0
c (s) ds

≤M (M1 +M2) +M3 <∞ (3.4)

under assumption (i) and (3.3). We have

(Tx) (t) = −
∫ t

0
sf
(
s, x (s) , x′ (s)

)
ds− t

∫ ∞
t

f
(
s, x (s) , x′ (s)

)
ds (3.5)

and

(Tx)′ (t) = −
∫ ∞
t

f
(
s, x (s) , x′ (s)

)
ds. (3.6)

Observe that Tx and (Tx)′ are continuous, which is clear from (3.5), (3.6)
and (3.4). Moreover

lim
t→∞

(Tx)′ (t) = lim
t→∞

(
−
∫ ∞
t

f
(
s, x (s) , x′ (s)

)
ds

)
= 0.

Hence T : U→ U.
Now, observe that operator T is continuous. Let xn ⊂ U and let (xn)→ x.

Since Tx (0) = 0 for any x ∈ U, we have

‖Txn − Tx‖U = sup
t∈R+

∣∣(Txn)′ (t)− (Tx)′ (t)
∣∣

≤
∫ ∞

0

∣∣f (s, xn (s) , x′n (s)
)
− f

(
s, x (s) , x′ (s)

)∣∣ ds.
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Hence we get that operator T is continuous, which is clear from (3.4) and
the Lebesgue dominated convergence theorem.

Now, we prove that operator T is completely continuous.

Lemma 3.1. Under assumption (i) operator T is completely continuous.

Proof. We shall show that the image of B := {x ∈ U | ‖x‖U ≤M} under
T is relatively compact.

First, we prove condition (1) of Theorem 2.1. From (3.4) we know that
there exists L = M (M1 +M2 +M3) + M4 such that for any x ∈ B and
t ∈ [0,∞) we have

∣∣(Tx)′ (t)
∣∣ ≤ L. We thus get (1).

Now, we prove condition (2). We show that for any ε > 0 and
every t0 ∈ [0, S] there exists δ > 0 such that if |t− t0| < δ then∣∣(Tx)′ (t)− (Tx)′ (t0)

∣∣ < ε. By assumption (i) we get that for every ε > 0
there exists δ1 > 0 such that, if |t− t0| < δ1 then∫ max{t0,t}

min{t0,t}
(s+ 1) a (s) ds <

ε

3M
,

δ2 > 0 such that, if |t− t0| < δ2 then∫ max{t0,t}

min{t0,t}
b (s) ds <

ε

3M
,

and δ3 > 0 such that, if |t− t0| < δ3 then∫ max{t0,t}

min{t0,t}
c (s) ds <

ε

3
.

Let δ = min {δ1, δ2, δ3}. Hence, from Lemma 2.1, we obtain∣∣(Tx)′ (t)− (Tx)′ (t0)
∣∣ =

∣∣∣∣∫ t

t0

f
(
s, x (s) , x′ (s)

)
ds

∣∣∣∣
≤
∫ max{t0,t}

min{t0,t}

∣∣f (s, x (s) , x′ (s)
)∣∣ ds

≤
∫ max{t0,t}

min{t0,t}
a (s) |x (s)| ds+

∫ max{t0,t}

min{t0,t}
b (s)

∣∣x′ (s)∣∣ ds+
∫ max{t0,t}

min{t0,t}
c (s) ds

≤M
∫ max{t0,t}

min{t0,t}
(s+ 1) a (s) ds+M

∫ max{t0,t}

min{t0,t}
b (s) ds+

∫ max{t0,t}

min{t0,t}
c (s) ds

< M
ε

3M
+M

ε

3M
+
ε

3
= ε.
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It remains to prove condition (3). By assumption (i) for every ε > 0
there exists t1, t2, t3 large enough so that∫ ∞
t1

(s+ 1) a (s) ds <
ε

3M
,

∫ ∞
t2

b (s) ds <
ε

3M
,

∫ ∞
t3

c (s) ds <
ε

3
. (3.7)

Let S = max {t1, t2, t3}. From Lemma 2.1 and (3.7) for t ≥ S we get∣∣(Tx)′ (t)
∣∣ =

∣∣∣∣− ∫ ∞
t

f
(
s, x (s) , x′ (s)

)
ds

∣∣∣∣
≤M

∫ ∞
S

(s+ 1) a (s) ds+M

∫ ∞
S

b (s) ds+
∫ ∞
S

c (s) ds

< M
ε

3M
+M

ε

3M
+
ε

3
= ε,

and the proof is complete.

We will need an additional assumption:
(ii) there exists M > 0 such that (y | f (t, x, y)) > 0 for t ≥ 0, x ∈ Rk

and |y| ≥M .

Theorem 3.1. Let assumptions (i)–(ii) hold. Then problem (3.1) has at
least one solution.

Proof. Consider the continuous family of BVPs:

x′′ = λf
(
t, x, x′

)
, x (0) = 0, lim

t→∞
x′ (t) = 0, (3.8)

depending on a parameter λ ∈ [0, 1]. Then problem (3.8) is equivalent to
an integral equation

ϕ (t) := −λ
∫ ∞

0
min (t, s) f

(
s, ϕ (s) , ϕ′ (s)

)
ds.

By Lemma 3.1 we get that operator λT is completely continuous. Let us
consider homotopy H : [0, 1]× U→ U given by

H (λ, ϕ) = ϕ− λTϕ

in Ω = B (0,M).
If H (λ, ϕ) = 0 for λ = 0 and ϕ ∈ ∂Ω, then BVP (3.8) has only a trivial

solution, which does not lay on the boundary of Ω, a contradiction.
Assume that H (λ, ϕ) = 0 for λ ∈ (0, 1] and ϕ ∈ ∂Ω. Let us consider

ψ (t) = |ϕ′ (t)|2. Observe that limt→∞ ψ (t) = 0. Hence ψ has maximum M2

for certain t0 ∈ R+. If t0 = 0, then from assumption (ii), since |ϕ′ (t0)| = M ,
we get

0 ≥ ψ′ (t0) = 2λ
(
ϕ′ (t0)

)
| f
(
t0, ϕ (t0) , ϕ′ (t0)

)
> 0,
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a contradiction. If t0 > 0, then

0 = ψ′ (t0) = 2λ
(
ϕ′ (t0)

)
| f
(
t0, ϕ (t0) , ϕ′ (t0)

)
> 0,

a contradiction. Hence homotopy H does not vanish on the boundary of Ω
for λ > 0. Finally H (λ, ϕ) 6= 0 for λ ∈ [0, 1] and ϕ ∈ ∂Ω. Consequently,

degLS (I − T,Ω) = degLS (H (1, ·) ,Ω) = degLS (H (0, ·) ,Ω) = degLS (I,Ω)
= 1 6= 0.

Hence T has a fixed point in Ω. We obtain that problem (3.1) has at least
one solution.

4. The resonant problem

Let us consider an asymptotic BVP

x′′ = f
(
t, x, x′

)
, x′ (0) = 0, lim

t→∞
x′ (t) = 0 (4.1)

where f : R+ × Rk × Rk → Rk is continuous. Since constant functions are
solutions for f = 0, the problem is resonant.

We will need the following assumptions:
(iii) f(t, x, y) is Lipschitz continuous with respect to x and y;
(iv) |f (t, x, y)| ≤ b (t) |y|+c (t), where

∫∞
0 b (s) ds <∞,

∫∞
0 c (s) ds <∞;

(v) there exists M > 0 such that xifi(t, x, y) > 0 for t ≥ 0, y ∈ Rk,
x ∈ Rk and |xi| ≥M , i = 1, . . . , k.

Now, we consider problem

y′ = f(t, c+
∫ t

0
y, y), y(0) = 0, (4.2)

for fixed c ∈ Rk. Observe that (4.2) is equivalent to an initial value problem

x′′ = f(t, x, x′), x(0) = c, x′(0) = 0. (4.3)

Since f is continuous than by assumption (iii) and the Local Existence and
Uniqueness Theorem we get that problem (4.3) has a unique local solution.

We can write down (4.2) as

yc(t) =
∫ t

0
f

(
s, c+

∫ s

0
y(u)du, y(s)

)
ds. (4.4)

By (iv) and (3.3) we get

|yc(t)| ≤
∫ t

0
b(s) |y(s)|+ c(s)ds ≤M3 +

∫ t

0
b(s) |y(s)|ds.
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Now, due to Gronwall’s Lemma, we have

|yc(t)| ≤M3exp
∫ t

0
b(s)ds. (4.5)

Hence, by the theorem on a priori bounds [7], (4.3) has a unique global
solution for t ≥ 0. We obtain that (4.2) has a unique global solution for
t ≥ 0. Moreover, by assumption (iv) and (3.3) we have

|yc(t)| ≤M3exp
∫ t

0
b(s)ds ≤M3exp

∫ ∞
0

b(s)ds = M3expM2 <∞.

Hence (4.2) has a unique bounded global solution for t ≥ 0.
The function t 7→ f

(
t, c+

∫ t
0 y(u)du, y(t)

)
is absolutely integrable, i.e.

∀ε>0 ∃M>0

∣∣∣∣∫ ∞
M

f

(
t, c+

∫ t

0
y(u)du, y(t)

)
dt

∣∣∣∣ < ε.

In particular, there exists a limit

g(c) := lim
t→∞

yc(t).

We conclude that g : Rk → Rk.

Lemma 4.1. Under assumptions (iii) and (iv) g is continuous.

Proof. Fix c0 ∈ Rk and ε > 0. We choose M > 0 large enough to get∣∣∣∣∫ ∞
M

f

(
t, c+

∫ t

0
y(u)du, y(t)

)
dt

∣∣∣∣ ≤ L∫ ∞
M

b(t)dt+
∫ ∞
M

c(t)dt <
ε

3
.

Now, due to the continuous dependence of solution with respect to pa-
rameter, we have that there exists δ > 0 such that, if |c− c0| < δ then
|yc(M)− yc0(M)| < ε/3.

We get

|yc(∞)−yc0(∞)|≤ |yc(∞)− yc(M)|+|yc(M)− yc0(M)|+|yc0(M)− yc0(∞)|
≤3(ε/3) = ε,

which completes the proof.

The solution of the problem (4.1) is obtained, if one can find such c ∈ Rk
that g(c) = 0. To this end we need Miranda’s theorem ([7]).

Theorem 4.1. If g : Rk ⊃ [−M,M ]k → Rk is continuous and if:

gi(c1, . . . , ci−1,−M, ci+1, . . . , ck) ≤ 0

and
gi(c1, . . . , ci−1,M, ci+1, . . . , ck) ≥ 0



ON AN ASYMPTOTIC BOUNDARY VALUE PROBLEM 117

for i = 1, . . . , k, then there exists c ∈ [−M,M ]k such that g(c) = 0.

We can now formulate our main result.

Theorem 4.2. Under assumption (iii)–(v) problem (4.1) has at least one
solution.

Proof. Let yc(t) is the unique bounded global solution of (4.2) and g(c) :=
limt→∞ yc(t). Observe that x(t) = c +

∫ t
0 yc(s)ds is a solution of (4.1) if

there exists an c ∈ Rk such that g(c) = 0.
We shall show that g satisfies assumptions of Miranda’s theorem. The

function g is continuous by Lemma 4.1.
Let ci = M + 1. We prove that yi(t) ≥ 0 for t ≥ 0. From (4.2) we have

yi(0) = 0. Assume that for some t we have yi(t) < 0. Then there exists
t∗ := inf {t | yi(t) < 0} such that, yi(t∗) = 0 and yi(t) ≥ 0 for t < t∗. Since
yi(t) is continuous there exists t1 > t∗ such that∫ t1

t∗

|yi(t)|dt ≤ 1.

Hence, we get

xi(t) = ci +
∫ t

t∗

yi(s)dsM + 1 +
∫ t

t∗

yi(s)ds ≥M for t ∈ [t∗, t1] .

Now, by condition (v) we get

xi(t)fi (t, x(t), y(t)) = xi(t)y′i(t) ≥ 0.

Hence y′i(t) ≥ 0 for t ∈ [t∗, t1]. It means that yi(t) is nondecreasing on
[t∗, t1]. Since yi(t∗) = 0 we get a contradiction. Hence yi(t) ≥ 0 for t ≥ 0.
In consequence

gi(c1, . . . , ci−1,M + 1, ci+1, . . . , ck) = lim
t→∞

yi(t) ≥ 0

for i = 1, . . . , k. To prove condition

gi(c1, . . . , ci−1,−M − 1, ci+1, . . . , ck) ≤ 0

we can proceed analogously. Hence there exists an c ∈ [−M − 1,M + 1]k

such that, g(c) = 0. This completes the proof.

Remark. One can replace boundary condition x(0) = 0 in (3.1) and x′(0) =
0 in (4.1) by nonhomogeneous ones. Arguments for proving the existence
of a solution under the same assumptions are standard.
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