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DARBOUX PROBLEM WITH
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Abstract. We prove an existence theorem for the Darboux Problem
uxy (x, y) = g (u (x, y)), u (x, 0) = u (0, y) = 0, where g is bounded and
measurable.

1. Introduction

In this paper we consider the Darboux Problem

∂2u

∂x∂y
(x, y) = g (u (x, y)) a.e. in [0, 1]× [0, 1] , (1)

u (x, 0) = u (0, y) = 0, (2)

where g : R → [a, b], 0 < a < b < +∞ is supposed to be Lebesgue measur-
able. The problem arises as a natural extension of the Cauchy Problem for
an autonomous equation x′ (t) = f (x (t)) with a discontinuous right-hand
side, see [1].

When considering Darboux Problem for equations uxy = f (x, y, u) or
uxy = f (x, y, u, ux, uy), most authors assume Carathéodory-type condi-
tions, i.e. f is measurable with respect to the first two variables, continuous
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or Lipschitz with respect to the others, and bounded by an integrable func-
tion M (x, y), see e.g. [3], [4], [5], [6]. It should also be mentioned that
there is a large number of articles on Darboux Problem in Banach spaces,
see e.g. [9], where it is assumed that f is continuous and satisfies a condition
expressed in terms of measure of noncompactness. Another approach to the
Darboux Problem is to consider uxy the mixed approximate derivative, see
[2].

Although the main purpose of this paper is to establish an existence
theorem for (1)–(2), the method used here, see also see [7] involves functional
differential equations, namely, we deal with the problem

q′ (t) = g

(∫ t

0

q (s)
s
ds

)
a.e. in t ∈ [0, 1] (3)

q (0) = 0 (4)

where g : R→ [a, b], 0 < a < b < +∞, is Lebesgue measurable.
Throughout this paper the term measure instead of Lebesgue measure µ is

used and also other concepts such as measurability and integrability are un-
derstood as Lebesgue measurability and Lebesgue integrability. We denote
by C [0, 1] the normed linear space of all continuous functions x : [0, 1]→ R
with the norm ‖x‖ = supt∈[0,1] |x (t)|.

2. Functional equation q0 (t) = g
(∫ t

0
q(s)
s
ds
)

First we remind two facts which we need further in the proof of Theorem
2.1.

Lemma 2.1. Assume that f : [A,B]→ R, −∞ < A < B < +∞ is contin-
uous and has bounded variation in [A,B]. Then f is absolutely continuous
if and only if µ (f (E)) = 0 for every E ⊂ [A,B] such that µ (E) = 0 [8,
Theorem 4, p. 314].

Lemma 2.2. Assume that f : [A,B]→ R, −∞ < A < B < +∞ is contin-
uous. If F ⊂ [A,B] is measurable and µ (f (E)) = 0 for every E ⊂ [A,B]
such that µ (E) = 0, then f (F ) is measurable [8, Corollary 2, p. 219].

Theorem 2.1. If g : R → [a, b], 0 < a < b < +∞ is measurable, then the
problem (3)–(4) has a solution.
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Proof. Proof will be divided into several steps.

1. Define

Z = {x ∈ C [0, 1] : x (0) = 0, a (t− τ) ≤ x (t)− x (τ) ≤ b (t− τ) ,

0 ≤ τ < t ≤ 1} .

For each f, g ∈ Z and α ∈ [0, 1] we have αf + (1− α) g ∈ Z. Thus Z is
convex. Moreover 0 ≤ f (t) ≤ b and

f (t)− f (τ) ≤ b (t− τ) = b |t− τ |
f (τ)− f (t) ≤ a (τ − t) ≤ a |t− τ | ≤ b |t− τ |

for all t, τ ∈ [0, 1], t > τ . Therefore |f (t)− f (τ)| ≤ b |t− τ |, t, τ ∈ [0, 1]
and Z is compact.

2. We claim that A : Z → Z, defined by

(Aq) (t) =
∫ t

0
g

(∫ z

0

q (s)
s
ds

)
dz, t ∈ [0, 1] ,

is continuous.

2a. For q ∈ Z define h : [0, 1]→ R,

h (z) =
∫ z

0

q (s)
s
ds.

The function h is continuous, strictly increasing and for each t, τ ∈ [0, 1],
t > τ , satisfies

a (t− τ) ≤ h (t)− h (τ) =
∫ t

τ

q (s)
s
ds ≤ b (t− τ) .

Thus h ∈ Z and, for each u, v ∈ h ([0, 1]), we have∣∣h−1 (u)− h−1 (v)
∣∣ ≤ 1

a

∣∣h (h−1 (u)
)
− h

(
h−1 (v)

)∣∣ =
1
a
|u− v| , (5)

so h−1 is absolutely continuous.
Because h ∈ Z is continuous and strictly monotonic on [0, 1], h−1 is

continuous and strictly monotonic on a closed interval h ([0, 1]). Thus
h−1 is of bounded variation on h ([0, 1]). By Lemma 2.1 and Lemma
2.2, (g ◦ h)−1 (P ) = h−1

(
g−1 (P )

)
is measurable for every open interval

P ⊂ h ([0, 1]). Hence, g (h (·)) is measurable and Aq is well defined.
Observe that Aq ∈ Z, because (Aq) (0) = 0 and for all τ, t ∈ [0, 1], t > τ ,

a (t− τ) ≤ (Aq) (t)− (Aq) (τ) =
∫ t

τ
g

(∫ z

0

q (s)
s
ds

)
dz ≤ b (t− τ) .
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2b. Take ε > 0 and any sequence qn ∈ Z, n ∈ N, convergent (uniformly) to
q ∈ Z. Define hn : [0, 1]→ R,

hn (z) =
∫ z

0

qn (s)
s

ds, n ∈ N.

By Lusin’s theorem there exists a compact set K ⊂ [0, b] such that
g|K : K → [a, b] is continuous and

µ ([0, b] \K) <
aε

8b
.

Since g|K is uniformly continuous, there exists δ > 0 such that |u− v| < δ,
u, v ∈ K implies |g (u)− g (v)| < ε/2.

For z ≤ δ/(2b+ 1) we have

|hn (z)− h (z)| ≤
∫ z

0

|qn (s)− q (s)|
s

ds

≤
∫ δ/(2b+1)

0

|qn (s)− q (s)|
s

ds

≤ 2bδ
2b+ 1

< δ.

If z > δ/(2b+ 1), then

|hn (z)− h (z)| ≤
∫ z

0

|qn (s)− q (s)|
s

ds

=
∫ δ/(2b+1)

0

|qn (s)− q (s)|
s

ds+
∫ z

δ/(2b+1)

|qn (s)− q (s)|
s

ds

≤ 2bδ
2b+ 1

+
∫ z

δ/(2b+1)

‖qn − q‖
s

ds

≤ 2bδ
2b+ 1

+ ‖qn − q‖
∫ 1

δ/(2b+1)

ds

s

≤ 2bδ
2b+ 1

+ ‖qn − q‖ ln
2b+ 1
δ

.

Since ‖qn − q‖ → 0, n→∞, there exists n0 such that

‖qn − q‖ <
δ

2b+ 1

(
ln

2b+ 1
δ

)−1

for n > n0. Therefore for n > n0 and each z ∈ [0, 1], we have

|hn (z)− h (z)| ≤ sup
z∈[0,1]

∣∣∣∣∫ z

0

qn (s)
s

ds−
∫ z

0

q (s)
s
ds

∣∣∣∣ < δ.
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2c. Fix n > n0 and define F = h−1 (K) ∩ h−1
n (K). We have

[0, 1] \ F = [0, 1] \
(
h−1 (K) ∩ h−1

n (K)
)

=
(
[0, 1] \ h−1 (K)

)
∪
(
[0, 1] \ h−1

n (K)
)

=
(
h−1 ([0, b]) \ h−1 (K)

)
∪
(
h−1
n ([0, b]) \ h−1

n (K)
)

= h−1 ([0, b] \K) ∪ h−1
n ([0, b] \K)

and using (5) we get

µ ([0, 1] \ F ) ≤ µ
(
h−1 ([0, b] \K)

)
+ µ

(
h−1
n ([0, b] \K)

)
=
∫
h−1([0,b]\K)

dz +
∫
h−1
n ([0,b]\K)

dz

=
∫

[0,b]\K

(
h−1)′ (u) du+

∫
[0,b]\K

(
h−1
n

)′ (u) du

≤ µ ([0, b] \K)
a

+
µ ([0, b] \K)

a
≤ ε

4b
.

Applying 2b, we obtain

‖Aqn −Aq‖ = sup
t∈[0,1]

∣∣∣∣∫ t

0
g (hn (z)) dz −

∫ t

0
g (h (z)) dz

∣∣∣∣
≤ sup
t∈[0,1]

∫ t

0
|g (hn (z))− g (h (z))| dz

=
∫ 1

0
|g (hn (z))− g (h (z))| dz

=
∫
F
|g (hn (z))− g (h (z))| dz

+
∫

[0,1]\F
|g (hn (z))− g (h (z))| dz

≤µ (F ) · ε
2

+
ε

4b
· 2b ≤ ε

2
+
ε

2
= ε.

Thus A : Z → Z is continuous.
3. It follows from Schauder’s fixed point theorem that A has a fixed point
in Z. Thus the problem (3)–(4) has a solution.

3. Darboux Problem

Definition 3.1. We say that a continuous function u : [0, 1] × [0, 1] → R
is a solution to the Darboux Problem (1)–(2) if u satisfies the equation (1)
a.e. in [0, 1]× [0, 1] and the initial condition (2) for x, y ∈ [0, 1].
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Theorem 3.1. If g : R → [a, b], 0 < a < b < +∞, is measurable, then the
problem (1)–(2) has a solution.

Proof. Let q be a solution to the problem (3)–(4). Define v : [0, 1]→ R,

v (t) =
∫ t

0

q (s)
s
ds, t ∈ [0, 1] ,

and u : [0, 1]× [0, 1]→ R,

u (x, y) = v (xy) , (x, y) ∈ [0, 1]× [0, 1] .

We have
∂2u

∂x∂y
(x, y) = v′ (xy) + xy · v′′ (xy) = q′ (xy) = g (u (x, y))

a.e. in (x, y) ∈ [0, 1]× [0, 1]. Obviously, u (x, 0) = u (0, y) = v (0) = 0. Thus
u is a solution to the problem (1)–(2).
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