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Abstract. It is shown that the random transition count is complete
for Markov chains with a fixed length and a fixed initial state, for some
subsets of the set of all transition probabilities.

1. Introduction

Consider the set X of all trajectories of Markov chains with a finite state
space S = {1, . . . , n}, with a fixed length N ≥ 2 and a fixed initial state
x1 = i′. Let x = (x1, . . . , xN ) ∈ X denote such trajectory. The probability
distributions on X can be parametrized by stochastic matrices. We denote
them by

P = {p = (pi,j) : ∀
i,j∈S

pi,j ≥ 0,
n∑
j=1

pi,j = 1 for each i ∈ S}.
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Let Z ⊂ S × S denote a fixed subset satisfying

∀
i∈S
∃
j∈S

(i, j) /∈ Z. (1)

We denote by PZ the space of stochastic matrices p ∈ P, such that

∀
(i,j)∈Z

pi,j = 0. (2)

Explicitly, a probability distribution on X is given by the formula

P(pi,j)({x}) = px1,x2 · . . . · pxN−1,xN for x = (x1, . . . , xN ) ∈ X.

Throughout the paper we are dealing with a statistical space of the form
(X, {P(pi,j) : (pi,j) ∈ PZ}). Obviously, the assumption p ∈ PZ means that
the transitions in one step from i to j are forbidden for (i, j) ∈ Z. The
space PZ remains nonempty because of (1).

It is worth noting that a number of important types of Markov chains
can be characterized by suitable classes PZ . Some classes of random walks
and Markov chains of order r > 1 described in [6], can be mentioned as
examples.

The random transition count F is defined in the usual way as a matrix

F (x) = (fi,j)i,j=1,... ,n, fi,j = #{t = 1, . . . , N − 1: xt = i, xt+1 = j}
for i, j ∈ S. Obviously F is a basic tool in any statistical investigation. In
particular F is a sufficient statistic. It turns out that F is also complete
if all matrices from P are allowed, as was shown by Denny and Yakowitz
[1], Denny and Wright [2]. Moreover the statistic F is always complete for
“Markov bridge”, when the initial and the final state are fixed (see [6]).

Complete statistics are one of the fundamental concepts in mathemat-
ical statistics. In particular these play the essential role in the theory of
uniformly most powerful unbiased tests and in minimum variance unbiased
estimation. An exposition of this theory can be found in [3] and [4], [5].

Unfortunately, the random transition count F could be non-complete
for some space PZ . The suitable examples are given at the end of this
section. Thus it is necessary to make some extra assumptions about the
set Z (cf. condition (9) in Section 3). As the main result, given in Section
3, we describe some classes of sets Z, such that F is a complete statistic
for distributions parametrized by matrices from PZ ⊂ P. In Section 2 we
introduce some natural classification of the states of the Markov chain for
the class PZ and we give some auxiliary results (Lemmas 2.1–2.4). The
proofs of the lemmas are based on some combinatorical tools.

The following example is remarkable and can be found in [6], with a
different proof.

Proposition 1.1. Let S = {1, 2, 3, 4, 5}, N = 5 and let x1 = 1 be fixed.
For some space PZ the statistic F is not complete.
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Proof. Let the set Z be defined by

(S × S) \ Z = {(1, 2), (1, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 1), (5, 1)}.

Then any matrix p ∈ PZ can be written as

p =


0 q 1− q 0 0
0 0 0 r 1− r
0 0 0 s 1− s
1 0 0 0 0
1 0 0 0 0

 , q, r, s ∈ [0, 1].

The statistic F (x) = (fi,j) takes on the following values with corresponding
probabilities

M1 =


0 1 1 0 0
0 0 0 1 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , M2 =


0 1 1 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,
P (F (x) = M1) = q · (1− q) · r, P (F (x) = M2) = q · (1− q) · (1− r),

M3 =


0 1 1 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0

 , M4 =


0 1 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0

 ,
P (F (x) = M3) = q · (1− q) · s, P (F (x) = M4) = q · (1− q) · (1− s),

M5 =


0 2 0 0 0
0 0 0 1 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , M6 =


0 2 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

 ,
P (F (x) = M5) = q2 · r, P (F (x) = M6) = q2 · (1− r),

M7 =


0 0 2 0 0
0 0 0 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 0

 , M8 =


0 0 2 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
1 0 0 0 0

 ,
P (F (x) = M7) = (1− q)2 · s, P (F (x) = M8) = (1− q)2 · (1− s).
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Then the expectation E(g ◦ F ) vanishes for any non-zero function g sat-
isfying

g(M1) = g(M2) = −g(M3) = −g(M4),

g(M5) = g(M6) = −
(

1− q
q

)2

· g(M7) = −
(

1− q
q

)2

· g(M8).

Moreover, note that if the initial state x1 is not fixed, then the statistic F
is not sufficient. The natural sufficient statistic which should be investigated
in such a situation is

G(x) = (x1, F (x)),

but in general G is not complete.

Proposition 1.2. Let S = {1, 2}, N = 2. The statistic G(x1, x2) =
(x1, (fi,j)) is sufficient, but not complete.

Proof. Indeed, for a fixed initial distribution (p1, p2); p1, p2 ∈ [0, 1], p1 +
p2 = 1 and for any transition probability matrix

p =
[
p1,1 p1,2
p2,1 p2,2

]
∈ P,

the statistic G(x1, x2) = (x1, (fi,j)) takes on the following values with cor-
responding probabilities

G1 =
(

1,
[
1 0
0 0

])
, P (F = G1) = p1 · p1,1,

G2 =
(

1,
[
0 1
0 0

])
, P (F = G2) = p1 · p1,2,

G3 =
(

2,
[
0 0
1 0

])
, P (F = G3) = p2 · p2,1,

G4 =
(

2,
[
0 0
0 1

])
, P (F = G4) = p2 · p2,2.

Then the expectation Ep(g ◦ G) vanishes if only the function g satisfies
g(G1) = g(G2) = p2, g(G3) = g(G4) = −p1.
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2. The classification of states and auxiliary results

Let us fix a set Z satisfying (1). For p ∈ PZ (cf. (2)), we use standard
notations (pi,j(n))i,j∈S = p(n) = pn. To simplify our considerations, let us
observe that there exists a matrix pZ ∈ PZ with a maximal set of positive
elements:

pZi,j > 0 if only (i, j) /∈ Z.
We say that a state i is inessential for the class PZ if

∃
j

[(
∃

t0≥1
pZi,j(t0) > 0

)
∧
(
∀
t≥1
pZj,i(t) = 0

)]
.

A state is essential if it is not inessential. We define an equivalence relation
in the class of essential states: i ∼ j if

∃
s,t≥1

(
pZi,j(s) > 0∧pZj,i(t) > 0

)
.

Consequently the set of essential states for the class PZ splits into classes
of equivalence. We denote them by S1, S2, . . . , Sβ0 , β0 ∈ N.

For the sake of completeness we prove the following auxiliary results,
similar to lemma of Denny, Wright (cf. [2]). For any matrix f of dimension
n × n, let f ′ = (f ′i,j) denote a “table” being the matrix f with deleted
elements fi,i+1, i = 1, . . . , n ( fn,n+1 ≡ fn,1). More precisely

f ′i,j = fi,j for j 6= i+ 1 (mod n) (3)

and

f ′ = (f ′i,j)i=1,... ,n; j=1,... ,i,i+2,... ,n. (3′)

Lemma 2.1. Fix i′, i′′ ∈ S and N ≥ 2. Let Mi′,i′′

N−1 denote a set of
matrices f of dimension n× n satisfying

(i)
∑

i,j fi,j = N − 1,
(ii)

∑
j fi,j + δi′′(i) =

∑
j fj,i + δi′(i) for i ∈ S.

The function f 7→ f ′ defined by (3), (3′) is one-one on the class Mi′,i′′

N−1.

There exist functions φi
′,i′′

i on tables f ′ satisfying (3′), such that

φi
′,i′′

i (f ′) = fi,i+1 for i ∈ S. (4)

Proof. By elementary (but tedious) calculations, the equations (i), (ii) give
in particular

f1,2 =
1
n

N−1−
∑

i,j 6=i+1

f ′i,j−(n− 1) · r2(f ′)−. . .−rn(f ′)+(i′ − i′′)

 (5)
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with

ri(f ′) =

 ∑
j 6=i−1

f ′j,i −
∑
j 6=i+1

f ′i,j

 for i = 2, . . . , n. (6)

Next, we define by induction the functions (φi
′,i′′

i ) on f ′, as follows{
φi
′,i′′

1 (f ′) = f1,2,

φi
′,i′′

i (f ′) = φi
′,i′′

i−1 (f ′) + ri(f ′) + δi′(i)− δi′′(i).
(7)

Lemma 2.2. Fix i′ ∈ S and N ≥ 2. Let Mi′
N−1 denote a set of matrices f

of dimension n× n with integer elements satisfying

(I)
∑

i,j fi,j = N − 1,
(II) there exists i′′ ∈ S such that∑

j

fi,j + δi′′(i) =
∑
j

fj,i + δi′(i) for i ∈ S.

The function f 7→ f ′ defined by (3), (3′) is one-one on the class Mi′
N−1.

There exist functions φi
′
i with integer values, such that

φi
′
i (f ′) = fi,i+1 for i ∈ S,

for f ′ satisfying (3′) and (3).

Proof. Let f be a matrix with integer elements satisfying conditions (i)
and (ii) from Lemma 2.1, with some i′′ ∈ S. Let us define numbers (cf. (5))

f i
′′′

1,2 =
1
n

N−1−
∑

i,j 6=i+1

f ′i,j−(n−1) · r2(f ′)−. . .−rn(f ′)+(i′−i′′′)

 (5′)

with ri(f ′) given by the formula (6). By the same elementary calculations as
in the proof of the previous lemma, we obtain, putting i′′′ = i′′, f i

′′
1,2 = f1,2.

Moreover, for any i′′′ 6= i′′, we have f i
′′′

1,2 /∈ Z.
Now assume that a matrix f wifh integer elements satisfies (I) and (II).

Define once more f i
′′′

1,2 by formula (5′) for i′′′ = 1, . . . , n. Then there exists

exactly one number i′′′0 such that f i
′′′
0

1,2 ∈ Z. Thus we have f1,2 = f
i′′′0
1,2 (and

moreover (ii) is satisfied for i′′ = i′′′0 ).
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Now φi
′

1 (f ′) is defined as f i
′′′
0

1,2. Other values φi
′
i (f ′) are obtained by in-

duction: {
φi
′

1 (f ′) = f
i′′′0
1,2,

φi
′
i (f ′) = φi

′
i−1(f ′) + ri(f ′) + δi′(i)− δi′′′0 (i),

in the way analogical to (7).

Corollary 2.3. The function f 7→ f ′ defined by (3), (3′) is one-one on the
class F [x] of the random transition counts F for the trajectories x ∈ X with
a fixed initial state x1 = i′ and a fixed length N ≥ 2.

The following lemma was used (in almost the same form) by Denny and
Wright [2]. Assume that integers n ≥ 1, m(1) ≥ 1, . . . ,m(n) ≥ 1 and q ≥ 0
are fixed. Denote by A the set of systems of non-negative integers z = (zi,j),
1 ≤ i ≤ n, 1 ≤ j ≤ m(i) satisfying

n∑
i=1

m(i)∑
j=1

zi,j ≤ q.

Fix real c > 0. Denote by B the set of all systems of positive numbers
y = (yi,j), 1 ≤ i ≤ n, 1 ≤ j ≤ m(i) such that

m(i)∑
j=1

yi,j ≤ c for any 1 ≤ i ≤ n.

Let ϕi : A → {0, 1, 2, . . . }, i = 1, . . . , n. For each z ∈ A let us define
functions Wz(y), as follows

Wz(y) =
n∏
i=1

m(i)∏
j=1

y
zi,j
i,j ·

(
c− yi,1 − . . .− yi,m(i)

)ϕi((zi,j)) . (8)

Lemma 2.4. The system of functions Wz : B → R, indexed by z ∈ A, is
linearly independent.

Proof. Cf. Lemma 2 in [2] or Lemma 3.7 in [6].
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3. The main result

Let Z ∈ S×S be a fixed set. We always assume that Z satisfies (1), that
is

∀
i∈S
∃
j∈S

(i, j) /∈ Z.

Recall that using Z one can naturally define the class S0 of inessential states
and classes of equivalence S1, . . . , Sβ0 , β0 ∈ N, in essential states.

To prove the completeness of the statistic F , we need some more spe-
cial properties of the set Z. Let us remark that, by Proposition 1.1, such
additional assumptions about the set Z are necessary.

In the paper we construct the set Z such that the state space S will be
the whole class of essential states. Thus in what follows, we assume that
there exists a permutation (π1, π2, . . . , πn) of the set S, satisfying{

(π1, π2), . . . , (πn−1, πn), (πn, π1)
}
∩ Z = ∅. (9)

Theorem 3.1. Let Z satisfy (1) and (9). Let (X, {P(pi,j) : (pi,j) ∈ PZ}),
with PZ given by (2), be the statistical space of all trajectories of Markov
chains with the state space S = {1, . . . , n}, a fixed initial state x1 = i′, and
the trajectory size N ≥ 2. Then the random transition count F is complete.

As the sufficency of F is obvious, from Bahadur’s Theorem [7] we have

Corollary 3.2. Under the assumptions of Theorem 3.1, F is the minimal
sufficient statistic.

Proof of Theorem 3.1. Let (π1, π2, . . . , πn) denote any permutation sat-
isfying condition (9). It is obvious, that by changing suitably the notation,
one can assume that (π1, π2, . . . , πn) = (1, . . . , n). Thus we can assume
that

{(1, 2), . . . , (n− 1, n), (n, 1)} ∩ Z = ∅. (10)

Let us remind that for a trajectory x of size N ≥ 2, the initial state x1 is
fixed. A random transition count of the trajectory is denoted by f = (fi,j)
for i, j ∈ S. Moreover, let f ′ denote the matrix f with deleted elements
fi,i+1, i = 1, . . . , n, (cf. (3), (3’)).

For any (pi,j) ∈ PZ , the distribution of F is given by

P(pi,j)(F = f) = ξ(x1, f) ·
n∏
i=1

n∏
j=1

p
fi,j
i,j ,

where ξ(x1, f) = #{x : F (x) = f} denotes the number of corresponding
trajectories.
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To show that the statistic F is complete, it is enough to prove that
condition∑

f

d(f) · ξ(x1, f) ·
n∏
i=1

n∏
j=1

p
fi,j
i,j = 0 for each (pi,j) ∈ PZ (11)

implies that
d(f) = 0 for each f.

For any table f ′, (cf. Section 2), let Wf ′(p) denote the function defined by
(8) on the set {(pi,j), 1 ≤ i, j ≤ n, (i, j) /∈ Z :

∑
j pi,j ≤ 1 for 1 ≤ i ≤ n}.

After change of indices i, j, we can rewrite this set, as follows

{(pi,j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m(i), j 6= i+ 1 (mod n)}.
Then

Wf ′(p) =
n∏
i=1

( m(i)∏
j=1
j 6=i+1

p
f ′i,j
i,j ·

(
1−

m(i)∑
j=1
j 6=i+1

pi,j

)φi(f ′))
,

where φi, i = 1, . . . , n are functions ocurring in Lemma 2.1, Lemma 2.2 and
Corollary 2.3. Using the notation d(f ′) = ξ(x1, f) · d(f), the equality (11)
can be written as ∑

f ′

d(f ′) ·Wf ′(p) = 0,

for any p = (pi,j)1≤i≤n, 1≤j≤m(i), j 6=i+1 (modn) from the open set

{p : pi,j > 0,
∑
j

pi,j < 1 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m(i),

j 6= i+ 1( mod n)}.
Now Lemma 2.4 can be used and the proof is finished.

It is an interesting problem to prove completeness of F in a more general
case. We shall treat it, using graph theory, in a next paper, under weaker
assumptions about the set Z.
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