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Abstract. In this paper, we study the problem of uniqueness on mero-
morphic functions involving in differential polynomials and obtain some
results which extend and improve the theorems of M. Fang and W. Hong
et al.

1. Introduction and main results

In this paper, a meromorphic function means meromorphic in the open
complex plane. We use the usual notations of Nevanlinna theory of mero-
morphic functions as defined in [3], [6]. By E we denote a set of finite
linear measure, not necessary the same at each occurrence. For a noncon-
stant meromorphic function f and a complex number a, and by E(a, f),
Ek)(a, f) we denote the set of zeros of f − a (counting multiplicity), and
the set of zeros of f − a with multiplicity ≤ k (counting multiplicity);
N1)(r, 1/(f − a)) stands for the counting function of simple a-points of f
and N (k(r, 1/(f − a)) stands for the counting function of a-points of f
with multiplicity ≥ k, where k is a positive integer and each a-points is
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counted only once. In addition, S(r, f) stands for any quantity satisfying
S(r, f) = o(T (r, f)) (r →∞, r 6∈ E) (see [6]). Let
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W. Hayman in [2] obtained the following result.

Theorem A. Let f be an entire function, n ≥ 1 be a positive integer. If
fnf ′ 6= 1, then f is a constant.

Recently, corresponding to Theorem A, M. Fang and W. Hong in [1]
proved the following two theorems.

Theorem B. Let f be an entire function, n ≥ 2 be a positive integer. If
fn(f − 1)f ′ 6= 1, then f is a constant.

Theorem C. Let f and g be transcendental entire functions, n ≥ 11 be a
positive integer. If E(1, fn(f − 1)f ′) = E(1, gn(g − 1)g′), then f ≡ g.

Motivated by Theorem C, we obtain the more general results which im-
prove Theorem C.

Theorem 1.1. Let f and g be distinct nonconstant meromorphic functions,
n ≥ 10 be a positive integer. If E(∞, f) = E(∞, g) and E3)(1, fn(f−1)f ′) =
E3)(1, gn(g − 1)g′), then

f =
(n+ 2)(1 + h+ . . .+ hn)h
(n+ 1)(1 + h+ . . .+ hn+1)

,

g =
(n+ 2)(1 + h+ . . .+ hn)

(n+ 1)(1 + h+ . . .+ hn+1)
,

(1.1)

where h is a nonconstant meromorphic function.

Corollary. Let f and g be nonconstant entire functions, n ≥ 7 be a positive
integer. If E3)(1, fn(f − 1)f ′) = E3)(1, gn(g − 1)g′), then f ≡ g.

Clearly, Corollary is an improvement of Theorem C.
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2. Some lemmas

Let us introduce some lemmas which will be used to prove Theorem 1.1.

Lemma 2.1 ([5]). Let f be a meromorphic function and p = a0f
n +

a1f
n−1 + . . . + an, where a0(6≡ 0), a1, . . . , an are small functions related

to f, that is T (r, aj) = S(r, f), j = 0, 1, . . . , n. Then

T (r, p) = nT (r, f) + S(r, f).

Lemma 2.2. Let F, G be two meromorphic functions such that E(∞, F ) =
E(∞, G) and E3)(1, F ) = E3)(1, G), then one of the following cases must
occur:

(i)
1
2
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)
+N2

(
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1
G

)
+ 2N(r, F )

+ S(r, F ) + S(r,G);

(ii) F ·G ≡ 1;
(iii) F ≡ G.

Proof. Let

H =
(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
. (2.1)

If H 6≡ 0, since E3)(1, F ) = E3)(1, G), then E1)(1, F ) = E1)(1, G), a
simple computation on local expansion shows that H(z0) = 0 if z0 is a
simple zero of F − 1 and G− 1. Hence, we get
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By the first fundamental theorem, we have

N
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)
≤ T (r,H) +O(1). (2.3)

From (2.1), we get m(r,H) = S(r, F ) + S(r,G), thus by (2.2) and (2.3),
we get
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)
≤ N(r,H) + S(r, F ) + S(r,G). (2.4)

Noticing that E(∞, F ) = E(∞, G), we say that any pole of F , G cannot
be a pole of H. In addition, since E3)(1, F ) = E3)(1, G), we can also easily
see from (2.1) that any k-fold (k ≤ 3) zero-point of F − 1 and G− 1 is not
a pole of H. Hence
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where N0(r, 1/F ′) is the counting function corresponding to the zeros of F ′

which are not zeros of F (F − 1), and N0(r, 1/G′) is the counting function
corresponding to the zeros of G′ which are not zeros of G(G− 1).

Noticing
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and
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Combining (2.5), (2.6), (2.7) with the second fundamental theorem, we can
prove Lemma 2.2 by imitating the proof as did in [4], [7]. So we omit the
details here.

Lemma 2.3. Let f1, f2 be nonconstant meromorphic functions and c1, c2,
c3 be nonzero constants. If c1f1 + c2f2 ≡ c3, then
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Proof. By the second fundamental theorem, we have
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Thus Lemma 2.3 follows from (2.8) and (2.9).

Lemma 2.4 ([6]). Let f be a meromorphic function, then
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3. Proof of Theorem 1.1 and Corollary

3.1. Proof of Theorem 1.1. In order to prove Theorem 1.1, we set

F = fn(f − 1)f ′, G = gn(g − 1)g′, (3.1)

and

F1 =
1

n+ 2
fn+2 − 1

n+ 1
fn+1, G1 =

1
n+ 2

gn+2 − 1
n+ 1

gn+1. (3.2)

Thus, E(∞, F ) = E(∞, G) and E3)(1, F ) = E3)(1, G). So, by Lemma 2.2,
we consider the following three cases.

Case 1. Suppose that F and G satisfy (i) in Lemma 2.2:
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From (3.1), we get
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By Lemma 2.1, the first main theorem and (3.2), we have
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combining with (3.3), (3.4), it will yield
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It follows from E(∞, f) = E(∞, g), (3.5) and Lemma 2.4 that

(n− 2)T (r, f) ≤ 7T (r, g) + S(r, f) + S(r, g). (3.6)
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Similarly, we have

(n− 2)T (r, g) ≤ 7T (r, f) + S(r, f) + S(r, g). (3.7)

By (3.6) and (3.7), we find (n−9)T (r, f)+(n−9)T (r, g) ≤ S(r, f)+S(r, g),
which contradicts n ≥ 10.

Case 2. Suppose that F andG satisfy (ii) in Lemma 2.2: fn(f−1)f ′gn(g−
1)g′ ≡ 1. From fn(f−1)f ′gn(g−1)g′ ≡ 1 and E(∞, f) = E(∞, g), it follows
that f and g are entire functions. By the Picard theorem, we deduce f may
possess two values in C : either 0 or 1. Contradiction.

Case 3. Suppose that F and G satisfy (iii) in Lemma 2.2: F ≡ G, which
implies that F1 ≡ G1 + c, where c is a constant.

First, by Lemma 2.1, we obtain

T (r, f) = T (r, g) + S(r, f) + S(r, g). (3.8)

We claim that c = 0. Otherwise, if c 6= 0, Lemma 2.3, (3.2) and (3.8) will
have

T (r, F1) = (n+ 2)T (r, f) + S(r, f)

≤ N(r,
1
F1

) +N(r,
1
G1

) +N(r, f) + S(r, f)

≤ 5T (r, f) + S(r, f),

which also contradicts n ≥ 10, and hence c = 0, F1 ≡ G1. Let f = hg,
which leads from f 6≡ g that

f =
(n+ 2)(1 + h+ . . .+ hn)h
(n+ 1)(1 + h+ . . .+ hn+1)

, g =
(n+ 2)(1 + h+ . . .+ hn)

(n+ 1)(1 + h+ . . .+ hn+1)
,

where n(≥ 10) is a positive integer, and h is a meromorphic function.
This proves Theorem 1.1.

3.2. Proof of Corollary. First, for entire functions f and g, from (3.5)
we obtain (3.6) and (3.7) with “7” replaced by “4”. That is, we can get

(n− 2)T (r, f) ≤ 4T (r, g) + S(r, f) + S(r, g). (3.6)′

and

(n− 2)T (r, g) ≤ 4T (r, f) + S(r, f) + S(r, g). (3.7)′

Thus n ≥ 7 and either (1.1) is true or f ≡ g. But (1.1) is not fulfilled
since h 6= const is entire and

g =
n+ 2
n+ 1

· 1− hn+1

1− hn+2

has poles (by the Picard theorem).
Therefore f ≡ g, which completes the proof of Corollary.
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