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Abstract. We are going to prove an extension theorem on a functional
equation for special means studied by Domsta and Matkowski.

1. Introduction

Let I ⊂ R+ be a non-empty, open interval and we denote by CM(I) the
class of continuous, strictly monotone functions on I. If ϕ,ψ ∈ CM(I),
J ⊂ I and there are a, b ∈ R, a 6= 0, so that ψ(x) = aϕ(x) + b for all
x ∈ J ⊂ I, then we say that ϕ is equivalent to ψ on J . In notation ϕ

J∼ ψ
or ϕ(x) ∼ ψ(x), x ∈ J . Let ϕ ∈ CM(I), then we can form the following
quantity

Mϕ(x, y) := ϕ−1
(
xϕ(x) + yϕ(y)

x+ y

)
, x, y ∈ I ,

where ϕ−1 is the inverse function of ϕ. It is easy to prove that Mϕ : I2 → I
is a strict and symmetric mean on I (see [3], [7]).
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Originally J. Matkowski raised the following problem at the 40.ISFE in
Gronow. For which functions ϕ,ψ ∈ CM(I) does the functional equation

Mϕ(x, y) +Mψ(x, y) = x+ y , x, y ∈ I , (1)

hold? Domsta’s and Matkowski’s result [2] refers to this as follows. If
additionally ϕ or ψ is four times continuously differentiable, then ϕ(x) ∼ 1/x
and ψ(x) ∼ 1/x, x ∈ I.

Obviously it is not the complete solution of the original problem, be-
cause one may expect not to impose any other regularity conditions on
the unknown functions, indeed the problem mentioned above is similar to
the Matkowski-Sutô problem which was solved in [7] by Daróczy and Páles
without any regularity condition. Then instead of Mϕ and Mψ in (1), quasi-
arithmetic means are present (see [4], [5], [7]).

In this work we would like to take a small step forward in the solution
of the original problem. So we are going to prove, that if the unknown
functions ϕ,ψ ∈ CM(I) are solutions of (1) and there exists a non-empty,
open interval J ⊂ I so that the unknown functions are equivalent to the
function x → 1/x on J , then this holds on the whole interval I. It is
known, that this type of extension theorem played a major role in solving
the Matkowski-Sutô problem (see [4], [5], [6], [7], [8]). With our theorem
we generalize Domsta’s and Matkowski’s result, because in this way it is
enough to suppose that at least one of the unknown functions is four times
continuously differentiable on a subinterval of I (see Theorem 2).

2. Main result

We need the following lemma to prove our main theorem.

Lemma 1. If ϕ,ψ ∈ CM(I) are solutions of (1) and ϕ
I∼ Φ, ψ I∼ Ψ, then

Φ and Ψ are solutions of (1), too.

Proof. By the assumptions there exist a, b, c, d ∈ R, ac 6= 0, so that

Φ(x) = aϕ(x) + b and Ψ(x) = cψ(x) + d

for all x, y ∈ I. Then by equation (1)

ϕ−1


a(xϕ(x) + yϕ(y)) + b(x+ y)

x+ y
− b

a


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+ ψ−1


c(xψ(x) + yψ(y)) + d(x+ y)

x+ y
− d

c


=x+ y

for all x, y ∈ I. It means, Φ and Ψ also fulfil (1).

Theorem 1. Let I ⊂ R+ be a non-empty, open interval and ψ,ϕ ∈ CM(I)
satisfy

ϕ−1
(
xϕ(x) + yϕ(y)

x+ y

)
+ ψ−1

(
xψ(x) + yψ(y)

x+ y

)
= x+ y (2)

for all x, y ∈ I. If there exists an interval J ⊂ I of positive length, so that

ϕ(x) ∼ 1
x

and ψ(x) ∼ 1
x
, on x ∈ J , (3)

then both ϕ and ψ are in the equivalence class of
1
x

, x ∈ I.

Proof. According to the lemma we can suppose that

ϕ(x) =
1
x

and ψ(x) =
1
x
, x ∈ J.

Let K ⊂ I be the interval of maximal length containing J so that

ϕ(x) = ψ(x) =
1
x
, x ∈ K. (4)

We are going to show that K = I. Since ϕ and ψ are continuous, K is
closed in I. Suppose to the contrary that K 6= I, then either inf K or supK
is an interior point of I. Say, c := inf K is an interior point of I. Then

I :=]a, b[ , K := [c, d} , a < c < d ≤ b ,

where } := [ or ]. We can assume {=] and d < b without losing the generality
to our further examination.

First we prove, that there exist δ1, δ2 positive real numbers δ2 ≤ d − c,
so that:

(i) For x ∈]c− δ1, c] and y ∈ [d− δ2, d] we have

xϕ(x) + yϕ(y)
x+ y

=
xϕ(x) + 1
x+ y

∈ [1/d, 1/c] ,

and
xψ(x) + yψ(y)

x+ y
=
xψ(x) + 1
x+ y

∈ [1/d, 1/c].
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(ii)
(c− δ1)ϕ(c− δ1) + 1

c− δ1 + d− δ2
=

1
c
.

For this let us introduce

δ2(λ) = d−
(
λc+ (1− λ)d

)
= λ(d− c) , λ ∈ [0, 1] .

Then, as ϕ is strictly decreasing,

ϕ(d) =
1
d
<
ϕ(c)c+ ϕ(d− δ2(1

2))(d− δ2(1
2))

c+ d− δ2(1
2)

<
1
c

= ϕ(c)

and further because of the continuity of ϕ there exists δ1 > 0 such that

1
d
<
ϕ(x)x+ ϕ(d− δ2(1

2))(d− δ2(1
2))

x+ d− δ2(1
2)

<
1
c

for all x ∈ [c− δ1, c] .

For next steps we assume that ϕ(c − δ1)(c − δ1) 6= 1, which is possible by
the definition of c, (c = inf K). Again by continuity we can state

1
d
≤ ϕ(x)x+ ϕ(y)y

x+ y
≤ 1
c
, for all x ∈ [c− δ1, c] and y ∈ [d− δ2(1

2), d] .

Thus (i) is fulfilled by ϕ with δ2 = δ2(1
2). Similarly goes the proof for ψ.

Now, if δ2(1
2) replaced for δ2 does not fulfil (ii), then by monotonicity of ϕ

(c− δ1)ϕ(c− δ1) + (d− δ2(1
2))ϕ(d− δ2(1

2))
c− δ1 + d− δ2(1

2)
<

1
c

(5)

and
ϕ(c− δ1)(c− δ1) + ϕ(c)c

c− δ1 + c
>

1
c
. (6)

Since c = d− δ2(1), applying the Bolzano theorem to the following function

Q(λ) :=
(c− δ1)ϕ(c− δ1) + (d− δ2(λ))ϕ(d− δ2(λ))

c− δ1 + d− δ2(λ)
,

because of the inequalities (5), (6) there exists λ0 ∈]1/2, 1[ such that (ii) is
true with δ2 = δ2(λ0). Obviously, then (i) also remains true.

After this we are going to prove that ϕ(x) = ψ(x) = 1/x on an interval
L with inf L < inf K = c. For, let x ∈ [c − δ1, c] and y ∈ [d − δ2, d] ⊂ K,
then (2), (ii), and the property of K imply

x+ y

xϕ(x) + 1
+

x+ y

xψ(x) + 1
= x+ y .

From this and (4) we obtain

1
x2 = ϕ(x)ψ(x) for all x ∈ [c− δ1, d]. (7)
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Then (using (7)) two cases are possible:

1
c− δ1

> ϕ(c− δ1) and
1

c− δ1
< ψ(c− δ1), (8)

or

1
c− δ1

< ϕ(c− δ1) and
1

c− δ1
> ψ(c− δ1). (9)

We can deal with them at the same time but (2) is symmetric in ϕ and
in ψ. Therefore we shall use (8) only. Moreover, we can assume without
losses that

ϕ(c− δ1) 6= 1
c− δ1

and ψ(c− δ1) 6= 1
c− δ1

(changing if it necessary the value of δ1).
Using (2) and (7) we obtain

(xϕ(x) + yϕ(y)) (x+ y −Mϕ(x, y))2 ϕ (x+ y −Mϕ(x, y))

= xyϕ(x)ϕ(y)(x+ y) (10)

for all x, y ∈ [c− δ1, d].
From (10) for all x ∈ [c− δ1, c] and y ∈ [d− δ2, d] we have

(xϕ(x) + 1)
(
x+ y − x+ y

xϕ(x) + 1

)2

ϕ

(
x+ y − x+ y

xϕ(x) + 1

)
= xϕ(x)(x+ y) .

Simplifying this we have

xϕ(x)
[
(x+ y)

xϕ(x)
xϕ(x) + 1

ϕ

(
x+ y

xϕ(x) + 1
xϕ(x)

)
− 1
]

= 0 ,

since xϕ(x) 6= 0

ϕ

(
x+ y

xϕ(x) + 1
xϕ(x)

)
=

xϕ(x) + 1
xϕ(x)(x+ y)

, (11)

for every x ∈ [c− δ1, c] and y ∈ [d− δ2, d]. In (11) performing the substitu-
tions x = c− δ1, y ∈ [d− δ2, d] we obtain
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ϕ

(
c− δ1 + y

(c− δ1)ϕ(c− δ1) + 1
(c− δ1)ϕ(c− δ1)

)
(12)

=
(c− δ1)ϕ(c− δ1) + 1

(c− δ1)ϕ(c− δ1)(c− δ1 + y)(
=

1 c− δ1 + y

(c− δ1)ϕ(c− δ1) + 1
(c− δ1)ϕ(c− δ1)

)
.

This and (8) imply that ϕ(x) = ψ(x) = 1/x holds on such an interval L,
that inf L < inf K (according to inequality (8), (c− δ1)ϕ(c− δ1) < 1). This
contradicts to the maximality of K.

With the previous theorem we can immediately generalize Domsta’s and
Matkowski’s result ([2, Theorem 3]).

Theorem 2. Let I ⊂ R+ be a non-empty, open interval. If ϕ,ψ ∈ CM(I)
are solutions of (1) and there is a non-empty, open interval J ⊂ I so that
ϕ or ψ is four times continuously differentiable on J , then

ϕ(x) ∼ 1
x

and ψ(x) ∼ 1
x

on x ∈ I.

Proof. We obtain it immediately from the Domsta’s and Matkowski’s result
and from the previous theorem.
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