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Abstract. We exhibit a class of nonlinear operators with the property
that their iterates converge to their unique fixed points even when com-
putational errors are present. We also show that most (in the sense of
the Baire category) elements in an appropriate complete metric space
of operators do, in fact, possess this property.

1. Introduction

Assume that (X, ρ) is a complete metric space and let the operator
A : X → X have the following properties:
(A1) there exists a unique xA ∈ X such that AxA = xA;
(A2) Anx→ xA as n→∞, uniformly on all bounded subsets of X;
(A3) A is uniformly continuous on bounded subsets of X;
(A4) A is bounded on bounded subsets of X.
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Many operators with these properties can be found, for example, in [1],
[2], [4], [7], [8], [9], [11]–[13]. We mention, in particular, the classes of
operators introduced by Rakotch [9] and Browder [1]. Note that if X is
either a closed, convex subset of a Banach space or a closed, ρ-convex subset
of a complete hyperbolic metric space [10], then (A4) follows from (A3).

In view of (A2), it is natural to ask if the convergence of the orbits of
A will be preserved even in the presence of computational errors. In this
paper we provide affirmative answers to this question. More precisely, we
have the following results.

Theorem 1.1. Let K be a nonempty, bounded subset of X and ε > 0.
Then there exist δ = δ(ε,K) > 0 and a natural number N such that for
each natural number n ≥ N , and each sequence {xi}ni=0 ⊂ X which satisfies

x0 ∈ K and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n− 1,

the following inequality holds:

ρ(xi, xA) ≤ ε, i = N, . . . , n.

Corollary 1.1. Assume that {xi}∞i=0 ⊂ X, {xi}∞i=0 is bounded, and that

lim
i→∞

ρ(Axi, xi+1) = 0.

Then ρ(xi, xA)→ 0 as i→∞.

Theorem 1.2. Let ε > 0. Then there exists δ = δ(ε) > 0 such that for
each sequence {xi}∞i=0 ⊂ X which satisfies

ρ(x0, xA) ≤ δ and ρ(xi+1, Axi) ≤ δ, i = 0, 1, . . . ,

the following inequality holds:

ρ(xi, xA) ≤ ε, i = 0, 1, . . . .

These results show that, roughly speaking, in order to achieve an ε-
approximation of xA, it suffices to compute inexact orbits of A, that is,
sequences {xi}∞i=0 such that

x0 ∈ X and ρ(xi+1, Axi) ≤ δ for any i ≥ 0,

where δ is a sufficiently small positive number.
However, sometimes the operator A is not given explicitly and only some

approximation of it, Bi, is available at each step i of the inexact orbit
computing procedure. The next result shows that for certain operators A,
the procedure of approximating xA by inexact orbits is stable in the sense
that, even in this case, the orbits determined by the sequence of operators Bi
approach xA provided that each Bi is a sufficiently accurate approximation
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of A in the topology of uniform convergence on bounded subsets of X. To
be precise, we set, for each x ∈ X and E ⊂ X,

ρ(x,E) = inf{ρ(x, y) : y ∈ E}.
Denote byA the set of all self-mappings A : X → X which have properties

(A3) and (A4). Fix θ ∈ X. For each natural number n, set

En = {(A,B) ∈ A × A : ρ(Ax,Bx) ≤ 1/n for all x ∈ B(θ, n)}. (1.1)

We equip the set A with the uniformity determined by the base En, n =
1, 2, . . . . This uniformity is metrizable by a complete metric.

Denote by Areg the set of all mappings A ∈ A which satisfy (A1) and
(A2), and by Āreg the closure of Areg in A.

Theorem 1.3. Assume that A ∈ Areg and xA is the fixed point of A. Let
m, ε > 0. Then there exist a neighborhood U of A in A and a natural number
N such that for each x ∈ B(θ,m), each integer n ≥ N , and each sequence
{Bi}ni=1 ⊂ U ,

ρ(Bi . . . B1x, xA) ≤ ε for i = N, . . . , n.

As a matter of fact, it turns out that the stability property established
in this theorem is generic. That is, it holds for most (in the sense of Baire
category) operators in the closure of Areg.

Theorem 1.4. The set Areg contains an everywhere dense Gδ subset of
Āreg.

The proofs of Theorems 1.1, 1.2, 1.3 and 1.4 are given in Sections 2, 3, 4
and 5, respectively.

2. Proofs of Theorem 1.1 and Corollary 1.1

We first prove Theorem 1.1. To this end, set, for x ∈ X and r > 0,

B(x, r) = {y ∈ X : ρ(x, y) ≤ r}.
We may assume without loss of generality that

ε ≤ 1 and B(xA, 4) ⊂ K. (2.1)

By (A2), there exists a natural number N ≥ 4 such that

ρ(Anx, xA) ≤ ε/4 for all integers n ≥ N and all x ∈ K. (2.2)

By (A4), the set Am(K) is bounded for all natural numbers m. Hence there
exists a positive number S > 0 such that

Ai(K) ⊂ B(xA, S), i = 0, . . . , 2N. (2.3)
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(Here we use the convention that A0 is the identity operator.) By induction
and (A3), we define a finite sequence of positive numbers {γi}2Ni=0 so that

γ2N = ε/4

and, for each i = 0, 1, . . . , 2N − 1,

γi ≤ γi+1 (2.4)

and

ρ(Ax,Ay) ≤ 2−1γi+1 for all x, y ∈ B(xA, S + 4) with ρ(x, y) ≤ γi. (2.5)

Set

δ = γ0/2. (2.6)

Next, we prove the following auxiliary result.

Lemma 2.1. Suppose that {zi}2Ni=0 ⊂ X satisfies

z0 ∈ K and ρ(zi+1, Azi) ≤ δ, i = 0, . . . , 2N − 1. (2.7)

Then
ρ(zi, xA) ≤ ε, i = N, . . . , 2N.

Proof. We will show that for i = 1, . . . , 2N ,

ρ(zi, Aiz0) ≤ γi. (2.8)

Clearly, (2.8) holds for i = 1 by (2.7) and (2.6).
Assume that i ∈ {2, . . . , 2N} and

ρ(zi−1, A
i−1z0) ≤ γi−1. (2.9)

Then (2.7) implies that

ρ(zi, Aiz0) ≤ ρ(zi, Azi−1) + ρ(Azi−1, A(Ai−1z0))

≤ δ + ρ(Azi−1, A(Ai−1z0)). (2.10)

It follows from the definition of γi−1 (see (2.4)), (2.9), (2.7) and (2.3) that

Ai−1z0, zi−1 ∈ B(xA, S + 1).

By these inclusions, the definition of γi−1 (see (2.5) with j = i − 1) and
(2.9),

ρ(A(Ai−1z0), Azi−1) ≤ γi/2.
When combined with (2.10) and (2.6), this inequality implies that

ρ(zi, Aiz0) ≤ δ + γi/2 ≤ γi.
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Therefore (2.8) is valid for all i ∈ {1, . . . , 2N}. Together with (2.2), (2.4),
(2.7) and (2.8), this last inequality implies that for all i ∈ {N, . . . , 2N}, we
have

ρ(zi, xA) ≤ ρ(zi, Aiz0) + ρ(Aiz0, xA) ≤ γi + ε/4 ≤ ε/2.
Lemma 2.1 is proved.

Now we are ready to complete the proof of Theorem 1.1.
To this end, assume that n ≥ N is a natural number and that the sequence

{xi}ni=0 ⊂ X satisfies

x0 ∈ K and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n− 1.

We will show that

ρ(xi, xA) ≤ ε, i = N, . . . , n. (2.11)

If n ≤ 2N , then (2.11) follows from Lemma 2.1. Therefore we may confine
our attention to the case where n > 2N . Again by Lemma 2.1,

ρ(xi, xA) ≤ ε, i = N, . . . , 2N. (2.12)

Assume by way of contradiction that there exists an integer q ∈ (2N,n]
such that

ρ(xq, xA) > ε. (2.13)

In view of (2.12), we may assume without loss of generality that

ρ(xi, xA) ≤ ε, i ∈ {2N, . . . , q − 1}. (2.14)

Define {zi}2Ni=0 ⊂ X by

zi = xi+q−N , i = 0, . . . , N, zi+1 = Azi, i = N, . . . , 2N − 1. (2.15)

We will show that the sequence {zi}2Ni=0 satisfies (2.7). To meet this goal,
we only need to show that z0 ∈ K. By (2.15), (2.14) and (2.12),

z0 = xq−N and ρ(z0, xA) ≤ ε.
The last inequality and (2.1) imply that z0 ∈ K. Therefore (2.7) holds. It
now follows from Lemma 2.1 and (2.15) that

ρ(xA, xq) = ρ(xA, zN ) ≤ ε.
This, however, contradicts (2.13). The contradiction we have reached proves
(2.11) and this completes the proof of Theorem 1.1.

Finally, we are going to prove Corollary 1.1.
Set K = {xn : n = 0, 1, . . . } and let ε > 0 be given. Let δ > 0 and

a natural number N be as guaranteed by Theorem 1.1. There exists a
natural number j such that for each integer i ≥ j, we have ρ(Axi, xi+1) ≤ δ.
It follows from the last inequality and the choice of δ that ρ(xi, xA) ≤ ε for
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all integers i ≥ j +N . Since ε is an arbitrary positive number, this implies
that limi→∞ xi = xA. The proof of Corollary 1.1 is complete.

3. Proof of Theorem 1.2

We may assume without loss of generality that ε ≤ 1. By Theorem 1.1,
there exist a natural number N and δ0 ∈ (0, ε) such that the following
property holds:
(P1) For each natural number n ≥ N and each sequence {yi}ni=0 ⊂ X which

satisfies

y0 ∈ B(xA, 4) and ρ(yi+1, Ayi) ≤ δ0, i = 0, . . . , n− 1, (3.1)

the following inequality is true:

ρ(yi, xA) ≤ ε, i = N, . . . , n. (3.2)

By property (A4), the set Ai(B(xA, 4)) is bounded for any integer i ≥ 1.
Choose a number s > 1 such that

N⋃
i=0

Ai(B(xA, 4)) ⊂ B(xA, s). (3.3)

By induction and (A3), we define a finite sequence of positive numbers
{γi}Ni=0 so that

γi ≤ 1, i = 0, . . . , N, γN ≤ δ0/4, γi ≤ γi+1, i = 0, . . . , N − 1, (3.4)

and for each j ∈ {0, . . . , N − 1},

ρ(Ax,Ay) ≤ 2−1γj+1 for all x, y ∈ B(xA, s + 4) with ρ(x, y) ≤ γj . (3.5)

Set

δ = γ0/4. (3.6)

Assume that {xi}∞i=0 ⊂ X,

ρ(x0, xA) ≤ δ and ρ(xi+1, Axi) ≤ δ, i = 0, 1, . . . . (3.7)

We will show that

ρ(xi, xA) ≤ ε (3.8)

for all integers i ≥ 0. By (3.7), (3.6) and (P1), inequality (3.8) holds for all
integers i ≥ N . Therefore we only need to prove (3.8) for i < N . Clearly,
(3.8) holds for i = 0.

We will show that for i = 0, . . . , N , we have

ρ(xi, xA) = ρ(xi, AixA) ≤ γi. (3.9)
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By (3.7) and (3.6), this is true for i = 0. Assume that i ∈ {1, . . . , N} and

ρ(xi−1, A
i−1xA) = ρ(xi−1, xA) ≤ γi−1. (3.10)

Then (3.7) implies that

ρ(xi, xA) ≤ ρ(xi, Axi−1) + ρ(Axi−1, xA) ≤ δ + ρ(Axi−1, xA). (3.11)

It follows from (3.10) and (3.4) that

xi−1 ∈ B(xA, s). (3.12)

By (3.12), (3.10) and the definition of γi−1 (see (3.5) with j = i− 1),

ρ(Axi−1, xA) ≤ 2−1γi. (3.13)

Using (3.11), (3.13), (3.6) and (3.4), we obtain

ρ(xi, xA) ≤ δ + 2−1γi ≤ γi.
Thus (3.9) indeed holds for all i ∈ {0, . . . , N}. This fact, when combined
with (3.4), implies that (3.8) is true for all i ∈ {0, . . . , N}. This completes
the proof of Theorem 1.2.

4. Proof of Theorem 1.3

We may assume, without loss of generality, that ε < 1 and that m ≥ 1 is
a number such that

m ≥ ρ(xA, θ) + 4. (4.1)

By Theorem 1.1, there exist δ ∈ (0, ε) and a natural number N such that
the following property holds:
(P2) For each natural number n ≥ N and each sequence {xi}ni=0 ⊂ X which

satisfies

x0 ∈ B(θ,m) and ρ(Axi, xi+1) ≤ δ, i = 0, . . . , n− 1, (4.2)

the following inequality holds:

ρ(xi, xA) ≤ ε, i = N, . . . , n. (4.3)

Set

K0 = B(θ,m) and Ki+1 = {z ∈ X : ρ(z,A(Ki)) ≤ 1}, i = 0, 1, . . . . (4.4)

Clearly, the set Ki is bounded for any integer i ≥ 0. Choose a natural
number q ≥ 8 such that

2N⋃
i=0

Ki ⊂ B(θ, q) and 1/q < δ/8. (4.5)

We are going to use the following technical result.
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Lemma 4.1. Assume that

z ∈ B(θ,m) and {Bi}2Ni=1 ⊂ {C ∈ A : (C,A) ∈ Eq}, (4.6)

where Eq is given by (1.1). Then

ρ(Bi . . . B1z, xA) ≤ ε, i = N, . . . , 2N. (4.7)

Proof. Set

z0 = z and zi = Bizi−1, i = 1, . . . , 2N. (4.8)

We will show that

zi ∈ Ki (4.9)

for i = 0, . . . , 2N . Clearly, (4.9) holds for i = 0. Assume that i ∈
{0, . . . , 2N − 1} and (4.9) is valid. Inclusions (4.9) and (4.5) imply that

zi ∈ Ki ⊂ B(θ, q). (4.10)

When combined with (4.6), (1.1) and (4.8), this last inclusion implies that

ρ(Azi, zi+1) = ρ(Azi, Bi+1zi) ≤ 1/q. (4.11)

Consequently, (4.11), (4.10) and (4.4) imply that zi+1 ∈ Ki+1. Therefore
(4.9) is true for all i = 0, . . . , 2N . This implies (see (4.5)) that

{zi}2Ni=0 ⊂ B(θ, q).

It follows from this inclusion, (4.5), (4.6) and (4.8) that for i = 0, . . . , 2N−1,

ρ(zi+1, Azi) = ρ(Bi+1zi, Azi) ≤ 1/q < δ.

By (P2), we see that

ρ(Bi . . . B1z, xA) = ρ(zi, xA) ≤ ε, i = N, . . . , 2N.

Lemma 4.1 is proved.

Now we are ready to complete the proof of Theorem 1.3. To this end, set

U = {C ∈ A : (C,A) ∈ Eq}. (4.12)

Let n ≥ N be an integer, x ∈ B(θ,m), and {Bi}ni=1 ⊂ U . We will show that

ρ(Bi . . . B1x, xA) ≤ ε for i = N, . . . , n. (4.13)

If n ≤ 2N , then (4.13) follows from Lemma 4.1. Therefore we may restrict
our attention to the case n > 2N . By Lemma 4.1,

ρ(Bi . . . B1x, xA) ≤ ε, i = N, . . . , 2N. (4.14)

Suppose now that there exists an integer p > 2N , p ≤ n, such that

ρ(Bp . . . B1x, xA) > ε. (4.15)



CONVERGENCE OF INEXACT ORBITS 9

According to (4.14), we may assume, without loss of generality, that

ρ(Bi . . . B1x, xA) ≤ ε, i = 2N, . . . , p− 1. (4.16)

Define {Di}2Ni=0 ⊂ A by

Di = Bi+p−N , i = 0, . . . , N, Di = A, i = N + 1, . . . , 2N, (4.17)

and let
z = Bp−N . . . B1x.

It follows from (4.14), (4.16), (4.17) and (4.1) that

ρ(z, xA) ≤ ε and z ∈ B(θ,m).

Applying now Lemma 4.1 to the mappings {Di}2Ni=0 defined by (4.17), we
deduce that

ε ≥ ρ(DN . . . D1z, xA) = ρ(xA, Bp . . . Bp−N+1z) = ρ(xA, Bp . . . B1x),

which contradicts (4.15). Hence (4.13) is true and Theorem 1.3 is estab-
lished.

5. Proof of Theorem 1.4

Let A ∈ Areg and let k ≥ 1 be an integer. There is xA ∈ K such that

AxA = xA. (5.1)

According to Theorem 1.3, there exist a natural number N(A, k) and an
open neighborhood U(A, k) of A in A such that the following property
holds:
(P3) For each x ∈ B(θ, k), each natural number n ≥ N(A, k) and each

B ∈ U(A, k), we have ρ(Bn, xA) ≤ 1/k.
Define

F = [
∞⋂
q=1

⋃
{U(A, k) : A ∈ Areg, an integer k ≥ q}] ∩ Āreg. (5.2)

Clearly, F is an everywhere dense Gδ subset of Āreg.
Let B ∈ F . We claim that B ∈ Areg. Indeed, let q be a natural number.

There exists a mappping Aq ∈ Areg with a fixed point xAq and a natural
number kq ≥ q such that

B ∈ U(Aq, kq). (5.3)

This inclusion together with (P3) imply that the following property holds:
(P4) For each x ∈ B(θ, q) ⊂ B(θ, kq) and each natural number n ≥

N(Aq, kq),
ρ(Bnx, xAq) ≤ k−1

q ≤ 1/q.
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Since q is an arbitrary natural number, we obtain that for any x ∈ X, the
sequence {Bnx}∞n=1 is a Cauchy sequence and its limit is the unique fixed
point xB of B. Thus

lim
n→∞

Bnz = xB for any z ∈ X.

Property (P4) implies that

ρ(xAq , xB) ≤ 1/q. (5.4)

Finally, it follows from property (P4) and (5.4) that for any x ∈ B(θ, q) and
any n ≥ N(Aq, kq),

ρ(Bnx, xB) ≤ 2/q.
This implies that Bnx → xB as n→∞, uniformly on any bounded subset
of X. This completes the proof of Theorem 1.4.

Note added in proof.
(1) Corollary 1.1 provides a partial answer to an open question raised in

[6] in the wake of Theorem 1 of [5], which is also concerned with the
stability of iterations.

(2) Inexact orbits of nonexpansive mappings have recently been studied
in [3]. We take this opportunity to correct a misprint in that paper:
on page 28, lines 10, 11 and 17, xk+1 should be replaced with xk+i.
The inequality on line 17 holds then for all i ≥ i0.
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