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Abstract. We introduce the notion of a random partition of the sto-
chastic interval [τ0, τ∞] as an analogy to the classical case and charac-
terize the predictable processes associated with such partitions. Also we
identify the operator algebras connected with the stochastic integrals of
predictable processes and examine their mutual relations.

0. Introduction

A noncommutative stochastic integration for adapted processes with re-
spect to a bounded L2-martingale was studied in greater detail in [10] with
the idea of viewing the stochastic integral, with fixed integrand and varying
integrator, as a bounded linear operator on the Hilbert space of integra-
tors. In connection with these operators various operator algebras arise in
a natural way. Our aim in this paper is to introduce the notion of a random
partition of the stochastic interval [τ0, τ∞] (where τ0 and τ∞ are the small-
est and the largest random times, respectively) and use these partitions to
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identify the operator algebras connected with the stochastic integrals of pre-
dictable processes and to examine their mutual relations. The contents of
the paper is as follows. In Section 1 we introduce the basic terminology and
describe the setup we shall be working in. Section 2 contains a brief review
of the notions of predictable processes, random time and the associated time
projection. Section 3 contains a brief review of the stochastic integration of
adapted processes with respect to a bounded L2-martingale, the classes of
integrable processes and the operator algebras connected with the stochastic
integrals of these classes. In Section 4 we define a random partition of the
stochastic interval [τ0, τ∞] and characterize predictable processes associated
with these random partitions (see Theorem 4.2 and Theorem 4.5). Section 5
is devoted to various aspects of random partitions and the related operator
algebras. In particular, the operator algebras connected with the stochastic
integrals of predictable processes are identified and their mutual relations
are examined (see Lemma 5.4, Theorem 5.6 and Proposition 5.8). Finally,
in Section 6 we show the operator algebra connected with the stochastic in-
tegrals of predictable processes associated with certain random partition is
an image of a ∗-preserving strongly continuous positive linear map defined
on the product von Neumann algebra of the filtration under consideration
(see Lemma 6.4).

1. Mathematical preliminaries

A noncommutative stochastic base which we shall be working in consists
of the following elements: a von Neumann algebra A acting on a Hilbert
spaceH, a normal faithful tracial state ϕ on A, a filtration (At), t ∈ [0,+∞],
which is an increasing (s ≤ t implies As ⊂ At) family of von Neumann
subalgebras of A such that A = A∞ =

(⋃
t>0At

)′′ and As =
⋂
t>sAt

(right-continuity). Then for each t ≥ 0 there exists a normal conditional
expectation Mt from A onto At such that ϕ ◦Mt = ϕ.

For each t ∈ [0,+∞] we write L2(At) for the noncommutative Lebesgue
space associated with At and ϕ. The theory of these spaces is described
e.g. in [11], for our purpose we recall only that L2(A) (accordingly L2(At))
consists of densely defined operators on H, affiliated to A, and that L2(A)
is the completion of A with respect to the norm

‖X‖2 =
[
ϕ(|X|2)

]1/2
;

moreover, for a ∈ A and X ∈ L2(A), the operators aX and Xa belong to
L2(A). For each t the conditional expectationMt extends to the projection
from L2(A) onto L2(At).
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By an A-valued (respectively L2-valued) process we mean a map from
[0,+∞] into A (respectively L2(A)). A-valued processes will be usually
denoted by f, g or (ft) , (gt) while the L2-processes we shall use the symbols
(Xt) , (Yt). An A-valued (respectively L2-valued) process f (respectively X)
is called adapted if ft ∈ At (respectively Xt ∈ L2(At)).

Let f = (ft) be an arbitrary A-valued adapted process. By f∗ we denote
the adjoint process given by (f∗t ). Recall that ϕ is a trace and L2(A) is a
Hilbert space with inner product given by

〈X,Y 〉 = ϕ (Y ∗X) , for X,Y ∈ L2(A).

The conditional expectation Mt enjoys the property (Mtft)
∗ = Mt (f∗t )

∀t ∈ [0,+∞].
An L2-process (Xt : t ∈ [0,+∞)) is called a martingale if for each s, t ∈

[0,+∞), s ≤ t we haveMs (Xt) = Xs. An L2-martingale (Xt : t ∈ [0,+∞))
is bounded if ‖Xt‖ ≤ c for all t ≥ 0. An elementary Hilbert space type rea-
soning shows that boundedness is equivalent to the existence of an element
X∞ ∈ L2(A) such that Xt =Mt (X∞), t ≥ 0 (cf. e.g. [3, Proposition 1.1]).
Now we can extend (Xt) to the interval [0,+∞] and (Xt : t ∈ [0,+∞]) is
clearly a martingale. This means that while speaking about bounded mar-
tingales it is inessential whether we consider them for t ∈ [0,+∞] or in
[0,+∞).

By a slight abuse of notation we shall drop the subscript “∞” and write
simply Xt =Mt (X). Let us adopt the following notational convention. For
each X ∈ L2(A) we denote by (Xt) the martingale given by

Xt =Mt (X) , t ∈ [0,+∞] .

Let us notice that according to [8] any L2-martingale adapted to a right
continuous filtration of algebras is right L2-continuous, so Mt −→ Ms as
t↘ s.

2. Random times, time projections and predictable processes

Firstly, we recall the definition of a random time and the associated time
projection. The motivation for these definitions and all the details can be
found in [4], [5], [7], [8].

Definition 2.1. A random time, τ , is an increasing family of projections
(Et), t ∈ [0,+∞] with Et ∈ At and E0 = 0, E+∞ = 1.

Each deterministic time, t ∈ [0,+∞), is identified with a random time
t̃ = (Es) defined by

Es =

{
0, s ≤ t
1, s > t.
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When t = +∞, it is identified with a random time ∞̃ = (Ft) defined by

Fs =

{
0, s < +∞
1, s = +∞.

Definition 2.2.

1. For two random times τ = (Et) and σ = (Ft) we say that τ ≤ σ if
Ft ≤ Et, ∀t ∈ [0,+∞]. We define τ ∧ σ and τ ∨ σ to be the random
times τ ∧ σ = (Et ∨ Ft) and τ ∨ σ = (Et ∧ Ft).

2. For Θ the set of all finite partitions of [0,+∞] and θ ={0 = t0 < t1 <
. . . < tn = +∞}∈ Θ, we define an operator Mτ(θ) on L2 (A) by the
formula

Mτ(θ) (X) =
n∑
i=1

Mti (X)
(
Eti − Eti−1

)
, X ∈ L2 (A) .

Mτ(θ) has the following properties (see [5, Theorem 2.3]):
1. Mτ(θ) is an orthogonal projection;
2. For θ, η ∈ Θ with η finer than θ,Mτ(η) ≤Mτ(θ) ;
3. If σ is another random time with τ ≤ σ thenMτ(θ) ≤Mσ(θ), ∀θ ∈ Θ.
In view of these properties and the fact that Θ is a directed set ordered

by inclusion we note that {Mτ(θ) : θ ∈ Θ} becomes a decreasing net of
orthogonal projections. Hence there exists a unique orthogonal projection

Mτ = lim
θ
Mτ(θ) =

∧
θ∈Θ

Mτ(θ)

in the strong operator topology as θ refines. We shall call Mτ the time
projection for the random time τ ([5, Definition 2.4]). As an immediate
corollary of [7], we have the Optional Stopping Theorem which states that
for random times τ , σ with τ ≤ σ, we have Mτ ≤Mσ.

It is a simple matter to verify that the time projection associated with a
random time t̃ agrees with Mt, the conditional expectation. Consequently,
Me0 =M0 is the smallest time projection whileMc∞ = 1 is the largest time
projection.

Let us recall the following definition from [8], [10].

Definition 2.3.

1. Let σ = (Ft) and τ = (Et) be random times with σ ≤ τ . The stochastic
interval (σ, τ ] is a process defined as

(σ, τ ](t) = Ft −Et, t ∈ [0,+∞].
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2. For a projection P in A0 we define “an interval” [0P ] as

[0P ](t) =

{
P for t = 0
0 otherwise.

3. Let λi for i = 0, 1, . . . , n, be complex numbers, P a projection in A0,
and σ1, . . . , σn, τ1, . . . , τn random times with σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤
. . . ≤ σn ≤ τn. Any process f of the form

f = λ0[0P ] +
n∑
i=1

λi(σi, τi]

is called an elementary predictable process. The class of all elementary
predictable processes is denoted by E .

4. A process which is a finite linear combination of finite products of
elementary predictable processes is called a simple predictable process.
The class of all simple predictable processes is denoted by S.

5. A process f = (ft) is called a bounded predictable process if there is
a sequence, fn = (fnt ), of simple predictable processes, converging in
operator norm pointwise to f and which satisfy

sup
n

sup
t
‖fnt ‖∞ < +∞.

The class of all bounded predictable processes is denoted by P. Note first
of all that every bounded predictable process takes the value 0 at t = +∞.

In [10] an important class of predictable processes has been introduced,
called uniformly predictable and defined as follows:

Definition 2.4. A process f is called uniformly predictable if it is the uni-
form limit of a sequence of simple predictable processes. The class of all
uniformly predictable processes is denoted by U .

Thus f is uniformly predictable if there exists a sequence, fn =
(
f

(n)
t

)
,

of simple predictable processes and

lim
n→∞

sup
t
‖f (n)
t − ft‖∞ = 0.

3. Stochastic integration for adapted processes

We recall the definition and some properties of stochastic integration with
respect to a bounded L2-martingale processes. We also recall the definitions
of various classes of integrable processes and the operator algebras connected
with stochastic integrals of these classes. For details and proofs the reader
is referred to [10].
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Let f be an A-valued process and (Xt) an L2(A)-valued process. For a
partition θ = {0 = t0 < t1 < . . . < tm = +∞} of [0,+∞] we form integral
sums

Slθ (f,X) =
m∑
i=1

(
Xti −Xti−1

)
fti−1 ,

Srθ (f,X) =
m∑
i=1

fti−1

(
Xti −Xti−1

)
,

call the left and the right sum, respectively. Both the sums are elements of
L2(A), and if there exist L2-limits of these sums as θ refines, they are called
the left and right integral of f with respect to (Xt), respectively, and are
denoted by

lim
θ
Slθ (f,X) =

∫
dXtft

lim
θ
Srθ (f,X) =

∫
ftdXt.

The various classes of integrable processes are introduced by the following
definition.

Definition 3.1. Let f be an A-valued uniformly bounded adapted process.
1. f is called completly left integrable if

∫
dXtft exists for each X ∈

L2(A). The class of all completely left integrable process is denoted
by L.

2. f is called completly right integrable if
∫
ftdXt exists for each X ∈

L2(A). The class of all completely right integrable process is denoted
by R.

3. f is called completly integrable if it is completely left and right inte-
grable. The class of all completely integrable processes is denoted by
I. Thus

I = L ∩R.

As for this theory of integration, it turns out that the class U of uni-
formly predictable processes is fundamental; i.e. the uniformly predictable
processes are completely left and right integrable processes, see Proposition
2.1.3 and Corollary 2.1.8 of [10]. Consequently, E ⊂ S ⊂ U ⊂ I.

For an A-valued uniformly bounded process f put

‖f‖ = sup
t
‖ft‖∞ .

For each f ∈ L, Lf is a bounded linear operator on L2(A) defined by

Lf (X) =
∫
dXtft, X ∈ L2(A),
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and ‖Lf‖ ≤ ‖f‖. Similarly, for each f ∈ R, Rf is a bounded linear operator
defined by

Rf (X) =
∫
ftdXt, X ∈ L2(A),

and ‖Rf‖ ≤ ‖f‖.

Theorem 3.2 ([10, Theorem 2.1.5]).
1. L with norm ‖·‖ is a Banach algebra, and the map L 3 f −→ Lf is

an antirepresentation (Lfg = LgLf ) of L in B
(
L2(A)

)
.

2. R with norm ‖·‖ is a Banach algebra, and the map R 3 f −→ Rf is
a representation of R in B

(
L2(A)

)
.

3. I with norm ‖·‖ is a C∗-algebra. The map I 3 f −→ Rf is a ∗-
representation and the map I 3 f −→ Lf is a ∗-antirepresentation of
I in B

(
L2(A)

)
.

In what follows we formulate our definition and result in the “left” ver-
sions, their “right” counterparts are formulated in an obvious manner and
have virtually the same proofs as the left ones. In connection with these
operators various operator algebras arise in a natural way. Let us recall the
following definition from [10].

Definition 3.3.
1. By Il (A) we denote the von Neumann algebra on L2(A) generated by

all operators Lf , where f is a completely integrable process, i.e.

Il (A) = {Lf : f — a completly integrable process}′′.
2. By L (A) we denote the von Neumann algebra on L2(A) generated by

all operators Lf , where f is a completely left integrable process, i.e.

L (A) = W ∗({Lf : f — a completly left integrable process}).

Now, take the constant process equal to 1 — the identity of the algebra L
we immediately get L1 =M⊥0 , which means that the algebra {Lf : f ∈ L}
acts nondegenerately on the subspaceM⊥0 (L2(A)) of L2(A) (and is zero on
M0(L2(A))). If we wanted to explicitly take this fact into account we could
consider e.g. the algebra

W ∗({λ0M0 + Lf : f ∈ L, λ0 ∈ C}).
The above mentioned “deficiency” of the operators Lf is probably the reason
for their slightly different definition in [8] (see [8, Definition 5.3]) namely
they are defined as

L̃f = Lf +M0 (·) f0.

In [10] it was shown that there is an interesting and naturally looking
setup to which the above described operators L̃f fit well. Indeed, by can
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use the generalization of a random time which is called quantum stopping
time, by which we mean a non-decreasing family of projections τ ′ = (E′t)
such that E′t ∈ At for each t ∈ [0,+∞) and E′∞ = 1 (cf. [3, Definition
1.1]). In this work we shall consider the definition L̃f above and restrict our
attention to the various classes of predictable processes. Let us consider the
following definition which is adopted from [10] and [8].

Definition 3.4.

1. By ]E(A) we denote the von Neumann algebra on L2(A) generated by
all the operators L̃f , where f is an elementary predictable process, i.e.

]E(A) = {L̃f : f — an elementary predictable process}′′.

2. By ]U(A) we denote the von Neumann algebra on L2(A) generated by
all the operators L̃f , where f is a uniformly predictable process, i.e.

]U(A) = {L̃f : f — a uniformly predictable process}′′.

3. By Ŝ(A) we denote the von Neumann algebra on L2(A) generated by
all the operators L̃f , where f is a simple predictable process, i.e.

Ŝ(A) = {L̃f : f — a simple predictable process}′′.

It was shown in [10, Theorem 2.2.6] that the following equalities hold
true

]E(A) = ]U(A) = Ŝ(A) = L̂ (A) = Îl (A).

Now, if f is an arbitrary elementary predictable process of the form

f = λ0[0P ] +
n∑
i=1

λi(σi, τi],

then by linearity

L̃f = λ0M0P + λ0L[0P ] +
n∑
i=1

λiL(σi,τi]

= λ0M0P +
n∑
i=1

λi (Mτi−Mσi) ,

because Lτi = M⊥τi , L(σi,τi] = Mτi−Mσi and L[0P ] = 0 by virtue of the
assumed right continuity of the filtration. For more details see the proof of
Theorem 2.2.5 of [10].
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4. Random partition of the stochastic interval [τ0, τ∞]

The aim of this section is to introduce the notion of random partition
of stochastic interval [τ0, τ∞] by analogy with the classical case. We shall
also characterize the predictable processes associated with these random
partitions.

The random time τ0 is the time 0̃ which is the smallest random time while
τ∞ is the time ∞̃ which is the greatest random time. Recall that the time
projection associated with τ0 is the projection M0 and the time projection
associated with τ∞ is the projection 1.

Definition 4.1. Let σ denote a finite sequence of random times:

τ0 ≤ τ1 ≤ · · · ≤ τn−1 ≤ τ∞.

The sequence σ is called a random partition of the stochastic interval
[τ0, τ∞]. The family of all random partitions of [τ0, τ∞] is denoted by
P [τ0, τ∞]. Using the identification between the deterministic times and the
random times, we obtain that each partition θ ∈ Θ is a random partition,
so Θ ⊂ P [τ0, τ∞].

Let σ = {τ0, τ1, ..., τn−1, τ∞ } be a random partition, we shall call f which
has the form

f = λ0[0P ] +
n∑
i=1

λi(τi−1, τi],

where λi ∈ C, for 0 ≤ i ≤ n and P is a projection in A0, the elementary
predictable process associated with the random partition σ. To avoid re-
peating the phrase “f is an elementary predictable process associated with
random partition σ” we shall say that f is a σ-elementary predictable pro-
cess. Similarly σ-simple (σ-uniformly, σ-bounded) predictable processes are
defined in the entirely analogous way to the simple (resp. uniform, bounded)
predictable processes.

Let us start with the following result on σ-simple predictable processes.

Theorem 4.2. Let σ = {τ0, τ1, . . . , τn−1, τ∞} ∈ P [τ0, τ∞]. Then a process
f is σ-simple predictable process if and only if it has the form

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi],

where αi ∈ C, for 1 ≤ i ≤ n and f0 is a finite linear combination of finite
products of projections in A0.
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Proof. Suppose that f is a σ-simple predictable process. Then f is a finite
linear combination of finite products of σ-elementary predictable processes
of the form

λ0[0P ] +
n∑
i=1

λi(τi−1, τi].

By the mutual orthogonality of the projections {τi−1 (t)− τi (t)}ni=1 for t ∈
[0,+∞], we observe that f0 is a finite linear combination of finite products
of projections in A0 and ft =

∑n
i=1 αi [τi−1 (t)− τi (t)] for some αi ∈ C,

1 ≤ i ≤ n. This shows that the process f has the form

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi].

For the converse, let P and Q be two projections in A0 such that f0 = PQ.
Then there exist λi, λ′i ∈ C such that αi = λiλ

′
i, for 1 ≤ i ≤ n. Put

h = [0P ] +
n∑
i=1

λi(τi−1, τi],

h′ = [0Q] +
n∑
i=1

λ′i(τi−1, τi].

They are σ-elementary predictable processes. Once again by the mutual
orthogonality of the projections {τi−1 (t) − τi (t)}ni=1 for t ∈ [0,+∞], we
observe that f = hh′. Using this fact, we see that the result is true for
any finite linear combinations of finite products of projections in A0. This
means that f is a finite linear combination of finite products of σ-elementary
predictable processes. So f is a σ-simple predictable process.

Proposition 4.3. Let σ = {τ0, τ1, . . . , τn−1, τ∞} ∈ P [τ0, τ∞] and let f be
a σ-simple predictable process.Then

L̃f =M0f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
,

for αi ∈ C, 1 ≤ i ≤ n. Furthermore, L̃f is a finite linear combination
of finite products of operators associated with σ-elementray predictable pro-
cesses.

Proof. From Theorem 4.2 f has the form

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi],
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where αi ∈ C, 1 ≤ i ≤ n, and f0 is a finite linear combination of finite
products of projections in A0. Then

L̃f =M0f0 + Lf0χ{0} +
n∑
i=1

αi
(
Mτi −Mτi−1

)
.

To get the result let us calculate Lf0χ{0} (X) =
∫
dXtf0χ{0} (t), for X ∈

L2(A). For a partition θ of [0,+∞] we have

Slθ
(
f0χ{0}, X

)
=

m∑
i=1

(
Mti −Mti−1

)
(X) f0χ{0} (ti−1) = (Mt1 −M0) (X) f0.

As θ refines, this expression tends to (M0+ −M0) (X) f0 which is zero by
virtue of the assumed right continuity of the filtration. So

Lf0χ{0} (X) =
∫
dXtf0χ{0} (t) = 0, for each X ∈ L2(A).

This shows that

L̃f =M0f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
.

Now, let f0 = PQ for some projections P and Q in A0. As in the
proof of Theorem 4.2, let us consider the following σ-elementary predictable
processes

h = [0P ] +
n∑
i=1

λi(τi−1, τi],

h′ = [0Q] +
n∑
i=1

λ′i(τi−1, τi],

which satisfy f = hh′. Then

L̃h′L̃h (·) =M0

(
L̃h (·)

)
Q+

n∑
i=1

λ′i
(
Mτi −Mτi−1

) (
L̃h (·)

)
=M0 (·)PQ+

n∑
i=1

λ′iλi
(
Mτi −Mτi−1

)
(·)

=M0 (·) f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
(·) = L̃f (·) ,

because of the mutual orthogonality of the projections
(
Mτi −Mτi−1

)n
i=1.

Using this fact, we see that the result is true for any finite linear combi-
nations of finite products of projections in A0. This showing that L̃f is
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a finite linear combination of finite products of operators associated with
σ-elementary predictable processes.

Corollary 4.4. Let σ = {τ0, τ1, . . . , τn−1, τ∞} ∈ P [τ0, τ∞]. Then, a pro-
cess f is a σ-simple predictable process if and only if

L̃f =M0f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
,

for some αi ∈ C, 1 ≤ i ≤ n and f0 is a finite linear combination of finite
products of projections in A0.

Proof. Let f0 be a finite linear combination of finite products of projections
in A0. We define f by

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi],

where αi ∈ C, 1 ≤ i ≤ n and the result follows from Theorem 4.2.

About the σ-uniformly predictable processes we have the following.

Theorem 4.5. Let σ = {τ0, τ1, ..., τn−1, τ∞} ∈ P [τ0, τ∞]. Then, a process
f is σ-uniformly predictable process if and only if it has the form

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi],

where αi ∈ C, 1 ≤ i ≤ n, and f0 ∈ A0.

Proof. Suppose that f is given in above form to show that f is σ-uniformly
predictable processes. In case f0 = P , where P is a projection in A0, then
f is σ-elementary predictable process and hence is σ-uniformly predictable
process. If f0 is a finite linear combination of projections, the process f may
be written as a finite linear combination of σ-elementary predictable pro-
cess, i.e f is σ-simple predictable process and hence σ-uniformly predictable
process. Now the operator f0 may be written as a linear combination of four
positive operators from A0. In turn, each of these can be written as a norm
limit of finite linear combinations of its spectral projections. It follows when
f0 is positive operator that f may be uniformly approximated in the oper-
ator norm by a sequence of σ-simple predictable processes. This means by
definition that f is σ-uniformly predictable process. The result extends to
the case of f0 not positive by linearity.
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For the converse, we assume that f is σ-uniformly predictable process.
Then f = limm→+∞ f

m, where fm are σ-simple predictable processes, and
the limit is uniform. From Theorem 4.2, fm has the form

fm = fm0 χ{0} +
n∑
i=1

αmi (τi−1, τi],

where (αmi ) in C and (fm0 ) is a sequence of finite linear combinations of
finite products of projections in A0. Thus the sequence (fm0 ) converges
in operator norm to f0 and the sequence {

∑n
i=1 α

m
i [τi−1 (t)− τi (t)]} con-

verges in operator norm to ft for t ∈ (0,+∞]. This implies that for
i = 1, 2, . . . , n the sequence {αmi [τi−1 (t)− τi (t)]} converges in operator
norm to ft [τi−1 (t)− τi (t)] for t ∈ (0,+∞] (by virtue of the mutual orthog-
onality of the projections [τi−1 (t)− τi (t)]). But {αmi [τi−1 (t)− τi (t)]} is a
sequence in the C∗-algebra C [τi−1 (t)− τi (t)], there exists λi ∈ C such that

ft [τi−1 (t)− τi (t)] = λi [τi−1 (t)− τi (t)] ,

and

ft =
n∑
i=1

ft [τi−1 (t)− τi (t)] =
n∑
i=1

λi [τi−1 (t)− τi (t)] .

Furthermore, by the mutual orthogonality of the projections
[τi−1 (t)− τi (t)] we observe that this decomposition is unique in the
sense

ft =
n∑
i=1

λi [τi−1 (t)− τi (t)] =
n∑
i=1

λ′i [τi−1 (t)− τi (t)] =⇒ λi = λ′i.

This shows that the process f has the form

f = f0χ{0} +
n∑
i=1

λi(τi−1, τi].

The result follows.

Note that Theorem 4.5 is still true when replacing the σ-uniformly pre-
dictable process by σ-bounded predictable process and the proof is essen-
tially the same (using the pointwise convergence in operator norm and the
fact that the uniform convergence implies the pointwise). This means that
for a fixed random partition σ, the σ-uniformly predictable processes and
the σ-bounded predictable processes coincide. So we have the following:

Corollary 4.6. Let σ = {τ0, τ1, ..., τn−1, τ∞} ∈ P [τ0, τ∞]. Then a process f
is σ-uniformly predictable if and only if it is a σ-bounded predictable process.
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Proposition 4.7. Let σ = {τ0, τ1, ..., τn−1, τ∞} ∈ P [τ0, τ∞] and let f be
σ-unifomly predictable. Then

L̃f =M0f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
.

Furthermore L̃f is a strong limit of a sequence of operators associated with
σ-simple predictable processes.

Proof. From Theorem 4.5, f has the form

f = f0χ{0} +
n∑
i=1

αi(τi−1, τi],

where αi ∈ C, 1 ≤ i ≤ n, and f0 ∈ A0. Then

L̃f =M0f0 +
n∑
i=1

αi
(
Mτi −Mτi−1

)
,

since Lf0χ{0} = 0 (by the same manner of the proof of Proposition 4.3).
Moving on to the second part we see immediately that f is a uniform limit
of a sequence (fm) of σ-simple predictable processes which having the form
(Theorem 4.2)

fm = fm0 χ{0} +
n∑
i=1

αmi (τi−1, τi],

where (αmi ) in C and (fm0 ) is a sequence of finite linear combinations of finite
products of projections in A0. From Proposition 4.3, L̃fm has the form

L̃fm =M0f
m
0 +

n∑
i=1

αmi
(
Mτi −Mτi−1

)
.

Note that, since f is a uniform limit of the sequence (fm) we obtain
that the sequence (fm0 ) converges in operator norm to f0 and for 1 ≤
i ≤ n the sequence {αmi [τi−1 (t)− τi (t)]} converges in operator norm
to αi [τi−1 (t)− τi (t)], for t ∈ (0,+∞]. This implies that the sequence
(M0 (·) fm0 ) converges strongly to (M0 (·) f0) on L2(A) and the sequence
(αmi ) converges to αi, for 1 ≤ i ≤ n. This shows that

n∑
i=1

αmi
(
Mτi −Mτi−1

)
−→m

n∑
i=1

αi
(
Mτi −Mτi−1

)
,

in the strong operator to topology on B(L2(A)) and hence

M0f
m
0 +

n∑
i=1

αmi
(
Mτi −Mτi−1

)
−→mM0f0 +

n∑
i=1

αi
(
Mτi −Mτi−1

)
,
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in the strong operator topology, i.e L̃fm −→m L̃f strongly, as required.

Corollary 4.8. Let σ = {τ0, τ1, . . . , τn−1, τ∞} ∈ P [τ0, τ∞] and f is a σ-
unifomly predictable process. Then L̃f is a strong limit of a sequence of
finite linear combinations of finite products of operators associated with σ-
elementary predictable processes.

This follows immediately from Proposition 4.7 and Proposition 4.3.

5. Random partitions and related algebras

In this section we shall use random partitions to examine mutual relations
between operator algebras connected with stochastic integrals of predictable
processes. Also we shall identify the algebras connected with the stochastic
integrals of σ-predictable processes. Let us start with the following defini-
tion.

Definition 5.1. Let σ = {τ0, τ1, . . . , τn−1, τ∞} be a fixed random partition.
1. By Eσ we denote the von Neumann algebra on L2(A) generated by all

the operators L̃f where f is a σ-elementary predictable process, i.e.

Eσ = {L̃f : f is a σ-elementary predictable process}′′.
2. By Sσ we denote the von Neumann algebra on L2(A) generated by

all the operators L̃f , where f is a σ-simple predictable process, i.e.

Sσ = {L̃f : f is a σ-simple predictable process}′′.
3. By Uσ we denote the von Neumann algebra on L2(A) generated by all

the operators L̃f , where f is a σ-uniformly predictable process, i.e.

Uσ = {L̃f : f is a σ-uniformly predictable process}′′.

As an immediate consequences we have the following.

Corollary 5.2. For a fixed random partition σ = {τ0, τ1, . . . , τn−1, τ∞},
the following equalities hold true

Eσ = Sσ = Uσ.

Proof. By Definition 5.1 we have

Eσ ⊆ Sσ ⊆ Uσ.
From Proposition 4.3 we have Sσ ⊆ Eσ and from Proposition 4.7 and Corol-
lary 4.8 we have Uσ ⊆ Sσ ⊆ Eσ. So Eσ = Sσ = Uσ.
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Corollary 5.3. The following equalities hold true(⋃
σ

Eσ
)′′

=

(⋃
σ

Sσ

)′′
=

(⋃
σ

Uσ
)′′

.

The following lemma identifies the von Neumann algebra Eσ associated
with the random partition σ.

Lemma 5.4. For each σ = {τ0, τ1, . . . , τn−1, τ∞ } ∈ P [τ0, τ∞], we have

Eσ =M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
Proof. For a fixed random partition σ = {τ0, τ1, . . . , τn−1, τ∞} and a fixed
σ-elementary predictable process f with the form

f = λ0[0P ] +
n∑
i=1

λi(τi−1, τi],

where P is a projection in A0 and λi ∈ C, for 0 ≤ i ≤ n. We have

L̃f = λ0M0P +
n∑
i=1

λi
(
Mτi −Mτi−1

)
,

which belongs to

M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
.

By mutual orthogonality of the projections
(
Mτi −Mτi−1

)n
i=1 the same can

be said of any element of the ∗-algebra generated by the L̃f . Thus

Eσ ⊆M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
.

For the next part we note that each element y of the algebra

M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
,

which has the form

α0M0P +
n∑
i=1

αi
(
Mτi −Mτi−1

)
,

where αi ∈ C, for 0 ≤ i ≤ n, and P is a projection in A0, is an opera-
tor L̃f in Eσ for some σ-elementary predictable process f . If P is a finite
linear combination of projections in A0, then y may be written as a finite
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linear combination of operators associated with σ-elementary predictable
processes and hence y ∈ Eσ. Now the operator P may be written as a lin-
ear combination of four positive operators from A0. In turn, each of these
can be written as a norm limit of finite linear combinations of its spectral
projections. It follows that when P is a positive operator, y may be approx-
imated in the strong operator topology by a sequence of linear combinations
of operators associated with σ-elementary predictable processes, so y ∈ Eσ.
The result extends to the case of P not positive by linearity. This shows
that

Eσ =M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
.

Remark 5.5. The second part of the above proof shows that each element
of Eσ is a strong operator limit of a sequence of linear combinations of
operators associated with σ-elementary predictable processes. This means
that each element of Eσ is a strong operator limit of a sequence of operators
associated with σ-simple predictable processes.

Theorem 5.6. The following equalities hold true

1. Ê(A) = (
⋃
σ Eσ)′′ .

2. Ŝ(A) = (
⋃
σS

σ)′′ .
3. ]U(A) = (

⋃
σ Uσ)′′ .

Proof. 1. It is clear that {Eσ : σ ∈ P [τ0, τ∞] } is a family of von Neu-
mann subalgebras of ]E(A). So (

⋃
σ Eσ)′′ ⊆ ]E(A). Let f be an elementary

predictable process, then there exist a random partition σ ∈ P [τ0, τ∞] such
that f is σ-elementary predictable process and so L̃f ∈ Eσ. This shows
that L̃f ∈ (

⋃
σ Eσ)′′ and hence ]E(A) ⊆ (

⋃
σ Eσ)′′, which proves the equality

Ê(A) = (
⋃
σ Eσ)′′.

2. Let f be a simple predictable process. Then by definition f has the
form f =

∑r
i=1 f

(i)
1 · · · f

(i)
ki

, where f (i)
1 , . . . , f

(i)
ki

are elementary predictable
processes. For each 1 ≤ i ≤ r and 1 ≤ k ≤ ki, there exist a random
partition σik ∈ P [τ0, τ∞] such that f (i)

k is σik-elementary predictable process.
By Theorem 3.2(1), we have that

Lf =
r∑
i=1

L
f

(i)
ki

. . . L
f

(i)
1
.
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Now, we define new σik-elementary predictable processes, say g
(i)
k for 1 ≤

i ≤ r and 1 ≤ k ≤ ki, which differ from f
(i)
k only at point 0, namely so that

g
(i)
k (0) = f

(i)
ki−k+1 (0). Then L

g
(i)
k

= L
f

(i)
k

and

L̃
g

(i)
k

=M0g
(i)
k (0) + L

g
(i)
k

=M0f
(i)
ki−k+1 (0) + L

f
(i)
k

.

Furthermore,
r∑
i=1

L̃
g

(i)
ki

· · · L̃
g

(i)
1

=
r∑
i=1

[
g

(i)
ki

(0)M0 + L
g

(i)
ki

]
· · ·
[
g(i)

1
(0)M0 + L

g
(i)
1

]
=

r∑
i=1

[
g

(i)
ki

(0)M0 + L
f

(i)
ki

]
· · ·
[
g(i)

1
(0)M0 + L

f
(i)
1

]
=

r∑
i=1

g
(i)
ki

(0) · · · g(i)
1

(0)M0 +
r∑
i=1

L
f

(i)
ki

· · ·L
f

(i)
1

=
r∑
i=1

f
(i)
1 (0) · · · f (i)

ki
(0)M0 +

r∑
i=1

L
f

(i)
ki

· · ·L
f

(i)
1

= f0M0 + Lf =M0f0 + Lf = L̃f ,

because any terms involving products ofM0 with L
f

(i)
k

will vanish (for more

details see the proof of [8, Theorem 5.5]). Since clearly L̃
g

(i)
k

∈ (
⋃
σ Eσ)′′ =

(
⋃
σS

σ)′′for 1 ≤ i ≤ r and 1 ≤ k ≤ ki, we obtain that L̃f ∈ (
⋃
σS

σ)′′

and hence Ŝ(A) ⊆ (
⋃
σS

σ)′′. But (
⋃
σS

σ)′′ ⊆ Ŝ(A). We get the equality

Ŝ(A) = (
⋃
σS

σ)′′.

3. Let f be a uniformly predictable process. Then there exists a sequence
(fn) of simple predictable processes converges to f uniformly. Thus Lf =
limn→∞ Lfn strongly (see [10, Proposition 2.1.3]). Note that M0 (·) fn (0)
converges strongly toM0 (·) f0 (since we have the sequence fn (0) converges
to f0 in operator norm). Combining with above we get L̃f = limn→∞ L̃fn
strongly. We know from the part 2 that L̃fn ∈ (

⋃
σS

σ)′′ for each n and
from Corollary 5.3 that (

⋃
σS

σ)′′ = (
⋃
σ Uσ)′′, so L̃fn ∈ (

⋃
σ Uσ)′′ for each

n and hence L̃f ∈ (
⋃
σ Uσ)′′, which proves the inclusion ]U(A) ⊆ (

⋃
σ Uσ)′′.

But we know that (
⋃
σ Uσ)′′ ⊆ ]U(A), as claimed.

Corollary 5.7. The following equalities hold true

]E(A) = Ŝ(A) = ]U(A).
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This follows immediately from Theorem 5.6 and Corollary 5.3.

Proposition 5.8. The following equalities hold true

]E(A) = Ŝ(A) = ]U(A) = {M0A0, Mτ : τ is a random time}′′.

Proof. For each random time τ , the stochastic interval f = (τ, τ∞] is an
elementary predictable process with L̃f =Mτ∞ −Mτ =M⊥τ . ThusM⊥τ ∈
]E(A) and henceMτ ∈]E(A) for each random time τ . From Lemma 5.4, we
have

Eσ =M0A0 ⊕
n⊕
i=1

C (Mτi −Mτi−1

)
,

for each random partition σ = {τ0, τ1, . . . , τn−1, τ∞}. The inclusion Eσ ⊂
]E(A) entails M0A0 ⊂]E(A). Thus

{M0A0, Mτ : τ is a random time}′′ ⊂]E(A).

But for each random partition σ, we have

Eσ ⊆ {M0A0, Mτ : τ is a random time}′′.
By using Theorem 5.6(1) we get that

]E(A) ⊆ {M0A0, Mτ : τ is a random time}′′,
and hence

]E(A) = {M0A0, Mτ : τ is a random time}′′,
as claimed.

We conclude this section by the following result concerning the sequences
in the algebra Eσ. For a fixed random partition σ = {τ0, τ1, . . . , τn−1, τ∞}.
The sequence (bk) in Eσ is a combination of two sequences in B

(
L2 (A)

)
,

i.e.

bk =M0ak +
n∑
i=1

λ
(k)
i

(
Mτi −Mτi−1

)
,

where (ak) is a sequence in A0 and
(
λ

(k)
i

)
is a sequence in C, for 0 ≤ i ≤ n.

The next result gives us an idea of the conditions that make the sequence
in Eσ is Cauchy in the strong operator topology.

Proposition 5.9. The sequence (bk) is strongly Cauchy and (ak) is
a uniformly bounded sequence if and only if the sequences (ak) and(
λ

(k)
i

(
Mτi −Mτi−1

))
, i = 1, 2, . . . , n are strongly Cauchy.
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Proof. We have (bk) is strongly Cauchy. Then the sequence

bk (1) =M0 (1) ak +
n∑
i=1

λ
(k)
i

(
Mτi −Mτi−1

)
(1) = ak,

is Cauchy in L2 (A) . But the sequence ak is uniformly bounded,
it follows from [7, Lemma 1] that ak is strongly Cauchy in A and
hence M0 (·) ak is strongly Cauchy in B

(
L2 (A)

)
. This implies that∑n

i=1 λ
(k)
i

(
Mτi −Mτi−1

)
is strongly Cauchy. By mutual orthogonality of

the projections
(
Mτi −Mτi−1

)n
i=1and the continuity of the multiplication

in the strong operator topology, we obtain that each sequence(
λ

(k)
i

(
Mτi −Mτi−1

))
,

is strongly Cauchy for i = 1, 2, . . . , n. For the converse, we have(
λ

(k)
i

(
Mτi −Mτi−1

))
for i = 1, 2, . . . , n and (ak) are strongly Cauchy.

Then (ak) is uniformly bounded and the sequences (M0ak) is strongly
Cauchy. This gives that the sequence

M0ak +
n∑
i=1

λ
(k)
i

(
Mτi −Mτi−1

)
,

is strongly Cauchy.

In other words, according to Theorem 4.5 the above proposition can be
formulated in the following form:

Corollary 5.10. Let σ = {τ0, τ1, . . . , τn−1, τ∞} ∈ P [τ0, τ∞] and let (fk) be
a sequence of σ-uniformly predictable processes. Then the sequence (L̃fk) is
strongly Cauchy and

(
fk0
)

is uniformly bounded if and only if the sequences(
fk0
)

and (L̃fk −M0f
k
0 ) are strongly Cauchy.

6. Random partitions and simplification

In this section, we look at the correspondence between simple A-valued
adapted processes and σ-uniformly predictable processes. Also we show that
the von Neumann algebra Uσ is an image of ∗-preserving strongly continuous
positive linear map defined on the product von Neumann algebra of the
filtration (At), t ∈ [0,+∞].

Let us define the von Neumann algebra

Ã =
∏

t∈[0,+∞]

At,
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the product von Neumann algebra for the algebras (At), t ∈ [0,+∞] (see [9,
Part1, Chapter 2, Section 2]). We can consequently view A-valued adapted
processes as elements of Ã, and a random time is a projection in Ã.

We recall some facts about the simplification of A-valued processes.
Firstly, note that a simple A-valued process f has the form

f =
n∑
i=1

zti−1χ[ti−1,ti) + ztnχ{+∞},

where zt0 , . . . , ztn ∈ A and 0 = t0 < t1 < · · · < tn = +∞. f is adapted if
zti ∈ Ati .

Definition 6.1. For a partition θ = {0 = t0 < t1 < . . . < tn = +∞} and
an arbitrary A-valued process f let us define the “simplification” fθ of f by

fθ =
n∑
i=1

fti−1χ[ti−1,ti) + f+∞χ{+∞}.

The class of all adapted A-valued processes simplified by θ is denoted by
Ãθ, i.e.

Ãθ = {fθ : f ∈ Ã}.

Clear that Ãθ is a ∗-subalgebra of Ã. Furthermore, Ãθ is a von Neu-
mann algebra for each θ ∈ Θ and there exists an ultraweakly continuous
∗-homomorphism θ : Ã −→ Ãθ defined by

θ (f) = fθ.

For more details and the proof see Corollary 3.8 of [6].

The above definition leads to a correspondence between the elements of
Ãθ and the σ-uniformly predictable processes (θ and σ having the same
number of elements). Indeed, if f ∈ Ãθ, then f has the form

f =
n∑
i=1

fti−1χ[ti−1,ti) + ftnχ{+∞}.

The random times τ0 = t̃0 < t̃1 < . . . < t̃n = τ∞ form a random partition of
[τ0, τ∞] and according to Theorem 4.5 we can define a uniformly predictable
process h associated with this random partition in the form

h = ft0χ{t0} +
n∑
i=1

ϕ (fti)
(
t̃i−1, t̃i

]
.
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On the other hand, let f be a σ-uniformly predictable process. Then f has
the form

f = ft0χ{t0} +
n∑
i=1

αi(τi−1, τi],

for αi ∈ C, 1 ≤ i ≤ n, and ft0 ∈ A0. Let θ = {0 = t0 < t1 < · · · < tn =
+∞} ∈ Θ, we define an A-valued adapted process h by

h =
n∑
i=1

fti−1 [ti−1, ti) + ftnχ{+∞} = θ (f) ,

which is an element of Ãθ.

Definition 6.2. For each random partition σ = {τ0, τ1, . . . , τn−1, τ∞} and
θ = {t0, t1, . . . , tn} ∈ Θ we define the map Sσθ : Ã −→ B

(
L2 (A)

)
by:

Sσθ (f) =M0ft0 +
n∑
i=1

ϕ (fti)
(
Mτi −Mτi−1

)
.

Remark 6.3. Taking into account the results of the previous section, we
see the following:

1. For each f ∈ Ã we have Sσθ (f) ∈ Eσ. Furthermore, Sσθ (f) is an integral
of a σ-uniformly predictable process g given by

g = ft0χ{t0} +
n∑
i=1

ϕ (fti) (τi−1, τi].

2. Sσθ = Sσθ
∣∣∣fAθ · θ, where Sσθ

∣∣∣fAθ is the restriction of Sσθ on Ãθ.

Lemma 6.4. The map Sσθ : Ã −→ B
(
L2 (A)

)
is:

1. ∗-preserving positive linear onto Eσ;
2. strong operator continuous.

Proof. 1. The linearity is obvious. Let f = (ft) ∈ Ã. Then

[Sσθ (f)]∗ =

[
M0ft0 +

n∑
i=1

ϕ (fti)
(
Mτi −Mτi−1

)]∗

= (M0ft0)∗ +
n∑
i=1

ϕ (fti)
(
Mτi −Mτi−1

)
=M0f

∗
t0 +

n∑
i=1

ϕ
(
f∗ti
) (
Mτi −Mτi−1

)
= Sσθ (f∗),
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because ϕ is a positive linear functional and (Mtat)∗ = Mta
∗
t for t ∈

[0,+∞]. To show that Sσθ is a positive, let f = (ft) ∈ (Ã)+. Then ft ∈ A+
t

for each t ∈ [0,+∞] and hence ϕ (ft) ≥ 0 for each t ∈ [0,+∞], also we
obtain that M0f0 ≥ 0. Consequently, we get that Sσθ (f) ≥ 0.

To prove that the map Sσθ is onto Eσ, let y ∈ Eσthen according to Lemma
5.4 we have

y =M0b0 +
n∑
i=1

λi
(
Mτi −Mτi−1

)
,

for some b0 ∈ A0 and λi ∈ C, for i = 1, 2, . . . , n. Put f = (ft) such that
ft0 = b0, ft1 = λ11, ft2 = λ21, . . . , ftn = λn1 and the rest is zero. Then
f = (ft) ∈ Ã and

Sσθ (f) =M0ft0 +
n∑
i=1

ϕ (λi1)
(
Mτi −Mτi−1

)
,

=M0b0 +
n∑
i=1

λi
(
Mτi −Mτi−1

)
= y.

2. Suppose that fi =
(
f

(i)
t

)
−→ g = (gt) in the strong operator topology

in Ã. Then, by Lemma 3.5(1) of [6] we get that f (i)
t −→ gt ∀t ∈ [0,+∞]

in the strong operator topology in A. Hence f (i)
t −→ gt ∀t ∈ [0,+∞] in

the weak operator topology in A. This implies that ϕ
(
f

(i)
t

)
−→ ϕ (gt)

∀t ∈ [0,+∞]. Note that

Sσθ (fi) =M0f
(i)
t0

+
n∑
j=1

ϕ(f (i)
tj

)
(
Mτj −Mτj−1

)
,

and

ϕ(f (i)
tj

)
(
Mτj −Mτj−1

)
−→ ϕ

(
gtj
) (
Mτj −Mτj−1

)
for j = 1, 2, . . . , n.

Since the strong operator topology is continuous under multiplication, we
have

M0 (·) f (i)
t0
−→M0 (·) gt0 ,

Consequently, we get
Sσθ (fi) −→ Sσθ (g),

in the strong-operator topology, which finishes the proof.
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