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Abstract. Let K be a convex cone in a real Banach space. The main
purpose of this paper is to show that for a regular cosine family {Ft :
t ∈ R} of linear continuous multifunctions Ft : K → cc(X) there exists
a linear continuous multifunction H : K → cc(K) such that

Ft(x) ⊂
∞X

n=0

t2n

(2n)!
Hn(x).

Let X be a real normed vector space. We will denote by n(X) the family
of all nonempty subsets of X and by cc(X) the family of all nonempty
compact and convex subsets of X.

For A,B ⊂ X and t ∈ R we introduce

A+B = {a+ b : a ∈ A, b ∈ B}, tA = {ta : a ∈ A}.

A subset K of X is called a cone if tK ⊂ K for all t ∈ (0,+∞). A cone
is said to be convex if it is a convex set.

Let A, B, C be sets of cc(X). We say that the set C is the Hukuhara
difference of A and B, i.e., C = A − B if B + C = A. By the R̊adström
Lemma [12] it follows that if this difference exists, then it is unique.
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A multifunction F : [a, b]→ cc(X) is called concave if

F (λt+ (1− λ)s) ⊂ λF (t) + (1− λ)F (s)

for all s, t ∈ [a, b] and λ ∈ (0, 1).
We say that a multifunction F : J → cc(X), where J denotes an interval

in R, is increasing if for all s, t ∈ J such that s < t we have F (s) ⊂ F (t). If
for s < t we have the inverse inclusion F (t) ⊂ F (s), then the multifunction
is called decreasing.

We call F : R→ cc(X) even if F (−t) = F (t) for every t ∈ R.
Let K be a convex cone in X. A multifunction F : K → n(K) is called

linear if
F (x+ y) = F (x) + F (y), F (λx) = λF (x)

for all x, y ∈ K and λ ≥ 0.
The image of a set A ⊂ K by F : K → n(X) is the set

F (A) =
⋃
y∈A

F (y).

Let X, Y , Z be nonempty sets. The superposition G◦F of multifunctions
F : X → n(Y ) and G : Y → n(Z) we define by the formula

(G ◦ F )(x) = G(F (x)) for x ∈ X.

Let A, A1, A2, . . . be elements of the family cc(X). We say that the
sequence (An)n∈N is convergent to A and we write An → A if d(A,An)→ 0,
where d denotes the Hausdorff metric derived by the norm in X.

Lemma 1 ([11, Lemma 1]). Let X be a real Banach space, A,A1, A2, . . . ,
B,B1, B2, . . . ∈ cc(X). If An → A, Bn → B and there exist the Hukuhara
differences An − Bn in cc(X) for n ∈ N, then there exists the Hukuhara
difference A−B and An −Bn → A−B.

The norm ‖A‖ of a bounded set A ⊂ X is defined by

‖A‖ := sup{‖a‖ : a ∈ A} = d(A, {0}).

Next we introduce the Hukuhara version of the Riemann integral of multi-
function F : [a, b]→ cc(X) (see [2]). We will denote by ∆ = {α0, α1, . . . , αn}
a partition of the interval [a, b], i.e., a sequence satisfying inequalities
a = α0 < α1 < . . . < αn = b. The number

δ(∆) = max{αi+1 − αi : i = 0, 1, . . . , n− 1}

is said to be the diameter of ∆. Φ denotes the family of all pairs (∆, τ),
where ∆ = {α0, α1, . . . , αn} is a partition of the interval [a, b] and τ =
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(τ0, . . . , τn−1) is a sequence of points such that τi ∈ [αi, αi+1]. I(∆, τ)
denotes the set

I(∆, τ) =
n−1∑
i=0

(αi+1 − αi)F (τi)

for (∆, τ) ∈ Φ. If I(∆, τ) converges to I ∈ cc(X) with respect to the
Hausdorff metric d when δ(∆)→ 0, i.e.,

(∀ε > 0) (∃η > 0) (∀(∆, τ) ∈ Φ) (δ(∆) < η =⇒ d(I(∆, τ), I) < ε) ,

then we say that I is the integral of the multifunction F on the interval [a, b]
and we write

I =

b∫
a

F (t) dt.

If there exists the integral of a multifunction F : [a, b]→ cc(X), then we say
that F is integrable.

Next lemmas describe some properties of the Riemann integral for mul-
tifunctions.

Lemma 2 ([2, p. 212]). If a < c < b and F : [a, b] → cc(X) is integrable
on [a, c] and on [c, b], then F is integrable on [a, b] and

b∫
a

F (t) dt =

c∫
a

F (t) dt+

b∫
c

F (t) dt. (1)

Lemma 3 ([2, p. 212]). Let X be a real Banach space. If F : [a, b]→ cc(X)
is integrable on [a, b], then for every c ∈ (a, b) F is integrable on [a, c] and
on [c, b] and formula (1) holds.

Lemma 4 ([10, Lemma 1.3]). If F : [a, b] → cc(X) is integrable, a′, b′, A,
B are real numbers such that a′ < b′, Aa′ +B = a, Ab′ +B = b, then

b∫
a

F (t) dt = A

b′∫
a′

F (Au+B) du.

Lemma 5 ([10, Lemma 1.4]). Let F,G : [a, b] → cc(X) be integrable. If
F (t) ⊂ G(t) for all t ∈ [a, b], then

b∫
a

F (t) dt ⊂
b∫
a

G(t) dt.
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Lemma 6. If F : R→ cc(X) is integrable on each interval [a, b] and even,
then

b∫
a

F (t) dt =

−a∫
−b

F (t) dt. (2)

Proof. Let ∆ = {α0, α1, . . . , αn} be a partition of the interval [a, b] and
τi ∈ [αi, αi+1] for i ∈ {0, 1, . . . , n − 1}. Then ∆ = {β0, β1, . . . , βn}, where
βi = −αn−i is partition of [−b,−a]. By the evenness of the multifunction
F we have the equality of integral sums

I(∆, τ) =
n−1∑
i=0

(αi+1 − αi)F (τi) =
n−1∑
i=0

(−αi − (−αi+1))F (−τi) = I(∆, τ),

where τi = −τn−1−i, τ = (τ0, τ1, . . . , τn−1). Let (∆p) be a normal sequence
of partitions of the interval [a, b] and (∆p) be corresponding normal sequence
of partitions of the interval [−b,−a]. Then I(∆p, τ) = I(∆p, τ), hence and
by integrability of F we have (2).

Lemma 7. Let X be a real Banach space. If F : [0,∞) → cc(X) is inte-
grable on each interval [a, b] ⊂ [0,∞) where 0 ≤ a ≤ b <∞ and there exist
the Hukuhara differences F (t) − F (s) for 0 ≤ s ≤ t, then for u ≥ 0 there
exists the Hukuhara difference

b+u∫
a+u

F (t) dt−
b∫
a

F (t) dt.

Proof. Let ∆ = {α0, α1, . . . , αn} be a partition of the interval [a, b] and τi ∈
[αi, αi+1] for i ∈ {0, 1, . . . , n− 1}. Then ∆u = {α0 + u, α1 + u, . . . , αn + u}
is the partition of the interval [a+ u, b+ u] and τi + u ∈ [αi + u, αi+1 + u].
We consider integral sums corresponding to these partitions

I(∆, τ) =
n−1∑
i=0

(αi+1 − αi)F (τi)

and

I(∆u, τu) =
n−1∑
i=0

((αi+1 + u)− (αi + u))F (τi + u),

where τu = (τ0 + u, τ1 + u, . . . , τn−1 + u). Since for i ∈ {0, 1, . . . , n− 1} the
Hukuhara differences F (τi +u)−F (τi) exist, it follows that there exists the
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Hukuhara difference

I(∆u, τu)− I(∆, τ) =
n−1∑
i=0

(αi+1 − αi)(F (τi + u)− F (τi)).

Let (∆p) be a normal sequence of partitions of the interval [a, b] and (∆u
p)

be corresponding normal sequence of partitions of the interval [a+u, b+u].
Since F is integrable on each interval we have

I(∆p, τ)→
b∫
a

F (t) dt and I(∆u
p , τu)→

b+u∫
a+u

F (t) dt when p→∞.

Hence and by Lemma 1 there exists the Hukuhara difference
b+u∫
a+u

F (t) dt−
b∫
a

F (t) dt.

In next lemmas we assume that X is a real Banach space.

Lemma 8 ([2, p. 212]). If F : R → cc(X) is continuous, then it is inte-
grable on each interval [a, b] ⊂ R.

Lemma 9 ([2, p. 211]). If F : [a, b]→ cc(X) is continuous, then∥∥∥∥∥∥
b∫
a

F (t) dt

∥∥∥∥∥∥ ≤
b∫
a

‖F (t)‖ dt.

Lemma 10. If F : R → cc(X) is continuous, then for every a ∈ R the
multifunction

H(t) =

t∫
a

F (u) du for t ≥ a

is continuous.

Proof. Let h > 0 and t ≥ a. By Lemmas 3 and 9 and properties of the
Hausdorff metric we have

d(H(t),H(t+ h)) = d

 t∫
a

F (u) du,

t∫
a

F (u) du+

t+h∫
t

F (u) du





62 M. PISZCZEK

=

∥∥∥∥∥∥
t+h∫
t

F (u) du

∥∥∥∥∥∥ ≤
t+h∫
t

‖F (u)‖ du ≤ h sup
t≤u≤t+h

‖F (u)‖

and this tends to zero as h→ 0+. So H is continuous.

Lemma 11 ([2, p. 216]). If F : R→ cc(X) is continuous, then

lim
h→0+

1
h

t+h∫
t

F (u) du = F (t) for t ∈ R.

Lemma 12. If F : [0,∞)→ cc(X) is continuous, then
t∫

0

 s∫
0

F (u) du

 ds =

t∫
0

(t− u)F (u) du for t ≥ 0. (3)

Proof. We define

φ(t) := d

 t∫
0

 s∫
0

F (u) du

 ds,

t∫
0

(t− u)F (u) du

 for t ≥ 0.

Lemma 10 implies that φ is continuous. By Lemma 3 and properties of the
Hausdorff metric for h > 0 we have

φ(t+ h)

= d

 t+h∫
0

 s∫
0

F (u) du

 ds,

t+h∫
0

(t+ h− u)F (u) du


≤ d

 t∫
0

 s∫
0

F (u) du

 ds,

t∫
0

(t− u)F (u) du


+ d

 t+h∫
t

 s∫
0

F (u) du

 ds,

t+h∫
t

(t+ h− u)F (u) du+ h

t∫
0

F (u) du

 .

Thus
φ(t+ h)− φ(t)

h
(4)

≤ d

1
h

t+h∫
t

 s∫
0

F (u) du

 ds,
1
h

t+h∫
t

(t+ h− u)F (u) du+

t∫
0

F (u) du
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for t ≥ 0, h > 0. Since F is continuous there exists M > 0 such that
‖F (u)‖ ≤M for u ∈ [t, t+ 1]. Therefore by Lemma 9 we get∥∥∥∥∥∥1

h

t+h∫
t

(t+ h− u)F (u) du

∥∥∥∥∥∥ ≤ 1
h

t+h∫
t

(t+ h− u)‖F (u)‖ du ≤ Mh

2

for 0 < h < 1. This implies that

lim
h→0+

1
h

t+h∫
t

(t+ h− u)F (u) du = {0}.

Using the last equality, (4), Lemmas 10 and 11 we have

lim inf
h→0+

φ(t+ h)− φ(t)
h

≤ lim
h→0+

d

1
h

t+h∫
t

 s∫
0

F (u) du

 ds,

t∫
0

F (u) du


+ lim
h→0+

∥∥∥∥∥∥1
h

t+h∫
t

(t+ h− u)F (u) du

∥∥∥∥∥∥
= d

 t∫
0

F (u) du,

t∫
0

F (u) du

+ 0 = 0.

According to a corollary from the Zygmund Lemma in [5, p. 174] the
function φ is nonincreasing. Therefore

φ(t) ≤ φ(0) = 0

for t ≥ 0. This shows that equality (3) holds.

Lemma 13. If F : [0,∞)→ cc(X) is continuous, then
t∫

0

(t− s)n

n!

s∫
0

(s− u)F (u) du

 ds =

t∫
0

(t− u)n+2

(n+ 2)!
F (u) du (5)

for t ≥ 0, n = 0, 1, 2 . . . .

Proof. For every nonnegative integer n we define

φn(t) = d

 t∫
0

(t− s)n

n!

s∫
0

(s− u)F (u) du

 ds,

t∫
0

(t− u)n+2

(n+ 2)!
F (u) du

 .



64 M. PISZCZEK

For n = 0 we have

φ0(t) = d

 t∫
0

 s∫
0

(s− u)F (u) du

 ds,

t∫
0

(t− u)2

2!
F (u) du


and by Lemma 3 and properties of the Hausdorff metric we have

φ0(t+ h)

= d

 t∫
0

 s∫
0

(s− u)F (u) du

 ds+

t+h∫
t

 s∫
0

(s− u)F (u) du

 ds,

t∫
0

(t− u)2

2!
F (u) du+ h

t∫
0

(t− u)F (u) du

+
h2

2

t∫
0

F (u) du+

t+h∫
t

(t+ h− u)2

2!
F (u) du


≤ φ0(t) + d

 t+h∫
t

 s∫
0

(s− u)F (u) du

 ds, h

t∫
0

(t− u)F (u) du

+
h2

2

t∫
0

F (u) du+

t+h∫
t

(t+ h− u)2

2!
F (u) du


for h > 0. Therefore

φ0(t+ h)− φ0(t)
h

≤ d

1
h

t+h∫
t

 s∫
0

(s− u)F (u) du

 ds,

t∫
0

(t− u)F (u) du


+
h

2

∥∥∥∥∥∥
t∫

0

F (u) du

∥∥∥∥∥∥+

∥∥∥∥∥∥1
h

t+h∫
t

(t+ h− u)2

2!
F (u) du

∥∥∥∥∥∥ .
Since ∥∥∥∥∥∥1

h

t+h∫
t

(t+ h− u)2

2!
F (u) du

∥∥∥∥∥∥
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≤ 1
h

t+h∫
t

(t+ h− u)2

2!
du sup

t≤u≤t+h
‖F (u)‖ =

h2

6
sup

t≤u≤t+h
‖F (u)‖

we have

lim
h→0+

1
h

t+h∫
t

(t+ h− u)2

2!
F (u) du = {0}

and

lim inf
h→0+

φ0(t+ h)− φ0(t)
h

≤ 0.

As we know the function φ0 is continuous nonnegative and φ0(0) = 0,
whence by the corollary from the Zygmund Lemma φ0(t) = 0 for t ≥ 0.
Thus

t∫
0

 s∫
0

(s− u)F (u) du

 ds =

t∫
0

(t− u)2

2!
F (u) du.

Let n be a nonnegative integer. Suppose that φn ≡ 0. By Lemma 3 and
properties of the Hausdorff metric for h > 0 we have

φn+1(t+ h)

= d

 t+h∫
0

(t+ h− s)n+1

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds,

t+h∫
0

(t+ h− u)n+3

(n+ 3)!
F (u) du


≤ φn+1(t) + d

 n∑
i=0

(
n+ 1
i

) t∫
0

(t− s)ihn+1−i

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds

+

t+h∫
t

(t+ h− s)n+1

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds,

n+2∑
j=0

(
n+ 3
j

) t∫
0

(t− u)jhn+3−j

(n+ 3)!
F (u) du+

t+h∫
t

(t+ h− u)n+3

(n+ 3)!
F (u) du

 .

Therefore

φn+1(t+ h)− φn+1(t)
h
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≤ d

 n∑
i=0

(
n+ 1
i

) t∫
0

(t− s)ihn−i

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds

+
1
h

t+h∫
t

(t+ h− s)n+1

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds,

n+2∑
j=0

(
n+ 3
j

) t∫
0

(t− u)jhn+2−j

(n+ 3)!
F (u) du

+
1
h

t+h∫
t

(t+ h− u)n+3

(n+ 3)!
F (u) du

 .

Since ∥∥∥∥∥∥1
h

t+h∫
t

(t+ h− s)n+1

(n+ 1)!

s∫
0

(s− u)F (u) du

 ds

∥∥∥∥∥∥ ≤Mhn+1(t+ h)2

2(n+ 2)!

and ∥∥∥∥∥∥1
h

t+h∫
t

(t+ h− u)n+3

(n+ 3)!
F (u) du

∥∥∥∥∥∥ ≤M hn+3

(n+ 4)!

for 0 < h < 1, where M = sup{‖F (u)‖ : t ≤ u ≤ t+ 1}, we have

lim inf
h→0+

φn+1(t+ h)− φn+1(t)
h

≤ d

 t∫
0

(t− s)n

n!

s∫
0

(s− u)F (u) du

 ds,

t∫
0

(t− u)n+2

(n+ 2)!
F (u) du


= φn(t) = 0.

Applying the corollary from the Zygmund Lemma we obtain that φn+1 ≡ 0
and equality (5) holds for every n ≥ 0 and t ≥ 0.

It is not difficult to check that the following lemma is true.

Lemma 14. Let K be a convex cone in X. If F : K → cc(X) is linear
continuous, G : [a, b]→ cc(K) is continuous, then

b∫
a

F (G(t)) dt = F

 b∫
a

G(t) dt

 .
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Let F,G : K → cc(K). We can define the multifunctions F+G and F−G
on K as follows

(F +G)(x) := F (x) +G(x) for x ∈ K
and

(F −G)(x) := F (x)−G(x)
if the Hukuhara differences F (x)−G(x) exist for all x ∈ K.

Lemma 15 ([11, Lemma 2]). For each set A ⊂ K the inclusion

(F +G)(A) ⊂ F (A) +G(A) (6)

holds. Moreover, if there exist the Hukuhara difference F (A) − G(A) and
the multifunction F −G, then

F (A)−G(A) ⊂ (F −G)(A). (7)

Let K be a closed convex cone in a real Banach space. Applying The-
orem 4 in [14] we define the norm of a linear continuous multifunction
F : K → n(K), denoted by ‖F‖, to be the smallest element of the set

{M ≥ 0: ‖F (x)‖ ≤M‖x‖, x ∈ K}.

Theorem 1. Let X be a real Banach space and let K be a closed convex
cone in X. Assume that H : K → cc(K) is a linear continuous multifunc-
tion. Then for every x ∈ K and t ≥ 0 the series

Ft(x) =
∞∑
n=0

t2n

(2n)!
Hn(x) (8)

is convergent in the metric space (cc(K), d). Moreover, the multifunctions
Ft, t ≥ 0 are linear and

(2Ft ◦ Fs)(x) ⊂ Ft+s(x) + Ft−s(x)

for x ∈ K, t ≥ s ≥ 0.

The proof is similar to the proof of Theorem in [9].
It is obvious that for single-valued functions we have the equality instead

of the inclusion in the assertion of Theorem 1 (see also Theorem 3.3 in [15]).

Theorem 2. Let X be a real Banach space and let K be a closed convex
cone in X. If H : K → cc(K) is a linear continuous multifunction such that
x ∈ H(x) and H2(x) = H(x) for x ∈ K, then the multifunction given by
(8) satisfies the equation

Ft+s(x) + Ft−s(x) = 2Ft(Fs(x)) (9)

for x ∈ K, s, t ∈ R.
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Proof. By the assumption H2(x) = H(x) we have

Ft(x) =
∞∑
n=0

t2n

(2n)!
Hn(x) = x+

∞∑
n=1

t2n

(2n)!
H(x) = x+ (cosh t− 1)H(x).

This equality yields (9).

For example H : [0,∞) → cc([0,∞)) defined by H(x) = [0, x] or
H : [0,∞)2 → cc([0,∞)2) defined by H((x, y)) = [0, x] × [0, y] satisfy the
assumptions of Theorem 2.

Definition. Let (K,+) be a semigroup. A one-parameter family
{Ft : t ∈ R} of multifunctions Ft : K → n(K) is said to be a cosine family if

F0(x) = {x} for x ∈ K
and

Ft+s + Ft−s = 2Ft ◦ Fs (10)

on K for s, t ∈ R.
Let X be a real normed space. A cosine family {Ft : t ∈ R} is regular if

lim
t→0

d(Ft(x), {x}) = 0.

Cosine families of single-valued functions was considered by many au-
thors. These families are relate to second order differential equations (for
example see [3], [16]). J. Kisyński proved that solution of some second order
differential problem is a cosine family (see Lemma 1.3.3 in [3]).

Lemma 16 ([11, Lemma 8]). Let X be a Banach space and let K be a
closed convex cone in X such that int K 6= ∅. Assume that {Ft : t ∈ R}
is a regular cosine family of continuous additive set-valued functions Ft :
K → cc(K) and x ∈ Ft(x) for all x ∈ K and t ∈ R. Then there exist the
Hukuhara differences Ft(x)− Fs(x) for all 0 ≤ s ≤ t and x ∈ K.

Theorem 3. Let X be a real Banach space and let K be a closed convex
cone in X such that intK 6= ∅. Assume that {Ft : t ∈ R} is a regular cosine
family of continuous linear multifunctions Ft : K → cc(X) and x ∈ Ft(x)
for all x ∈ K and t ∈ R. Then there exists a continuous linear multifunction
H : K → cc(K) such that

Ft(x) ⊂
∞∑
n=0

t2n

(2n)!
Hn(x)

for x ∈ K and t ∈ R.
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Proof. Let x ∈ K. Consider the multifunction t 7→ Ft(x) for t ∈ R. We
first show some properties of this multifunction. Putting t = 0 in (10) we
have Fs(x)+F−s(x) = 2F0(Fs(x)) = 2Fs(x) = Fs(x)+Fs(x). By R̊adström
Lemma we obtain Fs(x) = F−s(x). Thus the multifunction t 7→ Ft(x) is
even. Hence and by (10) we have Ft ◦Fs = Fs ◦Ft. According to Theorem 2
in [13] the multifunction t 7→ Ft(x) is continuous on [0,+∞). As t 7→ Ft(x)
is even it is continuous on R. By Lemma 8 it is integrable on each interval
[a, b] ⊂ R. Setting t = (v + u)/2, s = (v − u)/2, u, v ∈ R in (10) we get

Fv(x) + Fu(x) = 2F(v+u)/2(F(v−u)/2(x)).

Since x ∈ Ft(x) we have

F(v+u)/2(x) ⊂ Fv(x) + Fu(x)
2

.

Hence, by the continuity and Theorem 1 in [7] the multifunction t 7→ Ft(x) is
concave. We observe that t 7→ Ft(x) is increasing in [0,+∞) and decreasing
in (−∞, 0]. Indeed, for 0 ≤ s ≤ t there exists λ ∈ [0, 1] such that s =
(1− λ)0 + λt. Hence Fs(x) ⊂ (1− λ)F0(x) + λFt(x) = (1− λ)x+ λFt(x) ⊂
(1 − λ)Ft(x) + λFt(x) = Ft(x). For t ≤ s ≤ 0 we have Fs(x) = F−s(x) ⊂
F−t(x) = Ft(x).

We next define some multifunctions. We use them later in the construc-
tion of the multifunction H and in proving of the inclusion in the assertion.
To define these multifuctions we need to show the existence of some limits.
Take arbitrary α and t such that 0 < α < t. Integrating over s ∈ [0, α]
formula (10) we obtain

α∫
0

Ft+s(x) ds+

α∫
0

Ft−s(x) ds =

α∫
0

2Ft(Fs(x)) ds.

Hence, by Lemmas 4, 6 and 14 we have
α+t∫
t

Fw(x) dw +

t∫
t−α

Fw(x) dw = 2Ft

 α∫
0

Fs(x) ds

 .

The last equality and Lemma 2 lead to
t+α∫
t−α

Fw(x) dw = 2Ft

 α∫
0

Fs(x) ds

 . (11)

Replacing in (11) t by t+ u, where u ∈ (0, α), we get
t+α+u∫
t−α+u

Fw(x) dw = 2Ft+u

 α∫
0

Fs(x) ds

 . (12)
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Adding both the sides (11) and (12) we have

t+α+u∫
t−α+u

Fw(x) dw + 2Ft

 α∫
0

Fs(x) ds


=

t+α∫
t−α

Fw(x) dw + 2Ft+u

 α∫
0

Fs(x) ds

 .

Then we get by Lemma 3 substracting the term
∫ t+α
t−α+u Fw(x) dw from both

the sides of the last equality

t+α+u∫
t+α

Fw(x) dw + 2Ft

 α∫
0

Fs(x) ds


=

t−α+u∫
t−α

Fw(x) dw + 2Ft+u

 α∫
0

Fs(x) ds

 .

(13)

By Lemma 7 the Hukuhara difference

t+α+u∫
t+α

Fw(x) dw −
t−α+u∫
t−α

Fw(x) dw

exists, which together with (13) shows that the Hukuhara difference

2Ft+u

 α∫
0

Fs(x) ds

− 2Ft

 α∫
0

Fs(x) ds


also exists and

2Ft+u

(
α∫
0
Fs(x) ds

)
− 2Ft

(
α∫
0
Fs(x) ds

)
u

=
1
u

t+α+u∫
t+α

Fw(x) dw − 1
u

t−α+u∫
t−α

Fw(x) dw.

In virtue of Lemmas 1 and 11 there exists

lim
u→0+

2Ft+u

(
α∫
0
Fs(x) ds

)
− 2Ft

(
α∫
0
Fs(x) ds

)
u

= Ft+α(x)− Ft−α(x).
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We define

Gα,t(x) :=
Ft+α(x)− Ft−α(x)

2

= lim
u→0+

Ft+u

(
α∫
0
Fs(x) ds

)
− Ft

(
α∫
0
Fs(x) ds

)
u

.

We observe that

Gα,t(x) =
Ft+α(x)− Ft−α(x)

2
=
Fα+t(x)− Fα−t(x)

2
= Gt,α(x).

(14)

Since the multifunction s 7→ Fs(x) is concave and there exist the
Hukuhara differences Ft(x) − Fs(x) for t ≥ s ≥ 0, so by Theorem 3.2 in
[10] there exist

G+
t (x) := lim

α→0+

Ft+α(x)− Ft(x)
α

,

G−t (x) := lim
α→0+

Ft(x)− Ft−α(x)
α

and G−t (x) ⊂ G+
t (x) for t > 0. Consequently there exists

Gt(x) := lim
α→0+

Ft+α(x)− Ft−α(x)
α

= G+
t (x) +G−t (x) for t > 0.

It follows from (10) that

F2t(x)− x
2t

= Ft

(
Ft(x)− x

t

)
+
Ft(x)− x

t
.

Letting t→ 0+ we get

lim
t→0+

Ft

(
Ft(x)− x

t

)
= {0}

and since

0 ∈ Ft(x)− x
t

⊂ Ft
(
Ft(x)− x

t

)
we have

G+
0 (x) := lim

t→0+

Ft(x)− x
t

= {0}.

Our next claim is that the multifunction t 7→ G+
t (x) is concave. Replacing

in (10) t by t + u, u > 0 and substract Ft+s(x) + Ft−s(x) from both the
sides of this equality we get

Ft+s+u(x)− Ft+s(x) + Ft−s+u(x)− Ft−s(x) = 2Ft+u(Fs(x))− 2Ft(Fs(x)).
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Dividing the last equality by u we get

Ft+s+u(x)− Ft+s(x)
u

+
Ft−s+u(x)− Ft−s(x)

u
= 2Fs

(
Ft+u(x)− Ft(x)

u

)

and letting u→ 0+ we obtain

G+
t+s(x) +G+

t−s(x) = 2Fs(G+
t (x)). (15)

Setting t = (v + u)/2, s = (v − u)/2, u, v ∈ R in (15) we have

G+
v (x) +G+

u (x) = 2F(v−u)/2(G+
(v+u)/2(x)).

By assumption x ∈ Ft(x) we get

G+
(v+u)/2(x) ⊂ G+

v (x) +G+
u (x)

2
.

Fix an interval [a, b] ⊂ [0,∞) and let t ∈ [a, b]. Since G+
t (x) ⊂

Ft+1(x)− Ft(x) we have

G+
t (x) + x ⊂ G+

t (x) + Ft(x) ⊂ Ft+1(x) ⊂ Fb+1(x).

Therefore the multifunction t 7→ G+
t (x) is bounded on [a, b]. By Theorem

4.4 in [6] the multifunction t 7→ Gt(x) is continuous in (0,∞) and concave
by Theorem 4.1 in [6]. Let λ ∈ (0, 1). Then G+

λt(x) ⊂ λG+
t (x) and

G+
λt(x)
λt

⊂ G+
t (x)
t

it follows that there exists

lim
t→0+

G+
t (x)
t

=: H(x).

Since x 7→ Ft(x) for every t ∈ R are linear continuous we see H is linear
and ‖H(x)‖ ≤ ‖G1(x)‖ ≤ ‖G1‖‖x‖, hence H is continuous, too.

By uniform convergence of limu→0+ (Fα+u(x)− Fα(x))/u on each com-
pact subset of K (see Theorem 1 in [8]), Lemma 15 and equality (14) we
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get

2G−t (x)

⊂ Gt(x) = lim
α→0+

2
α
Gα,t(x) = lim

α→0+

2
α
Gt,α(x)

= lim
α→0+

2
α

lim
u→0+

Fα+u

(
t∫

0
Fs(x) ds

)
− Fα

(
t∫

0
Fs(x) ds

)
u

⊂ lim
α→0+

2
α

lim
u→0+

(Fα+u − Fα)
(

t∫
0
Fs(x) ds

)
u

= lim
α→0+

2
α
G+
α

 t∫
0

Fs(x) ds

 = 2H

 t∫
0

Fs(x) ds

 .

(16)

According to Theorem 4.3 in [10] we have

Ft(x) = x+

t∫
0

G−s (x) ds.

Hence, by (16), Lemmas 5, 12 and 14 we obtain

Ft(x) ⊂ x+

t∫
0

H

 s∫
0

Fu(x) du

 ds

= x+H

 t∫
0

 s∫
0

Fu(x) du

 ds

 = x+H

 t∫
0

(t− u)Fu(x) du

 .

Using Lemma 13 instead of Lemma 12 we get succesively

Ft(x) ⊂ x+H

 t∫
0

(t− u)

x+H

 u∫
0

(u− s)Fs(x) ds

 du


= x+H

 t∫
0

(t− u)x du+

t∫
0

(t− u)H

 u∫
0

(u− s)Fs(x) ds

 du


= x+H

(
1
2
t2x

)
+H2

 t∫
0

(t− u)

u∫
0

(u− s)Fs(x) ds

 du
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= x+
t2

2
H(x) +H2

 t∫
0

(t− s)3

3!
Fs(x) ds

 .

Repeating the same steps we have

Ft(x) ⊂ x+
t2

2!
H(x) + . . .+

t2n

(2n)!
Hn(x)

+Hn+1

 t∫
0

(t− s)2n+1

(2n+ 1)!
Fs(x) ds

 .

It remains to prove that

Hn+1

 t∫
0

(t− s)2n+1

(2n+ 1)!
Fs(x) ds

→ {0}.
For s ∈ [0, t], Fs(x) ⊂ Ft(x), so ‖Fs(x)‖ ≤ ‖Ft(x)‖. Let m = ‖Ft(x)‖. By
Lemma 9 we have∥∥∥∥∥∥Hn+1

 t∫
0

(t− s)2n+1

(2n+ 1)!
Fs(x) ds

∥∥∥∥∥∥
≤ ‖H‖n+1

∥∥∥∥∥∥
t∫

0

(t− s)2n+1

(2n+ 1)!
Fs(x) ds

∥∥∥∥∥∥
≤ ‖H‖n+1

t∫
0

(t− s)2n+1

(2n+ 1)!
‖Fs(x)‖ ds

≤ ‖H‖n+1m

t∫
0

(t− s)2n+1

(2n+ 1)!
ds

≤ ‖H‖n+1m
t2n+2

(n+ 1)!
=

(‖H‖t2)n+1

(n+ 1)!
m.

Since
(‖H‖t2)n+1

(n+ 1)!
m→ 0

we have

Hn+1

 t∫
0

(t− s)2n+1

(2n+ 1)!
Fs(x) ds

→ {0}.
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Therefore

Ft(x) ⊂
∞∑
n=0

t2n

(2n)!
Hn(x) for t ∈ R, x ∈ K.

S. Kurepa in [4] proved that every single-valued function of the cosine
family is in the form of the series. Theorem 3 is not generalization of
Theorems for single-valued case.

Example 1. A family {Ft : t ∈ R} of multifunctions Ft : [0,∞) →
cc([0,∞)) such that Ft(x) = x[1, cosh t] is a regular cosine family. Our
wanted multifunction is H(x) = [0, x] and

Ft(x) =
∞∑
n=0

t2n

(2n)!
Hn(x) = x+

∞∑
n=1

t2n

(2n)!
[0, x].

Example 2. A family {Ft : t ∈ R} of multifunctions Ft : [0,∞)2 →
cc([0,∞)2) defined by Ft((x, y)) = [x, x cosh t] × [y, y cosh t] is a regular
cosine family. Our wanted multifunction is H((x, y)) = [0, x]× [0, y] and

Ft((x, y)) =
∞∑
n=0

t2n

(2n)!
Hn((x, y)) = (x, y) +

∞∑
n=1

t2n

(2n)!
[0, x]× [0, y].
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