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Abstract. Let K be a convex cone in a real Banach space. The main
purpose of this paper is to show that for a regular cosine family {F;:
t € R} of linear continuous multifunctions Fy: K — cc(X) there exists
a linear continuous multifunction H: K — cc(K) such that

> t2n n
@n)! H"(x).

Ft(x) C

n=0

Let X be a real normed vector space. We will denote by n(X) the family
of all nonempty subsets of X and by cc(X) the family of all nonempty
compact and convex subsets of X.

For A, B C X and t € R we introduce

A+B={a+b:ac A be B}, tA={ta:ac A}

A subset K of X is called a cone if tK C K for all t € (0,4+00). A cone
is said to be conver if it is a convex set.

Let A, B, C be sets of cc(X). We say that the set C' is the Hukuhara
difference of A and B, ie., C = A— B if B+ C = A. By the Radstréom
Lemma [12] it follows that if this difference exists, then it is unique.
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A multifunction F': [a,b] — cc(X) is called concave if
FAt+(1—=X)s) CAF(t)+ (1 —A\)F(s)

for all s,t € [a,b] and X € (0,1).

We say that a multifunction F': J — cc(X), where J denotes an interval
in R, is increasing if for all s,¢ € J such that s < t we have F(s) C F(t). If
for s < t we have the inverse inclusion F'(t) C F(s), then the multifunction
is called decreasing.

We call F': R — cc(X) even if F(—t) = F(t) for every t € R.

Let K be a convex cone in X. A multifunction F': K — n(K) is called
linear if

F(x+y)=F(z)+ F(y), F(\z)=\F(x)

for all z,y € K and A > 0.
The image of a set A C K by F: K — n(X) is the set

F(4) = | Fy).
yeA

Let X, Y, Z be nonempty sets. The superposition G o F' of multifunctions
F: X —n(Y)and G: Y — n(Z) we define by the formula

(Go F)(z) =G(F(x)) forzxe X.

Let A, Ay, Ag,... be elements of the family cc(X). We say that the
sequence (A )nen is convergent to A and we write A, — A if d(A, A,) — 0,
where d denotes the Hausdorff metric derived by the norm in X.

Lemma 1 ([11, Lemma 1}). Let X be a real Banach space, A, A1, A, ...,
B,B1,Bs,... € ce(X). If A, — A, B, — B and there exist the Hukuhara
differences Ay, — By, in cc(X) for n € N, then there exists the Hukuhara
difference A — B and A, — B, — A— B.

The norm ||A]| of a bounded set A C X is defined by

[A[]:= sup{[la]|: a € A} = d(A,{0}).

Next we introduce the Hukuhara version of the Riemann integral of multi-
function F': [a,b] — cc(X) (see [2]). We will denote by A = {ap,a1,... ,an}
a partition of the interval [a,b], i.e., a sequence satisfying inequalities
a=ag<a; <...<a,=>. The number

(5(A):max{ozi+1—ai: i:O,l,... ,n—l}

is said to be the diameter of A. ® denotes the family of all pairs (A, 1),
where A = {agp,a1,...,a,} is a partition of the interval [a,b] and 7 =
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(10y... ,Tn—1) is a sequence of points such that 7, € [ay, iy1]. I(A,7T)
denotes the set
n—1
I(A, 1) = Z(aiJrl — o) F(7)
i=0

for (A,7) € ®. If I(A,7) converges to I € cc(X) with respect to the
Hausdorff metric d when 6(A) — 0, i.e.,

(Ve >0) (In>0) (V(A,7)€®)(6(A)<n = d(I(A,7),I)<¢e),

then we say that [ is the integral of the multifunction F' on the interval [a, ]

and we write
b

I:/F@ﬁ

a
If there exists the integral of a multifunction F': [a,b] — cc(X), then we say
that F' is integrable.
Next lemmas describe some properties of the Riemann integral for mul-
tifunctions.

Lemma 2 ([2, p. 212]). If a < ¢ < b and F': [a,b] — cc(X) is integrable
on [a,c| and on [c,b], then F' is integrable on [a,b] and

b c b
/F@ﬁ:/F@ﬁ+/Fmﬁ. (1)

a c

Lemma 3 ([2, p. 212]). Let X be a real Banach space. If F: [a,b] — cc(X)
is integrable on [a,b], then for every c € (a,b) F is integrable on [a,c] and

on [c,b] and formula (1) holds.

Lemma 4 ([10, Lemma 1.3]). If F': [a,b] — cc(X) is integrable, o', V', A,
B are real numbers such that a’ < b, Ad’ + B =a, AV + B =0, then

b b
/F(t) dt = A/F(Au + B) du.

a

Lemma 5 ([10, Lemma 1.4]). Let F,G: [a,b] — cc(X) be integrable. If
F(t) C G(t) for allt € [a,b], then
b b

/F@ﬁC/G@#

a a
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Lemma 6. If F': R — cc(X) is integrable on each interval [a,b] and even,
then

/b F(t)dt = ]aF(t) dt. (2)
a -b

Proof. Let A = {ap,a1,...,a,} be a partition of the interval [a,b] and
7 € |, aiyq] for i € {0,1,... ,n—1}. Then A = {Bo, 51, .- ,Bn}, Where
Bi = —ayu—; is partition of [—b, —a]. By the evenness of the multifunction

F' we have the equality of integral sums

n—1 n—1
I(A7) = (aip1 — ) F(n) =Y (s — (—ai1)) F(—m) = I(A,7),
i=0 i=0
where 7 = —7,—1-4, T = (70, 71, . .- ,7n—1). Let (A,) be a normal sequence

of partitions of the interval [a, b] and (A,) be corresponding normal sequence

of partitions of the interval [—b, —a]. Then I(A,,7) = I(A,,T), hence and
by integrability of F' we have (2). O

Lemma 7. Let X be a real Banach space. If F: [0,00) — cc(X) is inte-
grable on each interval [a,b] C [0,00) where 0 < a < b < oo and there exist
the Hukuhara differences F(t) — F(s) for 0 < s < t, then for u > 0 there
exists the Hukuhara difference

b+u b
/ F(t)dt — /F(t) dt.
at+u a
Proof. Let A = {ag, a1, ... ,a,} be a partition of the interval [a, b] and 7; €

[j, iy1] for i € {0,1,... ,n—1}. Then A* = {ag+u, 1 +u,... ,an +u}
is the partition of the interval [a + u, b+ u] and 7; + u € [y + w, jy1 + u].
We consider integral sums corresponding to these partitions

n—1
I(A7) = Z(aiJrl — i) F(m)
i=0
and
n—1
I(AY 1) = ) ((@it1 +u) — (o +u)) F(7i + ),
i=0
where 7, = (10 +u, 71 +u,... ,7h—1 +u). Since for i € {0,1,... ,n— 1} the

Hukuhara differences F'(7; +u) — F(7;) exist, it follows that there exists the
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Hukuhara difference
n—1
I(AY 1) = I(A,7) =) (i1 — i) (F(7i +u) — F(7)).
i=0
Let (Ap) be a normal sequence of partitions of the interval [a,b] and (A})
be corresponding normal sequence of partitions of the interval [a 4 u, b+ u].
Since F' is integrable on each interval we have

b btu
I(Ap,T) — /F(t) dt and I(Ap), 1) — / F(t)dt when p — oc.
a atu
Hence and by Lemma 1 there exists the Hukuhara difference
b+u b
/ F(t) dt—/F(t) dt.
atu a

In next lemmas we assume that X is a real Banach space.

Lemma 8 ([2, p. 212]). If F: R — cc(X) is continuous, then it is inte-
grable on each interval [a,b] C R.

Lemma 9 ([2, p. 211]). If F': [a,b] — cc(X) is continuous, then
b

b
/F(t)dt g/up(t)udt.

a

Lemma 10. If F: R — cc(X) is continuous, then for every a € R the
multifunction

t
H(t) = /F(u)du fort>a
1S continuous.

Proof. Let h > 0 and t > a. By Lemmas 3 and 9 and properties of the
Hausdorff metric we have

¢ ¢ t+h
d(H(t),H(t+h)) =d /F(u)du,/F(u)du—i—/F(u)du
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t+h t+h
—|| [ Fwad < [IF@lan<n s @)
t<u<t+h
t t
and this tends to zero as h — 01. So H is continuous. O]

Lemma 11 ([2, p. 216]). If F: R — cc(X) is continuous, then

lim 1/F(u)du:F(t) fort e R.

Lemma 12. If F': [0,00) — cc(X) is continuous, then

j(/sF(u) du) ds:/t(t—u)F(u)du fort > 0. (3)
0 0 0

Proof. We define

o(t) == d (/t (/ F(u) du) ds,/t(t — u)F(u) du) for ¢ > 0.
0

0 0

Lemma 10 implies that ¢ is continuous. By Lemma 3 and properties of the
Hausdorff metric for h > 0 we have

o(t+h)

t+h [ s t+h
d(/ (/F(u)du) ds,/(t+hu)F(u)du>

0 0 0

d( | (/SF(U) du) ds,/t(t—u)F(u) du)

0 0

h s t+h t
(/F(u) du) ds, /(t+h—u)F(u) du+h/F(u) du) .

0

IN

[
7
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for t > 0, h > 0. Since F is continuous there exists M > 0 such that
| F(u)|| < M for uw € [t,t + 1]. Therefore by Lemma 9 we get

t+h t+h Mh
}t/(t—i—h—u)F(u)du §}1L/(t+h—u)|F( )||du<7

t t
for 0 < h < 1. This implies that
t+h
h%l % /(t +h —u)F(u)du = {0}.
t
Using the last equality, (4), Lemmas 10 and 11 we have

lim inf w
h—0+
1 t+h [/ s t
<h11)151+d h/ /F(u)du ds/F(u)du
t \0 0
t+h
+h1irél 7 /(t—i—h—u)F(u)du

According to a corollary from the Zygmund Lemma in [5, p. 174] the
function ¢ is nonincreasing. Therefore

¢(t) < ¢(0) =
for t > 0. This shows that equality (3) holds. O

Lemma 13. If F: [0,00) — cc(X) is continuous, then
t ( )n s t n+2
t—s
/ " /(S—U)F / n—|—2 (u) du (5)
0 0 0
fort>0,n=0,1,2....

Proof. For every nonnegative integer n we define
t s t

bn(t) = d / (t;;)n/(s—u) ds,/ n+2n+2 (u) du

0 0 0
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For n = 0 we have

po(t) =d (/t (/S(s —u)F(u) du) ds,/t (t ;!u)2F(u) du)

0 0 0

and by Lemma 3 and properties of the Hausdorff metric we have

Po(t + h)

d (j (/S(s — u)F(u) du) ds + 7h</s(s — u)F(u) du) ds,
0

0 t 0

t . 9 t
/(t - ) Flu) du+h/(t—u)F(u) du
0 0

for A > 0. Therefore

¢o(t + h) — ¢do(t)
h

t+h [ s t
<d :L/ (/(su)F(u)du) ds,/(tu)F(u)du)
t t " t+h ’
0 t
Since
t+h 9
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Jr

1 (t+ h h?

1 / “du s [P =" sup [P

h / t<u<t+h 6 t<u<tth
we have

1 t+h( b )2
. t+h—u
hli%l+ h / TF(U) du = {0}
t
and
lim inf Go(t +h) — po(t) <o.

h—0+ h

As we know the function ¢g is continuous nonnegative and ¢g(0)

whence by the corollary from the Zygmund Lemma ¢o(t) = 0 for ¢ > 0.
Thus

/t /S(s—u)F(u)du dszft(t;!“VF(u)du.
0 0 0

Let n be a nonnegative integer. Suppose that ¢, = 0. By Lemma 3 and
properties of the Hausdorff metric for h > 0 we have

¢n+1 (t + h)
t+h

_ (t+h— s+t |
=d 0/ MO/(S—U)F(u)du ds,

t+h

t4h—u)"t?
/WFWU
0

t s
1 (t — s)thmHi=
< Gpta1(t) +d (n - ) / §+ ol /(s —u)F(u)du | ds
=0 0 0
t+h

— 3 n+1
+ / —(t —F(:+ 1))! /(3 —u)F(u)du | ds,

0
t+h

n+2 t
(t —u)/ pH3-J (t+h —u)"t3
d — F(u)d
( )/ (n+3)! F(w) u+/ (n+3)! (u) du
0 t

Therefore

¢n+1<t + h) - ¢n+1(t)
h
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t X ]
" n+1 (t—s)h""
<d Z( ; > /(n+1)! /(s—u)F(u)du ds
=0 0 0
t+h s
1 (t+h—s)"t!
+h/ 1) /(s—u)F(u) du | ds,
0
n+2 b (p— )i pnt2—i
Z(w‘rg)/(t (u)+h3)' Fu) du
= j ) n !
. t+h( . s
t+h—u)"
— F(u)d
+h/ (n+3)! (u) du
Since
1 bk t h n—i—l hn+1 t h 2
/ +h—s) /s—u u)du | ds SMﬁ
h ECES 2(n+2)!
t 0
and
1 t+h(t+h )n+3 hn+3
—u
— 2 F(lu)dul|| < M
h/ gy Twdu s MEm—S
t

for 0 < h < 1, where M = sup{||F(u)|: t <u <t+ 1}, we have
Pni1(t+h) — Gnia(t)

lim inf
e h
t ( )n s t n+2
t—s
<d / n!/(s—u) ds,/ n—|—2 (u) du
0 0 0

= ¢n(t) =0
Applying the corollary from the Zygmund Lemma we obtain that ¢, 1 =0
and equality (5) holds for every n > 0 and ¢ > 0. O

It is not difficult to check that the following lemma is true.

Lemma 14. Let K be a conver cone in X. If F: K — cc(X) is linear
continuous, G: |a,b] — cc(K) is continuous, then

b

/F(G(t))dt: F /bG(t) dt

a



ON MULTIVALUED COSINE FAMILIES 67

Let F,G: K — cc(K). We can define the multifunctions F'+G and F'—G
on K as follows
(F+G)(x):=F(x)+G(x) forxe K
and
(F—G)(x) :=F(z) — G(x)
if the Hukuhara differences F'(z) — G(x) exist for all z € K.

Lemma 15 ([11, Lemma 2]). For each set A C K the inclusion

(F+G)(A) C F(A)+G(A4) (6)
holds. Moreover, if there exist the Hukuhara difference F(A) — G(A) and
the multifunction F' — G, then

F(A) = G(A) C (F = G)(A). (7)

Let K be a closed convex cone in a real Banach space. Applying The-
orem 4 in [14] we define the norm of a linear continuous multifunction
F: K — n(K), denoted by ||[F||, to be the smallest element of the set

{M > 0: |[F@)]| < Mllz|, « € K.

Theorem 1. Let X be a real Banach space and let K be a closed convex

cone in X. Assume that H: K — cc(K) is a linear continuous multifunc-
tion. Then for every x € K and t > 0 the series

[e.e]

Fy(z) =)

n=0

t2n

i@ 5)

is convergent in the metric space (cc(K),d). Moreover, the multifunctions
F;, t > 0 are linear and

(2Ft o Fs)(l‘) (@ Ft+s(x) + Ft_s(.ilﬁ)
forx e K, t>s>0.

The proof is similar to the proof of Theorem in [9)].
It is obvious that for single-valued functions we have the equality instead
of the inclusion in the assertion of Theorem 1 (see also Theorem 3.3 in [15]).

Theorem 2. Let X be a real Banach space and let K be a closed convex
conein X. If H: K — cc(K) is a linear continuous multifunction such that
x € H(z) and H?*(z) = H(z) for x € K, then the multifunction given by
(8) satisfies the equation

Fiys(2) + Fros(2) = 2F(Fs(x)) (9)
forx e K, s,t € R.
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Proof. By the assumption H?(z) = H(x) we have

o0 t2n . o t?n
Fyz) =" (2n>!H (@)=z+) WH(J;) =z + (cosht — 1)H(z).
n=0 n=1
This equality yields (9). O

For example H: [0,00) — c¢c(][0,00)) defined by H(x) = [0,z] or
H: [0,00)? — cc([0,00)?) defined by H((z,y)) = [0,2] x [0,y] satisfy the
assumptions of Theorem 2.

Definition. Let (K,+) be a semigroup. A one-parameter family
{F;: t € R} of multifunctions F;: K — n(K) is said to be a cosine family if

Fy(x) ={z} forze K
and
Ft+s + Ft—s = 2Ft O FS (10)

on K for s,t € R.
Let X be a real normed space. A cosine family {F;: t € R} is regular if

lim d(Fy(x), {x}) = 0.

Cosine families of single-valued functions was considered by many au-
thors. These families are relate to second order differential equations (for
example see [3], [16]). J. Kisynski proved that solution of some second order
differential problem is a cosine family (see Lemma 1.3.3 in [3]).

Lemma 16 ([11, Lemma 8]). Let X be a Banach space and let K be a
closed convex cone in X such that int K # (). Assume that {F;: t € R}
is a reqular cosine family of continuous additive set-valued functions Fy:
K — ce(K) and x € Fi(z) for allz € K and t € R. Then there exist the
Hukuhara differences Fi(x) — Fs(z) for all0 < s <t and x € K.

Theorem 3. Let X be a real Banach space and let K be a closed convex
cone in X such that intK # (). Assume that {F}: t € R} is a regular cosine
family of continuous linear multifunctions Fy: K — cc(X) and x € F(x)
forallz € K andt € R. Then there exists a continuous linear multifunction
H: K — cc(K) such that

o0

Fyz)C > (zn)'H”(a:)
=0 ’

t2n

forx e K andt € R.
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Proof. Let z € K. Consider the multifunction ¢t — Fi(x) for t € R. We
first show some properties of this multifunction. Putting ¢ = 0 in (10) we
have Fy(x)+ F_g(x) = 2Fy(Fs(x)) = 2Fs(x) = Fs(x) 4 Fs(x). By Radstrom
Lemma we obtain Fy(x) = F_g(x). Thus the multifunction ¢ — Fy(z) is
even. Hence and by (10) we have Fyo Fy = Fyo F;. According to Theorem 2
in [13] the multifunction ¢ — F}(z) is continuous on [0, +00). As t — Fi(x)
is even it is continuous on R. By Lemma 8 it is integrable on each interval
[a,b] C R. Setting t = (v+u)/2, s = (v—1u)/2, u,v € R in (10) we get

Fv(x) + Fu(x) = 2F(v+u)/2(F(v—u)/2(m))
Since x € Fi(x) we have

Fy(z) + Fu(x)
2

Hence, by the continuity and Theorem 1 in [7] the multifunction t — Fy(z) is
concave. We observe that ¢ — Fi(x) is increasing in [0, +00) and decreasing
in (—00,0]. Indeed, for 0 < s < t there exists A € [0,1] such that s =
(1 = X)0+ At. Hence Fs(x) C (1 — N)Fo(x) + AFy(x) = (1 = N)x + AF(z) C
(1 = N EFy(z) + AFi(x) = Fy(z). For t < s < 0 we have Fs(z) = F_5(z) C
F_t(l’) = Ft(l’)

We next define some multifunctions. We use them later in the construc-
tion of the multifunction H and in proving of the inclusion in the assertion.
To define these multifuctions we need to show the existence of some limits.
Take arbitrary « and t such that 0 < o« < t. Integrating over s € [0, q]
formula (10) we obtain

Floquy2(x) C

/Ft+s(x) ds—i—/Ft_S(a:) ds = /2Ft(FS(x))ds.
0 0 0
Hence, by Lemmas 4, 6 and 14 we have
o+t t a
/ Fy(x)dw + / Fy(z) dw = 2F; /Fs(az) ds | .
t t—a 0

The last equality and Lemma 2 lead to

t/+aFw(x) dw = 2F, /a Fy(x)ds | . (11)
t—a 0

Replacing in (11) ¢ by ¢ + u, where u € (0, ), we get
t+atu o
Fy(z)dw = 2F;4, /FS(:L') ds | . (12)

t—atu 0
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Adding both the sides (11) and (12) we have

t+otu o
Fy(x)dw + 2F; /Fs(az) ds
t—a+tu 0
t+a a
= / Fy(z)dw + 2F;4, /Fs(x) ds
t-a 0

Then we get by Lemma 3 substracting the term LT;JW Fy(z) dw from both
the sides of the last equality

t+a+tu «

Fy(z)dw + 2F; /FS(:L‘) ds
t+a 0
t—a+tu o (13)
= / Fy(z)dw + 2F; 4y, /Fs(x) ds
t—a 0

By Lemma 7 the Hukuhara difference
t+atu t—atu
Fy(x) dw — / Fy(x)dw
t+a t—a

exists, which together with (13) shows that the Hukuhara difference

« o

2F; 1y /Fs(m) ds | —2F; /Fs(m) ds

0 0

also exists and

2y (Z Fy(x) ds> _9R, (f Fy(x) ds>

0

u
1 t+a+u 1 t—a+tu
= / Fy(x) dw — " / Fy(z) dw
t+ao t—a

In virtue of Lemmas 1 and 11 there exists

. 2y <Of Fy(x) ds> _9R <Of Fy(x) ds) e

u—0t U
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We define
Fiio(x) — Fi_o(x
Ga,t(ﬂf) — t+ ( )2 t ( )
Fiyu (f Fi(z) d8> - F <f Fy(x) ds)
= lim 0 0 )
u—0t U

‘We observe that

Ga(z) = Fria(@) ; Fiea(?) _ Fast(2) ;Fat(l‘)

= Gt,a (l‘) .
(14)

Since the multifunction s — Fs(z) is concave and there exist the
Hukuhara differences Fi(x) — Fs(z) for t > s > 0, so by Theorem 3.2 in
[10] there exist

G (z) = ali,rng - ,
G, (z) :== lim Fi(x) — Fi—a(2)
a—0t «Q

and G () C G (z) for t > 0. Consequently there exists
Frio(z) — Fry
Gie) = tim Tirel®) = Fimal®)
a—07t (e
It follows from (10) that

F%(?t T _ g <Ft(x2 —x) . Ft(xt) 3

=Gf () + Gy (z) fort>0.

Letting t — 07 we get

lim F, <Ft(“"2 - ””) = {0}

t—0t

and since
F; — F —
S CERAPYLUES
t t
we have
. Fi(x)—=
GT = lim ———— = {0}.
o (#) = lim —— {0}

Our next claim is that the multifunction ¢ — G (z) is concave. Replacing
in (10) t by ¢t + u, u > 0 and substract Fiys(z)+ Fi—s(z) from both the
sides of this equality we get

Firisu(®) = Fis(®) + Fiostu(z) — Fis(z) = 2F40(Fs(2)) — 2F(Fs()).
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Dividing the last equality by u we get

+
u

Fiispu(®) = Fris(r) | Fiosiu(r) = Fios(z) oF, (Ft+u(37) - Ft($)>

and letting u — 07 we obtain
Gis(@) + Gi_(2) = 2F4(GY (@)). (15)
Setting t = (v +u)/2, s = (v—u)/2, u,v € R in (15) we have
G (&) + G (@) = 2y (G o))

By assumption z € Fi(x) we get

G (2) + GE(x)

+
¢ 2

(otu)/2(%) C

Fix an interval [a,b] C [0,00) and let ¢ € [a,b]. Since G/ (z) C
Fiy1(x) — Fy(z) we have

G (z)+z C Gf (x) + Fy(v) C Fyq(z) C Fypq().

Therefore the multifunction ¢ — G} (z) is bounded on [a,b]. By Theorem
4.4 in [6] the multifunction ¢ — G¢(x) is continuous in (0, 00) and concave
by Theorem 4.1 in [6]. Let A € (0,1). Then G}, (z) C AG{ (x) and

G;\rt(x) c G?(w)
At t

it follows that there exists

t—0t t

Since x — Fy(x) for every t € R are linear continuous we see H is linear
and | H(z)]| < ||Gi(x)|| < [|G1]|||x]|, hence H is continuous, too.

By uniform convergence of lim, .o+ (Fatu(x) — Fo(z))/u on each com-
pact subset of K (see Theorem 1 in [8]), Lemma 15 and equality (14) we
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get
2Gy ()
2
€ Gile) =l {Goe) = iy Lol
t t
Fotu <f Fs(a?) d3> - F, (f Fs(.’L') dS)
. 2 0 0
= hm+ — hm+
a—0T & u—0 t u (16)
(P~ £ ([ P s
. 2 0
C lim — lim
a—0t+ o u—0+ u

:ali%l aG+ (/th(:c) ds) =2H (O/th(a:) ds) .

0

According to Theorem 4.3 in [10] we have

Hence, by (16), Lemmas 5, 12 and 14 we obtain

Fi(z) C x+]H (/sFu(x) du) ds

0 0

=z+H (/t (/SFu(m)du> ds) =x+H (/t(tu)Fu(:(:)du)

0 0 0

Using Lemma 13 instead of Lemma 12 we get succesively

(t —u) (:L‘+H (/(us)Fs(x) ds)) du]
0

tuacdu—i—o/tuH(/(us)Fs(x)ds) du]
/((tu /u—s s) du]

=z+ H

/
/

1
=x+H <2t2x> + H?
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t
12
=+ H' )+ H?

x)ds
0
Repeating the same steps we have
2 £2n

Fi(x) Cx+%H(m)+ + (QH)IH”(a:)

t

+ H" / s Fy(x)ds
(2n + B
0

It remains to prove that

p _ g)2nt1
! / (t(Qn_il)!Fs(x)ds = {0}
0

For s € [0,t], Fs(z) C Fy(x), so |Fs(x)| < ||Fi(x)||. Let m = ||Fi(x)|. By
Lemma 9 we have

t
n+1 (t B S)2n+1
0

t
_ <\2n+1
< | (O as
(2n+1)!
0

Lo g)2n+l
< / o IR ds

11 { 2n+1
<1 H|"
Sy m/52n+1
0

t2n+2 - (HHHtQ)n—H

< H n+1 —
< I m e =
Since
(ERy
(n+ 1)
we have
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Therefore

o 2n

Fy(z) C Z(;n)'H”(x) forteR, x € K.

n=0

O]

S. Kurepa in [4] proved that every single-valued function of the cosine
family is in the form of the series. Theorem 3 is not generalization of
Theorems for single-valued case.

Example 1. A family {F;: ¢ € R} of multifunctions Fi: [0,00) —
cc(]0,00)) such that Fi(z) = z[1,cosht] is a regular cosine family. Our
wanted multifunction is H(z) = [0, z] and

0 t2n > t2n
Fy(z) = Z:O ml{”(z) —z+ Zl ) [0, z].

Example 2. A family {F,: t € R} of multifunctions F;: [0,00)2 —
cc(]0,00)?) defined by Fy((z,y)) = [z,zcosht] x [y,ycosht] is a regular
cosine family. Our wanted multifunction is H((z,y)) = [0, z] x [0,y] and

o 2n e 2n
Bl(@.0) = Y i) = (2.) + - 0.2] x 0.4)
n=0 n=1
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