
Journal of Applied Analysis

Vol. 13, No. 1 (2007), pp. 117–132

SECOND ORDER MIXED SYMMETRIC
DUALITY IN NON-DIFFERENTIABLE
MULTI-OBJECTIVE MATHEMATICAL

PROGRAMMING

S. K. MISHRA

Received November 8, 2005 and, in revised form, June 6, 2006

Abstract. A pair of Mond-Weir type second order mixed symmetric
duals is presented for a class of non-differentiable multi-objective non-
linear programming problems with multiple arguments. We establish
duality theorems for the new pair of dual models under second order
generalized convexity assumptions. This mixed second order dual for-
mulation unifies the two existing second order symmetric dual formu-
lations in the literature. Many recent works on symmetric duality are
obtained as special cases of the results established in the present paper.

1. Introduction

Dorn [7] introduced symmetric duality in nonlinear programming by
defining a program and its dual to be symmetric if the dual of the dual
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is the original problem. The symmetric duality for scalar programming has
been studied extensively in the literature, one can refer to Dantzig et al.
[5], Mishra [14]–[16], Mond [18], Mond and Weir [21].

Mond and Schechter [20] studied non-differentiable symmetric duality for
a class of optimization problems in which the objective function consists of
support functions. Following Mond and Schechter [20], Chen [4], Hou and
Yang [11], and Yang et al. [26], [28], studied symmetric duality for such
problems.

The study of second order duality is significant due to the computa-
tional advantage over the first order duality as it provides tighter bounds
for the value of the objective function when approximations are used (see
[9], [13], [17], [19]). Mond [19] was the first one to present second order
symmetric dual models and proved second order symmetric duality theo-
rems under convexity assumptions. Mishra [15] established Wolfe type and
Mond-Weir type second order symmetric duality for nonlinear programming
problems under second order generalized convexity assumptions. Hou and
Yang [11] and Yang et al. [26] extended the results of Mishra [15] to the
non-differentiable case. Suneja et al. [24] extended the results of Mishra
[15] to the multiobjective case. Some more results on symmetric duality can
be seen in [6], [21], [22], [25].

Yang et al. [27] presented a mixed symmetric dual formulation for a non-
differentiable nonlinear programming problem. Bector et al. [3] introduced
a mixed symmetric dual model for a class of nonlinear multiobjective pro-
gramming problems. However, the models given by Bector et al. [3] as well
as by Yang et al. [27] do not allow the further weakening of generalized
convexity assumptions on a part of the objective functions.

Very recently, Yang et al. [28] established second order duality results for
second order symmetric dual models for a class of non-differentiable multi-
objective programming problems as an extension of the results of Suneja et
al. [24].

In this paper, a pair of Mond-Weir type second order mixed symmetric
dual is presented for a class of non-differentiable multi-objective nonlin-
ear programming problems with multiple arguments. We establish duality
theorems for the new pair of dual models under second order generalized
convexity assumptions. This mixed second order dual formulation unifies
the two existing second order symmetric dual formulations in the literature.
Many recent works on symmetric duality are obtained as special cases of
the results established in the present paper.
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2. Preliminaries

Let Rn denote the n-dimensional Euclidean space and let Rn+ be its non-
negative orthant. The following ordering relations for vectors in Rn will be
used in this paper:

For x, y ∈ Rn, by x < y we mean y − x ∈ intRn+; by x ≤ y we mean
y − x ∈ Rn+ \ {0}; and by x5y we mean y − x ∈ Rn+. The negation of x ≤ y
is denoted by x 6≤ y.

Let f (x, y) be real valued twice differentiable function defined on Rn×Rm.
Let ∇xf (x̄, ȳ) and ∇yf (x̄, ȳ) denote the partial derivatives of f (x, y) with
respect to x and y at (x̄, ȳ) . Let ∇xxf (x̄, ȳ) denote the n × n symmetric
Hessian matrix at (x̄, ȳ), ∇xyf (x̄, ȳ), ∇yxf (x̄, ȳ) and ∇yyf (x̄, ȳ) are de-
fined similarly. Consider the following multiobjective programming problem
(VP):

Min (f1 (x) , f2 (x) , . . . , fp (x)) subject to x ∈ X0,

where fi : Rn → R, i = 1, 2, . . . , p and X0 ⊆ Rn.
For problem (VP), an efficient solution and a properly efficient solution

are defined as follows:

Definition 1. A feasible solution x0 is said to be an efficient solution for
(VP) if there exists no other feasible solution x such that

f (x) ≤ f
(
x0) .

Definition 2. A feasible solution x0 is said to be properly efficient solution
for (VP) if it is efficient for (VP) and there exists a scalar M > 0 such that,
for each i, we have

fi
(
x0
)
− fi (x)

fj (x)− fj (x0)
5M

for some j such that fj (x) > fj
(
x0
)

whenever x ∈ X0 and fi (x) < fi
(
x0
)
.

Let C be a compact convex set in Rn. The support function of C is
defined by

s (x |C ) = max
{
xT y : y ∈ C

}
.

A support function, being convex and everywhere finite, has a subdiffer-
ential [23], that is, there exists z ∈ Rn such that

s (y |C ) = s (x |C ) + zT (y − x) , ∀y ∈ C.

The subdifferential of s (x |C ) is given by

∂s (x |C ) =
{
z ∈ C : zTx = s (x |C )

}
.
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For any set D ⊂ Rn, the normal cone to D at a point x ∈ D is defined
by

ND (x) =
{
y ∈ Rn : yT (z − x)50, ∀z ∈ D

}
.

It is obvious that for a compact convex set C, y ∈ NC (x) if and only if
s (y |C ) = xT y, or equivalently, x ∈ ∂s (y |C ).

The following definitions will be needed in the sequel:

Definition 3. Let X ⊂ Rn. A functional F : X ×X × Rn → R is said to
be sublinear with respect to its third argument if for any x, y ∈ X
(A) F (x, y; a1 + a2) = F (x, y; a1) + F (x, y; a2) for any a1, a2 ∈ Rn;
(B) F (x, y;αa) = αF (x, y; a) for any α ∈ R+ and a ∈ Rn.

Definition 4. Let X ⊂ Rn, Y ⊂ Rm and F : X×Y ×Rn → R be sublinear
with respect to its third argument. f (·, y) is said to be second order F -
convex at x̄ ∈ X, with respect to p ∈ Rn, for fixed y ∈ Y , if

f (x, y)−f (x̄, y)+
1
2
pT∇xxf (x̄, y) p=F (x, x̄;∇xf (x̄, y) +∇xxf (x̄, y) p) ,

∀x ∈ X.
f is said to be second order F -concave at x̄ ∈ X, with respect to p ∈ Rn,
for fixed y ∈ Y , if −f is second order F -convex at x̄ ∈ X, with respect to
p ∈ Rn.

Definition 5. Let X ⊂ Rn, Y ⊂ Rm and F : X×Y ×Rn → R be sublinear
with respect to its third argument. f (x, ·) is said to be second order F -
pseudo-convex at x̄ ∈ X, with respect to p ∈ Rn, for fixed y ∈ Y , if

F (x, x̄;∇xf (x̄, y) +∇xxf (x̄, y) p)=0

⇒ f (x, y)=f (x̄, y)− 1
2
pT∇xxf (x̄, y) p, ∀x ∈ X.

f is said to be second order F -pseudo-concave at x̄ ∈ X, with respect to
p ∈ Rn, for fixed y ∈ Y , if −f is second order F -pseudo-convex at x̄ ∈ X,
with respect to p ∈ Rn.

Remark 1.
(i) The second order F -pseudo-convexity reduces to the F -pseudo-

convexity introduced by Hanson and Mond [10] when p = 0.
(ii) For F (x, x̄; a) = η (x, x̄)T a, and p = 0, where η : X × X → Rn, the

second order F -convexity reduces to the invexity introduced by Han-
son [8], and second order F -pseudo-convexity reduces to the pseudo-
invexity introduced by Hanson [8].
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3. Mixed type multi-objective symmetric duality

For N = {1, 2, . . . , n} and M = {1, 2, . . . ,m} let J1 ⊂ N , K1 ⊂ M and
J2 = N\J1 and K2 = M\K1. Let |J1| denote the number of elements in
the set J1. The numbers |J2|, |K1| and |K2| are defined similarly. Notice
that if J1 = Φ, then J2 = N , that is, |J1| = 0 and |J2| = n. Hence, R|J1|

is zero dimensional Euclidean space and R|J2| is n-dimensional Euclidean
space. It is clear that any x ∈ Rn can be written as x =

(
x1, x2

)
, x1 ∈ R|J1|,

x2 ∈ R|J2|. Similarly, any y ∈ Rm can be written as y =
(
y1, y2

)
, y1 ∈ R|K1|,

y2 ∈ R|K2|. Let f : R|J1| × R|K1| → Rl and g : R|J2| × R|K2| → Rl be twice
differentiable functions and e = (1, 1, . . . , 1)T ∈ Rl.

Now we can introduce the following pair of non-differentiable multi-
objective programs and discuss duality theorems under some mild assump-
tions of generalized convexity.

Primal Problem (SMP)

Min H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
=
(
H1
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
, . . . ,Hl

(
x1, x2, y1, y2, z1, z2, p1, p2, λ

))
subject to(

x1, x2, y1, y2, z1, z2, p1, p2, λ
)

∈ R|J1| × R|J2| × R|K1| × R|K2| × R|K1| × R|K2| × R|K1| × R|K2| × Rl+

l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]50 (1)

l∑
i=1

λi
[
∇y2gi

(
x2, y2)− z2

i +∇y2y2gi
(
x2, y2) p2

i

]50 (2)

(
y1)T l∑

i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]=0 (3)

(
y2)T l∑

i=1

λi
[
∇y2gi

(
x2, y2)− z2

i +∇y2y2gi
(
x2, y2) p2

i

]=0 (4)(
x1, x2)=0, (5)

z1
i ∈ D1

i , and z2
i ∈ D2

i , i = 1, 2, . . . , l (6)

λ > 0,
l∑

i=1

λi = 1. (7)
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Dual Problem (SMD)

Max G
(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
=
(
G1
(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
, . . . , Gl

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

))
subject to(

u1, u2, v1, v2, w1, w2, q1, q2, λ
)

∈ R|J1| × R|J2| × R|K1| × R|K2| × R|J1| × R|J2| × R|J1| × R|J2| × Rl+
l∑

i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]=0 (8)

l∑
i=1

λi
[
∇u2gi

(
u2, v2)+ w2

i +∇u2u2gi
(
u2, v2) q2

i

]=0 (9)

(
u1)T l∑

i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]50 (10)

(
u2)T l∑

i=1

λi
[
∇u2gi

(
u2, v2)+ w2

i +∇u2u2gi
(
u2, v2) q2

i

]50 (11)(
v1, v2)=0, (12)

w1
i ∈ C1

i , and w2
i ∈ C2

i , i = 1, 2, . . . , l (13)

λ > 0,
l∑

i=1

λi = 1 (14)

where

Hi

(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
= fi

(
x1, y1)+ gi

(
x2, y2)+ s

(
x1 ∣∣C1

i

)
+ s

(
x2 ∣∣C2

i

)
−
(
y1)T z1

i

−
(
y2)T z2

i −
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i −
1
2
(
q2
i

)T ∇y2y2gi
(
x2, y2) q2

i

Gi
(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
= fi

(
u1, v1)+ gi

(
u2, v2)− s (v1 ∣∣D1

i

)
− s

(
v2 ∣∣D2

i

)
+
(
u1)T w1

i

+
(
u2)T w2

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i −
1
2
(
q2
i

)T ∇u2u2gi
(
u2, v2) q2

i

and C1
i is a compact and convex subsets of R|J1| for i = 1, 2, . . . , l and C2

i is
a compact and convex subsets of R|J2| for i = 1, 2, . . . , l, similarly, D1

i is a
compact and convex subsets of R|K1| for i = 1, 2, . . . , l and D2

i is a compact
and convex subsets of R|K2| for i = 1, 2, . . . , l.
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For the first model, we can prove the following weak duality theorem.

Theorem 1 (Weak duality). Let
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
be feasi-

ble for (SMP) and
(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
be feasible for (SMD).

Suppose there exist sublinear functionals F1, F2, G1 and G2 satisfying the
following conditions:

(i) F1
(
x1, u1; a

)
+
(
u1
)T
a=0 if a=0;

(ii) G1
(
x2, u2; b

)
+
(
u2
)T
b=0 if b=0;

(iii) F2
(
v1, y1; c

)
+
(
y1
)T
c=0 if c=0;

(iv) G2
(
v2, y2; d

)
+
(
y2
)T
d=0 if d=0.

Furthermore, assume that for i = 1, 2, . . . , l, fi
(
·, v1

)
+ ·Tw1

i is second order
F1-convex for fixed v1, with respect to q1

i ∈ R|J1|, fi
(
x1, ·

)
− ·T z1

i is second
order F2-concave for fixed x1, with respect to p1

i ∈ R|K1|, gi
(
·, v2

)
+ ·Tw2

i is
second order G1-convex for fixed v2 with respect to q2

i ∈ R|J2| and gi
(
x2, ·

)
−

·T z2
i is second order G2-concave for fixed x2, with respect to p2

i ∈ R|K2|.
Then

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
6≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Proof. Assume that the result is not true, that is,

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Then, since λ > 0, we have
l∑

i=1

λi

[
fi
(
x1, y1)+ gi

(
x2, y2)+ s

(
x1 ∣∣C1

i

)
+ s

(
x2 ∣∣C2

i

)
−
(
y1)T z1

i

−
(
y2)T z2

i −
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

− 1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
(15)

<
l∑

i=1

λi

[
fi
(
u1, v1)+ gi

(
u2, v2)− s (v1 ∣∣D1

i

)
− s

(
v2 ∣∣D2

i

)
+
(
u1)T w1

i

+
(
u2)T w2

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i −
1
2
(
q2
i

)T ∇u2u2gi
(
u2, v2) q2

i

]
By the second order F1-convexity of fi

(
·, v1

)
+ ·Tw1

i at x1 with respect to
q1
i ∈ R|J1|, we have

fi
(
x1, v1)+

(
x1)T w1

i − fi
(
u1, v1)− (u1)T w1

i +
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

=F1
(
x1, u1;∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

)
.
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for i = 1, 2, . . . , l.
From λ > 0 and sublinearity of F1, we have

l∑
i=1

λi

[
fi
(
x1, v1)+

(
x1)T w1

i − fi
(
u1, v1)− (u1)T w1

i

+
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

]
(16)

=F1

(
x1, u1;

l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

])
.

By the duality constraint (8), it follows that

a =
l∑

i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]
∈ R|J1|

+ .

Thus, by condition (i) given in Theorem 1, we have

F1
(
x1, u1; a

)
+
(
u1)T a=0,

that is,

F1

(
x1, u1;

l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

])

=− (u1)T l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]
. (17)

From (10), (16) and (17), we get
l∑

i=1

λi

[
fi
(
x1, v1)+

(
x1)T w1

i − fi
(
u1, v1)− (u1)T w1

i

+
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

]
=0. (18)

By second order F2-concavity of fi
(
x1, ·

)
−·T z1

i for fixed x1, with respect
to p1

i ∈ R|K1|, we have

− fi
(
x1, v1)+(v1)T z1

i +fi
(
x1, y1)−(y1)T z1

i −
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

=F2
(
v1, y1;−∇y1fi

(
x1, y1)+ z1

i −∇y1y1fi
(
x1, y1) p1

i

)
.

From λ > 0 and sublinearity of F2, we have
l∑

i=1

λi

[
fi
(
x1, y1)− (y1)T z1

i +
(
v1)T z1

i − fi
(
x1, v1)
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− 1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

]
(19)

=F2

(
v1, y1;

l∑
i=1

λi
[
−∇y1fi

(
x1, y1)+ z1

i −∇y1y1fi
(
x1, y1) p1

i

])
.

By the primal constraint (1), it follows that

c = −
l∑

i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]=0.

Thus, by condition (iii) given in Theorem 1, we have

F2
(
v1, y1; c

)
+
(
y1)T c=0,

that is,

F2

(
v1, y1;−

l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

])

= (y1)T l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]
. (20)

From (3), (19) and (20), we get

l∑
i=1

λi

[
fi
(
x1, y1)− (y1)T z1

i +
(
v1)T z1

i − fi
(
x1, v1)

− 1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

]
=0. (21)

Using
(
x1
)T
w1
i5s

(
x1
∣∣C1

i

)
and

(
v1
)T
z1
i5s

(
v1
∣∣D1

i

)
, it follows from (18)

and (21), that

l∑
i=1

λi

[
fi
(
x1, y1)+ s

(
x1 ∣∣C1

i

)
−
(
y1)T z1

i

− 1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

]
(22)

=
l∑

i=1

λi

[
fi
(
u1, v1)− s (v1 ∣∣D1

i

)
+
(
u1)T w1

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

]
Similarly, using remaining hypotheses and conditions given in Theorem

1 and using constraints of the primal and dual problems for functions
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gi
(
·, v2

)
+ ·Tw2

i and gi
(
x2, ·

)
− ·T z2

i , we get

l∑
i=1

λi

[
gi
(
x2, y2)+ s

(
x2 ∣∣C2

i

)
−
(
y2)T z2

i

− 1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
(23)

=
l∑

i=1

λi

[
gi
(
u2, v2)− s (v2 ∣∣D2

i

)
+
(
u2)T w2

i −
1
2
(
q2
i

)T ∇u2u2fi
(
u2, v2) q2

i

]
.

From (22) and (23), we get
l∑

i=1

λi

[
fi
(
x1, y1)+ gi

(
x2, y2)+ s

(
x1 ∣∣C1

i

)
+ s

(
x2 ∣∣C2

i

)
−
(
y1)T z1

i

−
(
y2)T z2

i −
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i −
1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
=

l∑
i=1

λi

[
fi
(
u1, v1)+ gi

(
u2, v2)− s (v1 ∣∣D1

i

)
− s

(
v2 ∣∣D2

i

)
+
(
u1)T w1

i

+
(
u2)T w2

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i −
1
2
(
q2
i

)T ∇u2u2gi
(
u2, v2) q2

i

]
,

which is a contradiction to (15).
Hence

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
6≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Theorem 2 (Weak duality). Let
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
be feasi-

ble for (SMP) and
(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
be feasible for (SMD).

Suppose there exist sublinear functionals F1, F2, G1 and G2 satisfying the
following conditions:

(i) F1
(
x1, u1; a

)
+
(
u1
)T
a=0 if a=0;

(ii) G1
(
x2, u2; b

)
+
(
u2
)T
b=0 if b=0;

(iii) F2
(
v1, y1; c

)
+
(
y1
)T
c=0 if c=0;

(iv) G2
(
v2, y2; d

)
+
(
y2
)T
d=0 if d=0.

Furthermore, assume that for i = 1, 2, . . . , l, fi
(
·, v1

)
+ ·Tw1

i is second order
F1-pseudo-convex for fixed v1, with respect to q1

i ∈ R|J1|, fi
(
x1, ·

)
− ·T z1

i is
second order F2-pseudo-concave for fixed x1, with respect to p1

i ∈ R|K1|,
gi
(
·, v2

)
+ ·Tw2

i is second order G1-pseudo-convex for fixed v2 with respect
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to q2
i ∈ R|J2| and gi

(
x2, ·

)
−·T z2

i is second order G2-pseudo-concave for fixed
x2, with respect to p2

i ∈ R|K2|.
Then

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
6≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Proof. Assume that the result is not true, that is,

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Then, since λ > 0, we have
l∑

i=1

λi

[
fi
(
x1, y1)+ gi

(
x2, y2)+ s

(
x1 ∣∣C1

i

)
+ s

(
x2 ∣∣C2

i

)
−
(
y1)T z1

i

−
(
y2)T z2

i −
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

− 1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
(24)

<

l∑
i=1

λi

[
fi
(
u1, v1)+ gi

(
u2, v2)− s (v1 ∣∣D1

i

)
− s

(
v2 ∣∣D2

i

)
+
(
u1)T w1

i

+
(
u2)T w2

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i −
1
2
(
q2
i

)T ∇u2u2gi
(
u2, v2) q2

i

]
By the duality constraint (8), it follows that

a =
l∑

i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]
∈ R|J1|

+ .

Thus, by condition (i) given in Theorem 2, we have

F1
(
x1, u1; a

)
+
(
u1)T a=0,

that is,

F1

(
x1, u1;

l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

])

=− (u1)T l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

]
(25)

From (10) and (25), we get

F1

(
x1, u1;

l∑
i=1

λi
[
∇u1fi

(
u1, v1)+ w1

i +∇u1u1fi
(
u1, v1) q1

i

])=0. (26)
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From (26) and second order F1-pseudo-convexity of fi
(
·, v1

)
+ ·Tw1

i for
fixed v1, with respect to q1

i ∈ R|J1|, we get
l∑

i=1

λi

[
fi
(
x1, v1)+

(
x1)T w1

i − fi
(
u1, v1)− (u1)T w1

i

+
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

]
=0. (27)

By primal constraint (1), it follows that

c = −
l∑

i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]=0.

Thus, by condition (iii) given in Theorem 2, we have

F2
(
v1, y1; c

)
+
(
y1)T c=0,

that is,

F2

(
v1, y1;−

l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

])

= (y1)T l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

]
. (28)

From (3) and (28), we get

F2

(
v1, y1;−

l∑
i=1

λi
[
∇y1fi

(
x1, y1)− z1

i +∇y1y1fi
(
x1, y1) p1

i

])=0. (29)

From (29) and the second order F2-pseudo-concavity of fi
(
x1, ·

)
− ·T z1

i for
fixed x1, with respect to p1

i ∈ R|K1|, we have
l∑

i=1

λi

[
fi
(
x1, y1)− (y1)T z1

i +
(
v1)T z1

i − fi
(
x1, v1)

− 1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

]
=0. (30)

Using
(
x1
)T
w1
i5s

(
x1
∣∣C1

i

)
and

(
v1
)T
z1
i5s

(
v1
∣∣D1

i

)
, it follows from (27)

and (30), that
l∑

i=1

λi

[
fi
(
x1, y1)+ s

(
x1 ∣∣C1

i

)
−
(
y1)T z1

i

− 1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i

]
(31)
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=
l∑

i=1

λi

[
fi
(
u1, v1)− s (v1 ∣∣D1

i

)
+
(
u1)T w1

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i

]
.

Similarly, using remaining hypotheses and conditions given in Theorem
2 and using constraints of the primal and dual problems for functions
gi
(
·, v2

)
+ ·Tw2

i and gi
(
x2, ·

)
− ·T z2

i , we get

l∑
i=1

λi

[
gi
(
x2, y2)+ s

(
x2 ∣∣C2

i

)
−
(
y2)T z2

i

− 1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
(32)

=
l∑

i=1

λi

[
gi
(
u2, v2)− s (v2 ∣∣D2

i

)
+
(
u2)T w2

i −
1
2
(
q2
i

)T ∇u2u2fi
(
u2, v2) q2

i

]
.

From (31) and (32), we get

l∑
i=1

λi

[
fi
(
x1, y1)+ gi

(
x2, y2)+ s

(
x1 ∣∣C1

i

)
+ s

(
x2 ∣∣C2

i

)
−
(
y1)T z1

i

−
(
y2)T z2

i−
1
2
(
p1
i

)T ∇y1y1fi
(
x1, y1) p1

i −
1
2
(
p2
i

)T ∇y2y2gi
(
x2, y2) p2

i

]
=

l∑
i=1

λi

[
fi
(
u1, v1)+ gi

(
u2, v2)− s (v1 ∣∣D1

i

)
− s

(
v2 ∣∣D2

i

)
+
(
u1)T w1

i

+
(
u2)T w2

i −
1
2
(
q1
i

)T ∇u1u1fi
(
u1, v1) q1

i −
1
2
(
q2
i

)T ∇u2u2gi
(
u2, v2) q2

i

]
which is a contradiction to (24).

Hence

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
6≤ G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Theorem 3 (Strong duality). Let
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
be a

properly efficient solution for (SMP). Let λ = λ be fixed in (SMD). Suppose
that the Hessian matrix ∇2

y1fi

(
x1, y1

)
is positive definite for i = 1, 2, . . . , l

and
∑l

i=1 λi
(
p1
i

)T [∇y1gi − z̄1
i

]=0; and ∇2
y2gi

(
x2, y2

)
is positive definite

for i = 1, 2, . . . , l and
∑l

i=1 λi
(
p2
i

)T [∇y2gi − z̄2
i

]=0; or ∇2
y1fi

(
x1, y1

)
is negative definite for i = 1, 2, . . . , l and

∑l
i=1 λi

(
p1
i

)T [∇y1fi − z̄1
i

]50;
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and ∇2
y2gi

(
x2, y2

)
is negative definite for i = 1, 2, . . . , l and

l∑
i=1

λi
(
p2
i

)T [∇y2gi − z̄2
i

]50. Also suppose that the sets{
∇y1f1 − z̄2

1 +∇y1y1f1p̄
1
1, . . . ,∇y1fl − z̄2

l +∇y1y1flp̄
1
l

}
and {

∇y2g1 − z̄2
1 +∇y2y2g1p̄

2
1, . . . ,∇y2gl − z̄2

l +∇y2y2glp̄
2
l

}
are linearly independent. Then there exists w1

i ∈ C1
i and w2

i ∈ C2
i such that(

x1, x2, y1, y2, w1, w2, q1 = q2 = 0, λ
)

is feasible for (SMD) and

H
(
x1, x2, y1, y2, z1, z2, p1, p2, λ

)
= G

(
u1, u2, v1, v2, w1, w2, q1, q2, λ

)
.

Moreover, if the generalized convexity hypotheses and conditions (i)-(iv) of
Theorem 1 or 2 are satisfied, then

(
x1, x2, y1, y2, w1, w2, q1, q2, λ

)
is a prop-

erly efficient solution for (SMD).

Proof. The proof follows the lines of the proof of Theorem 2 in Yang et al.
[28] in light of the discussions above in this paper.

Remark 2. The converse duality theorem can also be established for the
problems considered in this paper.

4. Special cases

In this section, we consider some special cases of the problem (SMP) and
(SMD) by choosing particular forms of the sublinear functionals and the
compact convex sets involved in the problems.

If |J2| = |K2| = 0, then (SMP) and (SMD) reduce to the problems (P)
and (D) studied by Yang et al. [28].

If |J2| = |K2| = 0, and C1
i = C2

i = D1
i = D2

i = {0}, i = 1, 2, . . . , l, then
(SMP) and (SMD) reduce to the problems (P) and (D) studied by Suneja
et al. [24].

If C1
i = C2

i = D1
i = D2

i = {0}, i = 1, 2, . . . , l, and l = 1, then (SMP) and
(SMD) reduce to the problems (MP) and (MD) studied by Mishra [15].

If |J2| = |K2| = 0, and l = 1, then (SMP) and (SMD) reduce to the pair
of problems studied by Hou and Yang [11].

If |J2| = |K2| = 0, l = 1, and p1 = p2 = q1 = q2 = 0 then (SMP)
and (SMD) reduce to the problems (P1) and (D1) studied by Mond and
Schechter [20].
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If l = 1, p1 = p2 = q1 = q2 = 0 and ∇2f
(
x1, y1

)
= z1, then (SMP) and

(SMD) reduce to the problems (MP) and (MD) studied by Yang et al. [27].
If p1

i = p2
i = q1

i = q2
i = 0 and C1

i = C2
i = D1

i = D2
i = {0}, i = 1, 2, . . . , l,

and then (SMP) and (SMD) reduce to a general form of the problems (P1)
and (D1) studied by Bector et al. [3].

5. Conclusion

In this paper, we have extended the results of Yang et al. [28], Suneja
et al. [24], Hou and Yang [11] and Mond and Schechter [20] to mixed
symmetric second order duality, the results of Bector et al. [3] to the case
of non-differentiable problems and the results of Yang et al. [27] to the
second order case. The results obtained in this paper can be extended to
the class of functions introduced by Antczak [2] and Aghezzaf and Hachimi
[1]. Moreover, these results can be further extended to higher order case as
an extension of the results of Chen [4], to the case of complex functions and
to the case of continuous-time problems as well. Some of these problems
will be the subject of research of the present author in very near future.

Acknowledgement. The author is grateful to the two anonymous referees
for their constructive suggestion and very careful reading of the previous
version of the manuscript.
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