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Abstract. In this paper, we give a new nonempty intersection theo-
rem in general topological spaces without convexity structure. As its
applications, some new minimax inequalities are obtained in general
topological spaces without convexity structure.

1. Introduction and preliminaries

In 1998, Zhang and Ma [16] established the following nonempty inter-
section theorem in topological vector spaces and gave its applications to
minimax inequalities.

Theorem A. Let E and F be Hausdorff topological vector spaces, let X ⊂
E, Y ⊂ F be nonempty convex subsets, and let A be a subset of X×Y such
that

(i) for each x ∈ X, the set {y ∈ Y : (x, y) /∈ A} is convex or empty;
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(ii) for each y ∈ Y , there exists a closed subset Xy ⊂ X such that the set
{x ∈ X : (x, y) ∈ A} ⊂ Xy.

Suppose that there exists a subset B of A and a compact convex subset K
of X such that B is closed in X × Y and
(iii) for each y ∈ Y , the set {x ∈ K : (x, y) ∈ B} is nonempty and convex.

Then ⋂
y∈Y

Xy ∩K 6= ∅.

Recently, Lu and Zhang [10] proved the following nonempty intersection
theorem in H-spaces, which generalizes Theorem A.

Theorem B. Let X be a Hausdorff topological space, (X, {Γ(A)}) be an H-
space, C : Y → 2X be a set-valued mapping with closed values, and let M ,
N be two subsets of X × Y with M ⊂ N . Suppose the following conditions
are fulfilled:

(i) for each y ∈ Y , the set {x ∈ X : (x, y) ∈ N} ⊂ C(y);
(ii) for each x ∈ X, the set {y ∈ Y : (x, y) 6∈M} is H-convex or empty.

Suppose also that there exists a subset P of M and a compact subset K of
X such that P is closed in X × Y , and
(iii) for each y ∈ Y , the set {x ∈ K : (x, y) ∈ P} is nonempty acyclic.

Then ⋂
y∈Y

C(y) ∩K 6= ∅.

In this paper, our purpose is to establish a new nonempty intersection the-
orem in general topological spaces without convexity structure, and next as
its applications, we give some new minimax inequalities in general topolog-
ical spaces without convexity structure. Our results generalize and improve
many recent known results, see for example [5]–[8] and [10], [14], [16], [17].

Let X be a set. We shall denote by 2X the family of all subsets of X,
by 〈X〉 the family of nonempty finite subsets of X. For any A ∈ 〈X〉, let
|A| denote the cardinality of A. Let ∆n denote the standard n-dimensional
simplex with vertices {e0, . . . , en}, where ei is the (i + 1)th unit vector in
Rn+1. If ∅ 6= J ⊂ {0, . . . , n}, then we denote by ∆|J |−1 the convex hull of
the vertices {ei : i ∈ J}.

We recall the notion of an H-space introduced by Bardaro and Ceppitelli
[2].

LetX be a topological space, {Γ(A)} be a family of nonempty contractible
subsets of X indexed by A ∈ 〈X〉 such that Γ(A) ⊂ Γ(A′), whenever A ⊂ A′.
The pair (X, {Γ(A)}) is called an H-space. Given an H-space (X, {Γ(A)}),
a nonempty subset D of X is called H-convex if Γ(A) ⊂ D for each A ∈ 〈D〉.
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For a nonempty subset E of (X, {Γ(A)}), we define the H-convex hull of E,
denoted the H − coE as

H − coE =
⋂
{D ⊂ X : E ⊂ D and D is H-convex}.

Clearly, H−coE is H-convex and is the smallest H-convex set containing E.
A nonempty topological space X is said to be acyclic if all of its reduced

Čech homology groups over rationals vanish. In particular, any nonempty
contractible space is acyclic, and thus any nonempty convex or star-shaped
set is acyclic. A nonempty subset D of a topological space X is said to be
compactly closed (respectively, compactly open) in X if for each nonempty
compact subset C ⊂ X, D ∩ C is closed (respectively, open) in C. The
compact closure and the compact interior of D (see [3]) are defined by

cclD =
⋂
{G : D ⊂ G and G is compactly closed in X}, and

cintD =
⋃
{G : G ⊂ D and G is compactly open in X},

respectively. It is easy to see that cclD (respectively, cintD) is compactly
closed (respectively, compactly open) in X and for each nonempty compact
subset C of X, we have (cclD) ∩ C = cl C(D ∩ C) and (cintD) ∩ C =
intC(D ∩ C), where cl C(D ∩ C) and int C(D ∩ C) denote the closure and
the interior of D ∩ C in C, respectively.

Definition 1.1 (see [3]). Let X be a nonempty set, Y be a topological
space, F : X → 2Y a set-valued mapping. F is called transfer compactly
closed-valued (respectively, transfer compactly open-valued) if for each x ∈
X and for each nonempty compact subset C of Y , y /∈ F (x)∩C (respectively,
y ∈ F (x) ∩ C) implies that there exists an x′ such that y /∈ cl C(F (x′) ∩ C)
(respectively, y ∈ intC(F (x′) ∩ C)).

Remark 1.1. Each closed-valued (respectively, open-valued) set-valued
mapping F : X → 2Y is transfer closed-valued (respectively, transfer open-
valued) (see [15, Definitions 6 and 7]) and is also compactly closed-valued
(respectively, compactly open-valued). Each transfer closed-valued (respec-
tively, transfer open-valued) set-valued mapping F : X → 2Y is transfer
compactly closed-valued (respectively, transfer compactly open-valued) and
the inverse in not true in general.

Definition 1.2 (see [3]). Let X be a nonempty set, Y be a topological
space, f : X × Y → R be a function. For some λ ∈ R, f(x, y) is said to be
λ-transfer compactly lower (respectively, upper) semicontinuous in y if for
each compact subset C of Y and for each y ∈ C,

{x ∈ X : f(x, y) > λ} 6= ∅
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(respectively, {x ∈ X : f(x, y) < λ} 6= ∅) implies that there exists a rel-
atively open neighborhood N(y) of y in C and an x′ ∈ X such that
f(x′, z) > λ (respectively, f(x′, z) < λ) for all z ∈ N(y).

Remark 1.2. It is easy to prove that if a set-valued mapping T : X → 2Y

is defined by
T (x) = {y ∈ Y : f(x, y) ≤ λ}

(respectively, T (x) = {y ∈ Y : f(x, y) ≥ λ}) for some λ ∈ R, then T is
transfer compactly closed-valued if and only if f(x, y) is λ-transfer com-
pactly lower (respectively, upper) semicontinuous in y.

Let X and Y be two topological spaces, T : X → 2Y be a set-valued
mapping. T is said to be upper semicontinuous if for each open subset G of
Y , the set {x ∈ X : T (x) ⊂ G} is open in X.

Throughout this paper, all topological spaces are assumed to be Haus-
dorff.

2. A nonempty intersection theorem

Our main result is the following Theorem 2.1 which is needed in this
paper.

Theorem 2.1. Let X and Y be two topological spaces, C : Y → 2X be a
set-valued mapping, and let M , N be two subsets of X × Y . Suppose the
following conditions are fulfilled:

(i) C is transfer compactly closed-valued;
(ii) for each y ∈ Y , the set {x ∈ X : (x, y) ∈ N} ⊂ C(y).

Suppose also that there exists a subset P of M and a compact subset K of
X such that P is closed in X × Y , and
(iii) for each A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : (x, y) /∈ N} 6= ∅
for all x ∈ K, there exists a continuous mapping ϕA : ∆|A|−1 → Y
such that

ϕA(∆|A∩{y∈Y : (x,y)/∈N}|−1) ⊂ {y ∈ Y : (x, y) 6∈M}
for all x ∈ K;

(iv) for each y ∈ Y , the set {x ∈ K : (x, y) ∈ P} is nonempty acyclic.
Then ⋂

y∈Y
C(y) ∩K 6= ∅.
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Proof. We show that the family {cclC(y)∩K : y ∈ Y } has the finite inter-
section property. Suppose it does not have the finite intersection property.
Then there exists A = {y0, . . . , yn} ∈ 〈Y 〉 such that⋂

y∈A
cclC(y) ∩K = ∅.

It follows that
K ⊂

⋃
{(X \ cclC(y)) ∩K : y ∈ A}.

Since each cclC(y) is compactly closed, we can assume that there exists a
non-negative continuous partition of unity {β0, . . . , βn} subordinated to the
open covering {(X \ cclC(y))

⋂
K : y ∈ A}, that is, for each i ∈ {0, . . . , n},

βi : K → [0, 1] is continuous such that for each x ∈ K,
∑n

i=0 βi(x) = 1 and
for each i ∈ {0, . . . , n},

βi(x) = 0 for x /∈ (X \ cclC(yi)) ∩K.
In other words, for each i ∈ {0, . . . , n} and x ∈ K, βi(x) 6= 0 implies that

x ∈ (X \ cclC(yi)) ∩K ⊂ {x ∈ X : (x, yi) /∈ N}. (2.1)

Define a mapping g : K → ∆n by

g(x) =
n∑
i=0

βi(x)ei for all x ∈ K.

Then clearly g is continuous. For each x ∈ K, let us define J(x) = {i ∈
{0, . . . , n} : βi(x) 6= 0} and B(x) = {yi : i ∈ J(x)}, then

∅ 6= B(x) ⊂ A ∩ {y ∈ Y : (x, y) /∈ N}
by (2.1). Therefore by (iii), there is a continuous mapping ϕ : ∆n → Y such
that

ϕ(∆|A∩{y∈Y : (x,y)/∈N}|−1) ⊂ {y ∈ Y : (x, y) /∈ M} for all x ∈ K. (2.2)

Define a continuous mapping f : K → Y as follows:

f(x) = ϕ(g(x)) for all x ∈ K.
By (2.2),

f(x) = ϕ(g(x)) ∈ ϕ(∆|B(x)|−1) ⊂ {y ∈ Y : (x, y) /∈M}
for all x ∈ K. This shows that

(x, f(x)) /∈M for all x ∈ K. (2.3)

On the other hand, we define a set-valued mapping G : Y → 2K by

G(y) = {x ∈ K : (x, y) ∈ P} for all y ∈ Y.
By (iv), G(y) is nonempty acyclic for all y ∈ Y . Since P is closed in
X × Y , it is easy to see that each G(y) is closed in K and the graph
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of G is closed in Y × K. Hence by Corollary 9 in [1, p. 111], G is an
upper semicontinuous set-valued mapping defined on Y . Consequently, so
is the set-valued mapping F : ∆n → 2K defined by F (µ) = G(ϕ(µ)) for all
µ ∈ ∆n. By virtue of Lemma 1 in [12], there exists a point µ ∈ ∆n such
that µ ∈ g(F (µ)) = g(G(ϕ(µ))), and so there is a point x ∈ G(ϕ(µ)) ⊂ K
such that µ = g(x). Let y = ϕ(µ), then y = ϕ(g(x)) = f(x) and x ∈ G(y),
i.e.,

(x, f(x)) = (x, y) ∈ P ⊂M.

This contradicts (2.3). Therefore the family {cclC(y) ∩ K : y ∈ Y } has
the finite intersection property. Since K is compact and each cclC(y) is
compactly closed, we must have⋂

y∈Y
cclC(y) ∩K 6= ∅.

Now we show that ⋂
y∈Y

C(y) ∩K =
⋂
y∈Y

cclC(y) ∩K.

Clearly,
⋂
y∈Y C(y)

⋂
K ⊂

⋂
y∈Y cclC(y)

⋂
K. So we only need to show

that ⋂
y∈Y

cclC(y) ∩K ⊂
⋂
y∈Y

C(y) ∩K.

Suppose, by the way of contradiction, that there exists an

x ∈
⋂
y∈Y

cclC(y) ∩K =
⋂
y∈Y

clK(C(y) ∩K)

and a y ∈ Y such that x /∈ C(y)∩K. Since C is transfer compactly closed-
valued, there exists a point y′ ∈ Y such that x /∈ clK(C(y′) ∩K), which is
a contradiction. Hence⋂

y∈Y
C(y) ∩K =

⋂
y∈Y

cclC(y) ∩K 6= ∅.

This completes the proof.

Remark 2.1. Theorem 2.1 generalizes Theorem B in the following ways:

(1) an H-space (X, {Γ(A)}) is replaced by a general topological space
without convexity structure;

(2) the condition that C is a closed-valued mapping is weakened to the
condition that C is a transfer compactly closed-valued mapping;

(3) the assumption of M ⊂ N in Theorem B is dropped;
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(4) condition (ii) of Theorem B is a special case of condition (iii) of Theo-
rem 2.1. We show that condition (ii) of Theorem B implies condition
(iii) of Theorem 2.1. In fact, let A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : (x, y) /∈ N} 6= ∅

for all x ∈ K. By Theorem 2.1 in [13], there exists a continuous
mapping ϕA : ∆|A|−1 → Y such that

ϕA(∆|B|−1) ⊂ Γ(B) for each B ∈ 〈A〉. (2.4)

Since
∅ 6= A ∩ {y ∈ Y : (x, y) /∈ N} ∈ 〈A〉

and

∅ 6= A ∩ {y ∈ Y : (x, y) /∈ N} ∈ 〈{y ∈ Y : (x, y) /∈M}〉

for each x ∈ K, by (2.4) and condition (ii) of Theorem B, we have

ϕA(∆|A∩{y∈Y : (x,y)/∈N}|−1) ⊂ Γ(A ∩ {y ∈ Y : (x, y) /∈ N})
⊂ {y ∈ Y : (x, y) 6∈M}

for each x ∈ K. Hence condition (iii) of Theorem 2.1 holds.

3. Minimax inequalities

Theorem 3.1. Let X and Y be two topological spaces, and let e, f, g, h : X×
Y → R be functions. Let

β = inf
K∈K

sup
y∈Y

min
x∈K

h(x, y),

where
K = {K ⊂ X : K is compact acyclic subset of X}.

Suppose the following conditions are fulfilled:
(i) for each (x, y) ∈ X × Y , e(x, y) ≤ f(x, y), g(x, y) ≤ h(x, y);
(ii) for each t > β, e(x, y) is t-transfer compactly lower semicontinuous in

x;
(iii) for each A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : f(x, y) > t} 6= ∅

for all t > β, x ∈ X, there exists a continuous mapping ϕA : ∆|A|−1 →
Y such that

ϕA(∆|A∩{y∈Y : f(x,y)>t}|−1) ⊂ {y ∈ Y : g(x, y) > t}

for all t > β, x ∈ X;
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(iv) h(x, y) is lower semicontinuous on X × Y and the set {x ∈ K :
h(x, y) < t} is nonempty acyclic or empty for each t > β, K ∈ K
and y ∈ Y .

Then

inf
x∈X

sup
y∈Y

e(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

h(x, y) = β. (3.1)

If X is compact acyclic, then

inf
x∈X

sup
y∈Y

e(x, y) ≤ sup
y∈Y

min
x∈X

h(x, y). (3.2)

Proof. If β = +∞, then the theorem is obviously true. Hence we may
assume that β < +∞. Now let λ > β be fixed and define a set-valued
mapping C : Y → 2X as follows:

C(y) = {x ∈ X : e(x, y) ≤ λ} for all y ∈ Y.

Let

M = {(x, y) ∈ X × Y : g(x, y) ≤ λ},
N = {(x, y) ∈ X × Y : f(x, y) ≤ λ}, and

P = {(x, y) ∈ X × Y : h(x, y) ≤ λ}.

By (i), for each y ∈ Y ,

{x ∈ X : (x, y) ∈ N} ⊂ {x ∈ X : e(x, y) ≤ λ} = C(y).

By (ii) and Remark 1.2, C : Y → 2X is transfer compactly closed-valued.
By (iii), we know that for each A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : (x, y) /∈ N} 6= ∅

for all x ∈ X, there exists a continuous mapping ϕA : ∆|A|−1 → Y such that

ϕA(∆|A∩{y∈Y : (x,y)/∈N}|−1) ⊂ {y ∈ Y : (x, y) 6∈M}

for each x ∈ X. It is easy to verify that P is closed in X × Y and P ⊂M .
Let K be a compact acyclic subset of X such that

λ > sup
y∈Y

min
x∈K

h(x, y).

Then for any y ∈ Y , the set {x ∈ K : h(x, y) ≤ λ} is nonempty and we
know the set

{x ∈ K : h(x, y) ≤ λ} =
⋂
ε>0

{x ∈ K : h(x, y) < λ+ ε}
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is acyclic (this follows from the continuity of Čech homology. See Lemma
1.3 in [11]). Thus by Theorem 2.1,⋂

y∈Y
C(y) ∩K 6= ∅,

that is, there exists x0 ∈ K such that

e(x0, y) ≤ λ for all y ∈ Y.

Hence
inf
x∈X

sup
y∈Y

e(x, y) ≤ λ.

Since the above inequality holds for any λ > β, we simply let λ decrease to
β to obtain (3.1). This completes the proof.

Remark 3.1. Theorem 3.1 does not require the space Y possess any con-
vexity structure. As a result, Theorem 3.1 generalizes and improves The-
orem 3 in [16] and Theorem 2.2 in [10] from topological vector spaces or
H-spaces with abstract convexity structure to general topological spaces
without convexity structure.

Corollary 3.1. Let X and Y be two topological spaces, and let
e, f, g, h : X × Y → R be functions. Let

β = inf
K∈K

sup
y∈Y

min
x∈K

h(x, y),

where
K = {K ⊂ X : K is compact acyclic subset of X}.

Suppose the following conditions are fulfilled:
(i) for each (x, y) ∈ X × Y , e(x, y) ≤ f(x, y) ≤ g(x, y) ≤ h(x, y);
(ii) for each t > β, e(x, y) is t-transfer compactly lower semicontinuous in

x;
(iii) for each A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : g(x, y) > t} 6= ∅

for all t > β, x ∈ X, there exists a continuous mapping ϕA : ∆|A|−1 →
Y such that

ϕA(∆|A∩{y∈Y : g(x,y)>t}|−1) ⊂ {y ∈ Y : g(x, y) > t}

for all t > β, x ∈ X;
(iv) h(x, y) is lower semicontinuous on X × Y and the set {x ∈

K : h(x, y) < t} is nonempty acyclic or empty for each t > β, K ∈ K
and y ∈ Y .
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Then
inf
x∈X

sup
y∈Y

e(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

h(x, y) = β.

If X is compact acyclic, then

inf
x∈X

sup
y∈Y

e(x, y) ≤ sup
y∈Y

min
x∈X

h(x, y).

Taking e = f = g = h in Corollary 3.1, we have the following corollary.

Corollary 3.2. Let X and Y be two topological spaces, f : X × Y → R be
a real-valued function, and let

β = inf
K∈K

sup
y∈Y

min
x∈K

f(x, y),

where
K = {K ⊂ X : K is compact acyclic subset of X}.

Suppose the following conditions are fulfilled:
(i) for each A ∈ 〈Y 〉 with

A ∩ {y ∈ Y : f(x, y) > t} 6= ∅
for all t > β, x ∈ X, there exists a continuous mapping ϕA : ∆|A|−1 →
Y such that

ϕA(∆|A∩{y∈Y : f(x,y)>t}|−1) ⊂ {y ∈ Y : f(x, y) > t}
for all t > β, x ∈ X;

(ii) f(x, y) is lower semicontinuous on X × Y and the set {x ∈
K : f(x, y) < t} is nonempty acyclic or empty for each t > β, K ∈ K
and y ∈ Y .

Then
inf
x∈X

sup
y∈Y

f(x, y) = inf
K∈K

sup
y∈Y

min
x∈K

f(x, y) = β.

If X is compact acyclic, then

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

Proof. By Corollary 3.1, we have

inf
x∈X

sup
y∈Y

f(x, y) ≤ inf
K∈K

sup
y∈Y

min
x∈K

f(x, y) = β.

Since
inf
x∈X

sup
y∈Y

f(x, y) ≥ inf
K∈K

sup
y∈Y

min
x∈K

f(x, y) = β

is always true, we have

inf
x∈X

sup
y∈Y

f(x, y) = inf
K∈K

sup
y∈Y

min
x∈K

f(x, y) = β.
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If, in addition, X is compact acyclic, then we have

min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y).

This completes the proof.

Remark 3.2. Corollary 3.2 generalizes Theorem 4 in [7] and Corollary 2.3
in [10] in several aspects.

Theorem 3.2. Let X and Y be two topological spaces, T : X → 2Y be
an upper semicontinuous set-valued mapping with closed acyclic values,
S : X → 2Y be a set-valued mapping. Let e, f, g : X × Y → R be functions
and

β = sup
y∈Y

inf
x∈X

g(x, y).

Suppose the following conditions are fulfilled:
(i) for each (x, y) ∈ X × Y , f(x, y) ≤ g(x, y);
(ii) for each t > β, g(x, y) is t-transfer compactly upper semicontinuous in

y;
(iii) for each A ∈ 〈X〉 with

A ∩ {x ∈ X : f(x, y) < t} 6= ∅
for each t > β and y ∈ Y , there exists a continuous mapping
ϕA : ∆|A|−1 → X such that

ϕA(∆|A∩{x∈X : f(x,y)<t}|−1) ⊂ {x ∈ X : e(x, y) < t}
for all t > β and y ∈ Y ;

(iv) for each x ∈ X,

T (x) ∩ S(x) 6= ∅ and K =
⋃
x∈X

S(x)

is compact acyclic subset of Y .
Then

inf
x∈X,y∈Tx

e(x, y) ≤ sup
y∈Y

inf
x∈X

g(x, y). (3.3)

Proof. We can assume that the right-hand side of (3.3) is not +∞. If the
conclusion of Theorem 3.2 is false, then there exists a real number t such
that

inf
x∈X,y∈Tx

e(x, y) > t > sup
y∈Y

inf
x∈X

g(x, y). (3.4)

For the above t, let us define a set-valued mapping C : X → 2Y as follows:

C(x) = {y ∈ Y : g(x, y) ≥ t} for all x ∈ X.



144 H.-S. LU

Let

M = {(x, y) ∈ X × Y : e(x, y) ≥ t},
N = {(x, y) ∈ X × Y : f(x, y) ≥ t}, and

P = {(x, y) ∈ X × Y : y ∈ Tx}.

It is easy to check that M , N and C satisfy conditions (i)–(iii) of Theorem
2.1. By (3.4), P ⊂ M , and by Proposition 7 in [1, p. 110], P is closed in
X × Y . For each x ∈ X, the set

{y ∈ K : (x, y) ∈ P} =
⋃
x∈X

S(x) ∩ Tx

is nonempty acyclic. So K and P satisfy condition (iv) of Theorem 2.1.
Hence by Theorem 2.1, ⋂

x∈X
C(x) ∩K 6= ∅,

that is, there exists y0 ∈ K such that g(x, y0) ≥ t for all x ∈ X. Therefore
we have

sup
y∈Y

inf
x∈X

g(x, y) ≥ t.

This contradicts the choice of t. Therefore (3.3) is proved. This completes
the proof.

Remark 3.3. Theorem 3.2 generalizes Theorem 2.1 in [17] from topologi-
cal vector spaces to general topological spaces without convexity structure.
Furthermore, Theorem 3.2 differs from Theorem 2.1 in [17] on the method
of proof.

Corollary 3.3. Let X, Y , S, T , and e, f , g be as in Theorem 3.2. Assume
further, that given λ ∈ R, we have

inf
x∈X,y∈Tx

e(x, y) ≥ λ.

Then there exists y0 ∈ Y such that g(x, y0) ≥ λ for all x ∈ X.

Remark 3.4. Corollary 3.3 generalizes Corollary 2.4 in [10] from H-spaces
to general topological spaces without convexity structure.

The following two minimax inequalities are obtained from Theorem 3.2
as special cases by taking f = g and e = f = g, respectively.
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Theorem 3.3. Let X, Y , S, and T be as in Theorem 3.2. Let e, f : X ×
Y → R be functions and

β = sup
y∈Y

inf
x∈X

f(x, y).

Suppose the following conditions are fulfilled:
(i) for each t > β, f(x, y) is t-transfer compactly upper semicontinuous

in y;
(ii) for each A ∈ 〈X〉 with

A ∩ {x ∈ X : f(x, y) < t} 6= ∅
for each t > β and y ∈ Y , there exists a continuous mapping
ϕA : ∆|A|−1 → X such that

ϕA(∆|A∩{x∈X : f(x,y)<t}|−1) ⊂ {x ∈ X : e(x, y) < t}
for all t > β and y ∈ Y .

Then
inf

x∈X,y∈Tx
e(x, y) ≤ sup

y∈Y
inf
x∈X

f(x, y).

Theorem 3.4. Let X, Y , S, and T be as in Theorem 3.2. Let f : X×Y →
R be a function and

β = sup
y∈Y

inf
x∈X

f(x, y).

Suppose the following conditions are fulfilled:
(i) for each t > β, f(x, y) is t-transfer compactly upper semicontinuous

in y;
(ii) for each A ∈ 〈X〉 with

A ∩ {x ∈ X : f(x, y) < t} 6= ∅
for each t > β and y ∈ Y , there exists a continuous mapping
ϕA : ∆|A|−1 → X such that

ϕA(∆|A∩{x∈X : f(x,y)<t}|−1) ⊂ {x ∈ X : f(x, y) < t}
for all t > β and y ∈ Y .

Then
inf

x∈X,y∈Tx
f(x, y) ≤ sup

y∈Y
inf
x∈X

f(x, y).

Remark 3.5. Theorem 3.4 generalizes Theorem 1 in [8] in several aspects.

By using Theorems 3.2 and 3.4, we can obtain the following Theorems
3.5 and 3.6, which are the generalizations of Fan’s minimax inequality.
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Theorem 3.5. Let Y be a topological space, X ⊂ K, K ⊂ Y be nonempty
subsets and K is compact. Let e, f, g : X × Y → R be functions satisfying
conditions (i)–(iii) of Theorem 3.2. Then

inf
x∈X

e(x, x) ≤ sup
y∈Y

inf
x∈X

g(x, y).

Proof. Define the set-valued mapping S : X → 2Y by S(x) = K for each
x ∈ X. The set-valued mapping T is defined by T (x) = {x} for each x ∈ X,
then the conclusion follows from Theorem 3.2. This completes the proof.

Theorem 3.6. Let X, Y, K be as in Theorem 3.5. Let f : X × Y → R be
a function satisfying conditions (i)–(ii) of Theorem 3.4. Then

inf
x∈X

f(x, x) ≤ sup
y∈X

inf
x∈X

f(x, y).

Proof. We define the set-valued mappings S, T : X → 2Y by S(x) = K
and T (x) = {x} for each x ∈ X, respectively, then the result follows from
Theorem 3.4. This completes the proof.

Remark 3.6. In Theorems 3.5 and 3.6, X or Y need not to be compact,
thus, Theorems 3.5 and 3.6 are the generalizations of Theorems 2.5 and 2.6
in [10] and Theorem 5 in [5].

As another application of Theorem 3.2, we have the following theorem.

Theorem 3.7. Let X, Y , S, and T be as in Theorem 3.2. Let e, f, g : X ×
Y → R be functions and

β = inf
y∈Y

sup
x∈X

f(x, y) > −∞.

Suppose the following conditions are fulfilled:
(i) for each t > −β, f(x, y) is −t-transfer compactly lower semicontinuous

in y;
(ii) for each (x, y) ∈ X × Y , f(x, y) ≤ g(x, y);
(iii) for each A ∈ 〈X〉 with

A ∩ {x ∈ X : g(x, y) > −t} 6= ∅
for all t > −β and y ∈ Y , there exists a continuous mapping
ϕA : ∆|A|−1 → X such that

ϕA(∆|A∩{x∈X : g(x,y)>−t}|−1) ⊂ {x ∈ X : e(x, y) > −t}
for each t > −β and y ∈ Y .
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Then
inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X,y∈Tx

e(x, y).

Proof. Set e′ = −e, f ′ = −g, and g′ = −f , then e′, f ′, and g′ satisfy
conditions (i)–(iii) of Theorem 3.2. Thus, by Theorem 3.2,

inf
x∈X,y∈Tx

e′(x, y) ≤ sup
y∈Y

inf
x∈X

g′(x, y),

that is,
inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X,y∈Tx

e(x, y).

This completes the proof.

By taking f = g, and then T (x) = {x} for each x ∈ X in Theorem 3.7,
we get the following minimax inequalities. We omit the proofs.

Theorem 3.8. Let X, Y , S, and T be as in Theorem 3.2. Let e, f : X ×
Y → R be functions and

β = inf
y∈Y

sup
x∈X

f(x, y) > −∞

such that
(i) for each t > −β, f(x, y) is −t-transfer compactly lower semicontinuous

in y;
(ii) for each A ∈ 〈X〉 with

A ∩ {x ∈ X : f(x, y) > −t} 6= ∅
for all t > −β and y ∈ Y , there exists a continuous mapping
ϕA : ∆|A|−1 → X such that

ϕA(∆|A∩{x∈X : f(x,y)>−t}|−1) ⊂ {x ∈ X : e(x, y) > −t}
for each t > −β and y ∈ Y .

Then
inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X,y∈Tx

e(x, y).

Remark 3.7. Theorem 3.8 is different from Theorem 3 in [14] for mappings
with noncompact domains and Y need not be locally convex and complete.

Theorem 3.9. Let Y be a topological space, X ⊂ K, K ⊂ Y be nonempty
subsets and K is compact. Let e, f, g : X × Y → R be functions satisfying
conditions (i)–(iii) of Theorem 3.7. Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

e(x, x).
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Theorem 3.10. Let X, Y , K be as in Theorem 3.9. Let e, f : X × Y → R
be functions satisfying conditions (i)–(ii) of Theorem 3.8. Then

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

e(x, x).

Remark 3.8. In Theorems 3.9 and 3.10, X or Y need not to be compact,
thus, Theorems 3.9 and 3.10 are new minimax inequalities of Ky Fan type.

Acknowledgement. The author wishes to express his gratitude to the
referees for their suggestions.
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