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Abstract. This article is concerned with the existence result of the
unilateral problem associated to the equations of the type

Au− divφ(u) = f ∈ L1(Ω),

where A is a Leray-Lions operator having a growth not necessarily of
polynomial type and φ ∈ C0(R,RN ).

1. Introduction

Let Ω be a bounded open subset of RN , and let p be a real number with
1 < p < +∞. Consider the following nonlinear Dirichlet problem:

Au− divφ(u) = f, (1.1)

where Au = −diva(x, u,∇u) is a Leray-Lions operators defined from
W 1,p

0 (Ω) into its dual and φ lies in C0(R,RN ).
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Boccardo proved in [9] the existence of entropy solution for the problem
(1.1). The formulation adequate in this case is the following,
u ∈W 1,q

0 (Ω), ∀q < N(p− 1)
N − 1∫

Ω
a(x, u,∇u)∇Tk(u− v) dx+

∫
Ω
φ(u)∇Tk(u− v) dx≤

∫
Ω
fTk(u− v) dx

∀v ∈W 1,p
0 (Ω) ∩ L∞(Ω),

where Tk is the usual truncation defined as Tk(s) = max(−k,min(k, s)) for
all s ∈ R.

In this direction, Boccardo and Cirmi are studied the existence and
uniqueness of solution of the following unilateral problem,

u ∈W 1,q
0 (Ω), ∀q < N(p− 1)

N − 1
, u ≥ ψ∫

Ω
a(x,∇u)∇Tk(u− v) dx ≤

∫
Ω
fTk(u− v) dx

∀v ∈ Kψ(Ω) ∩ L∞(Ω),

where

Kψ =
{
u ∈W 1,p

0 (Ω): u ≥ ψ
}
,

with a measurable function ψ : Ω→ R such that ψ ∈W 1,p
0 (Ω) ∩ L∞(Ω). In

these results the function a(·) is supposed to satisfy a polynomial growth
conditions with respect to u and ∇u.

In the case where a(·) satisfies a more general growth condition with
respect to u and ∇u (such growth to relax the coefficients of the operator
A), the adequate space in which (1.1) can be studied is the Orlicz-Sobolev
spaces W 1LM (Ω) where the N -function M is related to the actual growth
of a. The solvability of (1.1) in this setting is studied by Gossez-Mustonen
[14] in the variational case for φ = 0. The case where f belongs to L1(Ω)
and φ = 0 is treated in [7]. This last result is restricted to the N -functions
which satisfy the ∆2-condition (this condition appears in the boundedness
of the term ∇Tk(un) in LM (Ω), see [7, pp. 96-97]). More precisely, the
authors have proved in the previous work existence and uniqueness of the
following unilateral problem

u ∈W 1
0LQ(Ω), ∀Q ∈ AM∫

Ω
a(x,∇u)∇Tk(u− v) dx ≤

∫
Ω
fTk(u− v) dx

∀v ∈ Kψ(Ω) ∩ L∞(Ω),

where AM equals to



EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L1 153

{
Q : Q is an N -function,

Q”
Q′
≤ M”
M ′

and∫ 1

0
Q ◦H−1

(
1

t1−1/N

)
dt <∞ where H(t) =

M(t)
t

}
and where Kψ =

{
u ∈W 1

0LM (Ω): u ≥ ψ
}

, with the following restrictions
on the obstacle ψ

ψ ∈W 1
0LM (Ω) ∩ L∞(Ω), (1.2)

there exists ψ ∈ Kψ such that ψ − ψ is continuous on Ω. (1.3)

The case φ 6= 0 is studied by Benkirane and Bennouna in [6] where an
entropy solution for equation (1.1) is proved without assuming the ∆2-
condition.

Our purpose in this paper is to prove the existence of solutions for obstacle
problem associated to (1.1) for general N -functions M .

Note that, our result (see Theorem 3.1) generalizes the analogous one in
[9, 10] in Orlicz spaces and both [6, 7].

This paper is organized as follows:
1) Introduction
2) Preliminaries and some technical lemmas
3) Statement of main results

3.1. Basic assumptions
3.2. Principal result

4) Proof of principal result
4.1. Approximate problem
4.2. Some intermediate results
4.3. Proof of Theorem 3.1

5) Proof of intermediate results.

2. Preliminaries and some technical lemmas

2.1. Let M : R+ → R+ be an N -function, i.e., M is continuous, convex,
with M(t) > 0 for t > 0,

M(t)
t
→ 0 as t→ 0 and

M(t)
t
→∞ as t→∞.

Equivalently, M admits the representation: M(t) =
∫ t

0 a(s) ds where
a : R+ → R+ is a nondecreasing, right continuous function, with a(0) = 0,
a(t) > 0 for t > 0 and a(t) tends to ∞ as t→∞.

The N -function M conjugate to M is defined by M(t) =
∫ t

0 ā(s) ds, where
ā : R+ → R+ is given by ā(t) = sup{s : a(s) ≤ t}.
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The N -function M is said to satisfy the ∆2-condition if, for some k

M(2t) ≤ kM(t) ∀t ≥ 0. (2.1)

It is readily seen that this will be the case if and only if for every r > 1
there exists a positive constant k = k(r) such that for all t > 0

M(rt) ≤ kM(t) ∀t ≥ 0. (2.2)

When (2.1) and (2.2) hold only for t ≥ t0 for some t0 > 0, then M is said
to satisfy the ∆2-condition near infinity.

We will extend these N -functions into even functions on all R.
Moreover, we have the following Young’s inequality

∀s, t ≥ 0, st ≤M(t) +M(s).

Let P and Q be two N -functions. We say that P grows essentially less
rapidly than Q near infinity, denote P � Q, if for every ε > 0,

P (t)
Q(εt)

→ 0 as t→∞.

This is the case if and only if

lim
t→∞

Q−1(t)
P−1(t)

= 0.

2.2. Let M be an N -function and Ω ⊂ RN be an open and bounded set.
The Orlicz class KM (Ω) (resp. the Orlicz space LM (Ω)) is defined as the
set of (equivalence classes of) real valued measurable functions u on Ω such
that:∫

Ω
M(u(x)) dx < +∞

(
resp.

∫
Ω
M

(
u(x)
λ

)
dx < +∞ for some λ > 0

)
.

LM (Ω) is a Banach space under the norm,

‖u‖M,Ω = inf
{
λ > 0:

∫
Ω
M

(
u(x)
λ

)
dx ≤ 1

}
and KM (Ω) is a convex subset of LM (Ω) but not necessarily a linear space.

The closure in LM (Ω) of the set of bounded measurable functions with
compact support in Ω is denoted by EM (Ω).

The dual space of EM (Ω) can be identified with LM (Ω) by means of the
pairing

∫
Ω uv dx, and the dual norm of LM (Ω) is equivalent to ‖.‖M,Ω.

Let X and Y be arbitrary Banach spaces with bilinear bicontinuous pair-
ing 〈 , 〉X,Y .

We say that a sequence {un} ⊂ X converges to u ∈ X with respect to
the topology σ(X,Y ), denote un → u (σ(X,Y )) in X, if 〈un, v〉 → 〈u, v〉 for
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all v ∈ Y . For example, if X = LM (Ω) and Y = LM (Ω), then the pairing is
defined by 〈u, v〉 =

∫
Ω u(x)v(x) dx for all u ∈ X, v ∈ Y .

2.3. We now turn to the Orlicz-Sobolev space, W 1LM (Ω) [resp. W 1EM (Ω)]
is the space of all functions u such that u and its distributional derivatives
up to order 1 lies in LM (Ω) [resp. EM (Ω)]. It is a Banach space under the
norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M,Ω.

Thus, W 1LM (Ω) and W 1EM (Ω) can be identified with subspaces of product
of N + 1 copies of LM (Ω). Denoting this product by

∏
LM , we will use the

weak topologies σ
(∏

LM ,
∏
EM

)
and σ

(∏
LM ,

∏
LM
)
.

The space W 1
0EM (Ω) is defined as the (norm) closure of the Schwartz

space D(Ω) in W 1EM (Ω) and the space W 1
0LM (Ω) as the σ

(∏
LM ,

∏
EM

)
closure of D(Ω) in W 1LM (Ω).

We recall that a sequence un in LM (Ω) is said to be convergent to u ∈
LM (Ω) modular, denote un → u (mod) in LM (Ω) if there exists λ > 0 such
that ∫

Ω
M(
|un(x)− u(x)|

λ
) dx→ 0

as n → +∞. This implies that un converges to u for σ
(
LM (Ω), LM (Ω)

)
.

A similar definition can be given in W 1LM (Ω) where one requires the above
for u and each of its first derivatives.

If M satisfies the ∆2-condition (near infinity only when Ω has finite mea-
sure), then modular convergence coincides with norm convergence.

2.4. Let W−1LM (Ω) [resp. W−1EM (Ω)] denotes the space of distributions
on Ω which can be written as sums of derivatives of order ≤ 1 of functions
in LM (Ω) [resp. EM (Ω)]. It is a Banach space under the usual quotient
norm.

We recall some lemmas introduced in [8] which will be used later.

Lemma 2.1. Let F : R → R be uniformly Lipschitzian, with F (0) = 0.
Let M be an N -function and let u ∈ W 1LM (Ω) (resp. W 1EM (Ω)). Then
F (u) ∈W 1LM (Ω) (resp. W 1EM (Ω)). Moreover, we have

∂

∂xi
F (u) =

F ′(u)
∂

∂xi
u a.e. in {x ∈ Ω: u(x) /∈ D},

0 a.e. in {x ∈ Ω: u(x) ∈ D}

where D is the set of discontinuity points of F ′.
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Lemma 2.2. Let F : R → R be uniformly Lipschitzian, with F (0) = 0.
Let M be an N -function, then the mapping TF : W 1LM (Ω) → W 1LM (Ω)
defined by TF (u) = F (u) is sequentially continuous with respect to the weak*
topology σ

(∏
LM ,

∏
EM

)
.

We give now the following lemma which concerns operators of the Ne-
mytskii type in Orlicz spaces (see [8]).

Lemma 2.3. Let Ω be an open subset of RN with finite measure. Let M ,
P and Q be N -functions such that Q � P , and let f : Ω × R → R be a
Carathéodory function such that, for a.e. x ∈ Ω and all s ∈ R:

|f(x, s)| ≤ c(x) + k1P
−1M(k2|s|),

where k1, k2 are real constants and c(x) ∈ EQ(Ω).
Then the Nemytskii operator Nf defined by Nf (u)(x) = f(x, u(x)) is

strongly continuous from

P
(
EM (Ω),

1
k2

)
=
{
u ∈ LM (Ω): d(u,EM (Ω)) <

1
k2

}
into EQ(Ω).

We introduce the functional spaces, we will need later.
For N -function M , T 1,M

0 (Ω) is defined as the set of measurable func-
tions u : Ω −→ R such that for all k > 0 the truncated functions
Tk(u) ∈W 1

0LM (Ω).
We give the following lemma which is a generalization of Lemma 2.1 [5]

in Orlicz spaces and where its proof is a slightly modification of one in Lp

case.

Lemma 2.4. For every u ∈ T 1,M
0 (Ω), there exists a unique measurable

function v : Ω→ RN such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in Ω, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by
v = ∇u.

Lemma 2.5. Let λ ∈ R and let u and v be two functions which are finite
almost everywhere, and which belongs to T 1,M

0 (Ω). Then,

∇(u+ λv) = ∇u+ λ∇v a.e. in Ω,

where ∇u, ∇v and ∇(u+λv) are the gradients of u, v and u+λv introduced
in Lemma 2.4.



EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L1 157

The proof of this lemma is similar to the proof of Lemma 2.12 [11] in the
Lp case.

Below, we will use the following technical lemma:

Lemma 2.6 ([8]). Let (fn), f, γ ∈ L1(Ω) such that
(i) fn ≥ γ a.e. in Ω,
(ii) fn → f a.e. in Ω,

(iii)
∫

Ω
fn(x) dx→

∫
Ω
f(x) dx.

Then fn → f strongly in L1(Ω).

Lemma 2.7 ([6]). Let Ω be an open bounded subset of RN satisfying the
segment property. If u ∈W 1

0LM (Ω), then∫
Ω

divu dx = 0.

3. Statement of main result

3.1. Basic assumptions.
Let Ω be an open bounded subset of RN , N ≥ 2, with the segment

property.
Given an obstacle ψ : Ω→ R which is a measurable function and consider

the set

Kψ = {u ∈W 1
0LM (Ω); u ≥ ψ a.e. in Ω}. (3.1)

We now state our hypotheses on the differential operator A defined by,

Au = −div(a(x,∇u)). (3.2)

(A1) a(x, ξ) : Ω× RN → RN is a Carathéodory function.
(A2) There exist a function c(x) in EM (Ω) and a positive constants k1, k2

such that,
|a(x, ζ)| ≤ c(x) + k1M

−1
M(k2|ζ|),

for a.e. x in Ω and for all ζ ∈ RN .
(A3) For a.e. x in Ω and ζ, ζ ′ in RN , with (ζ 6= ζ ′)

[a(x, ζ)− a(x, ζ ′)](ζ − ζ ′) > 0.

(A4) There exist δ(x) > 0 in L1(Ω) and some strictly positive constants
α, ν such that, for some fixed element v0 in Kψ ∩W 1

0EM (Ω)∩L∞(Ω),
we have

a(x, ζ)(ζ −∇v0) ≥ αM
(
|ζ|
ν

)
− δ(x),

for a.e. x in Ω and all ζ ∈ RN .
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(A5) For each v ∈ Kψ∩L∞(Ω) there exists a sequence vj ∈ Kψ∩W 1
0EM (Ω)∩

L∞(Ω) such that,

vj → v for the modular convergence.

Finally, we suppose that,

f ∈ L1(Ω) (3.3)

and

φ ∈ C0(R,RN ). (3.4)

Remark 3.1. Note that the hypotheses (A5) is verified if one of the fol-
lowing conditions is verified:

1) There exists ψ ∈ Kψ such that ψ − ψ is continuous in Ω (see [14,
Proposition 9]).

2) ψ ∈W 1
0EM (Ω) (see [14, Proposition 10]).

3) The N -function M satisfies the ∆2-condition.
4) ψ = −∞ (i.e., Kψ = W 1

0LM (Ω)) (see Remark 2 of [14] and Theorem
4 of [13]).

Remark 3.2. Giving some comparisons of our hypotheses and those of
[6, 7]:

1) In [7], the authors have supposed the ∆2-condition and hypotheses
(1.3) which is stronger than our hypotheses (A5) (see Remark 3.1).

2) When ψ = −∞, the convex set Kψ coincides with the space W 1
0LM (Ω),

this implies that (A5) is verified. For that the authors in [6] have not
need to (A5).

Remark 3.3. Remark that, if we suppose that a(x, ξ)ξ ≥ αM(|ξ|), then
the hypotheses (A4) is verified for all v0 ∈ Kψ ∩W 1

0EM (Ω).

Indeed. Let v0 ∈ Kψ ∩W 1
0EM (Ω) and let λ > 0 large enough, we have

a(x, ξ)(ξ −∇v0) = a(x, ξ)ξ − 1
λ
a(x, ξ)(λ∇v0). (3.5)

On the other hand, by using (A3), we have

− 1
λ
a(x, ξ)(λ∇v0) ≥− 1

λ
a(x, ξ)ξ − a(x, λ∇v0)∇v0

−
α

(
1− 1

λ

)
2

|a(x, λ∇v0)|
α(λ− 1)

2

|ξ| (3.6)
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using the Young’s inequality, we deduce that

−
α

(
1− 1

λ

)
2

|a(x, λ∇v0)|
α(λ− 1)

2

|ξ|

≥ −
α

(
1− 1

λ

)
2

M(|ξ|)−
α

(
1− 1

λ

)
2

M

 |a(x, λ∇v0)|
α(λ− 1)

2

 .
(3.7)

Combining (3.5), (3.6) and (3.7), we get

a(x, ξ)(ξ −∇v0) ≥a(x, ξ)ξ − 1
λ
a(x, ξ)ξ

−
α

(
1− 1

λ

)
2

M(|ξ|)− γ(x), (3.8)

where

γ(x) =
α

(
1− 1

λ

)
2

M

 |a(x, λ∇v0)|
α(λ− 1)

2

+ a(x, λ∇v0)∇v0.

Finally, by the hypotheses, we deduce

a(x, ξ)(ξ −∇v0) ≥
α

(
1− 1

λ

)
2

M(|ξ|)− γ(x).

3.2. Principal result.
Our objective of this paper is to prove the following existence result:

Theorem 3.1. Suppose that the assumptions (A1)–(A5) and (3.3), (3.4)
are satisfied. Then the following obstacle problem,

u ∈ T 1,M
0 (Ω), u ≥ ψ a.e. in Ω,∫

Ω
a(x,∇u)∇Tk(u− v) dx+

∫
Ω
φ(u)∇Tk(u− v) dx

≤
∫

Ω
fTk(u− v) dx,

∀ v ∈ Kψ ∩ L∞(Ω), ∀k > 0

(3.9)

has at least one solution.
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Remark 3.4. Remark that, in the previous result, we can not replace Kψ∩
L∞(Ω) by only Kψ, since in general the integral

∫
Ω φ(u)∇Tk(u− v) dx may

not have a meaning.

Remark 3.5. The particular case M(t) = |t|p gives the corresponding ex-
istence result in the classical Lp-case (which appears a new result).

4. Proof of principal result

Without loss the generality we take ν = 1 in the conditions (A4).
Let us recall the following lemma which will be needed later:

Lemma 4.1 ([12]). Let f ∈ W−1EM (Ω) and let K ⊂ W 1
0LM (Ω) be con-

vex, σ
(∏

LM ,
∏
EM

)
sequentially closed and such that K ∩ W 1

0EM (Ω)
is σ

(∏
LM ,

∏
LM
)

dense in K. Assume that (A1)–(A4) are satisfy with
v0 ∈ K ∩W 1

0EM (Ω), then the variational inequality
u ∈ D(A) ∩K,∫

Ω
a(x,∇u)∇(u− v) dx ≤ 〈f, u− v〉

∀v ∈ K,

has at least one solution.

Remark 4.1. The previous lemma can be applied if K = W 1
0LM (Ω) (see

Remark 3.1 and Remark 2 of [14]).

Remark 4.2. Remark that the convex set Kψ satisfies the following con-
ditions:

1) Kψ is σ
(∏

LM ,
∏
EM

)
sequentially closed.

2) Kψ ∩W 1
0EM (Ω) is σ

(∏
LM ,

∏
LM
)

dense in Kψ.

Indeed.
1) Let un ∈ Kψ which converges to u ∈W 1

0LM (Ω) for σ
(∏

LM ,
∏
EM

)
.

Since the imbedding of W 1
0LM (Ω) into EM (Ω) is compact it follows

that for a subsequence un → u a.e. in Ω, which gives u ∈ Kψ.
2) It suffices to apply (A5) and the fact that Tn(u) → u (mod) in

W 1LM (Ω) for all u ∈ Kψ.



EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L1 161

4.1. Approximate problem.
We consider the sequence of approximate problem,
un ∈ Kψ,

〈Aun, un − v〉+
∫

Ω
φ(Tn(un))∇(un − v) dx ≤

∫
Ω
fn(un − v) dx

∀v ∈ Kψ,

(4.1)

where fn is a regular function such that fn strongly converges to f in L1(Ω).
Applying Remark 4.2 and Lemma 4.1, we can deduce that this approximate
problem has a solution.

4.2. Some intermediate results.

Lemma 4.2. Assume that (A1)–(A4) are satisfied, and let (zn)n be a se-
quence in W 1

0LM (Ω) such that
a) zn ⇀ z in W 1

0LM (Ω) for σ
(∏

LM ,
∏
EM

)
,

b) (a(x,∇zn))n is bounded in (LM (Ω))N ,

c)
∫

Ω
[a(x,∇zn)− a(x, zn,∇zχs)][∇zn −∇zχs] dx→ 0 as n and s→ +∞

(where χs the characteristic function of Ωs = {x ∈ Ω, |∇z| ≤ s}).
Then

M(|∇zn|)→M(|∇z|) in L1(Ω).

Remark 4.3. The condition b) is not necessary in the case where the N -
function M satisfies the ∆2-condition.

Indeed. The condition a) implies that the sequence (zn)n is bounded in
W 1

0LM (Ω), hence there exists two positive constants λ, C such that∫
Ω
M(λ|∇zn|) dx ≤ C. (4.2)

On the other hand, by the condition (2.2) there exists a constant positive
r(k2) such that M(k2t) ≤ r(k2)M(λt) + c1, ∀t > 0. Let ε > 0. Let µ > 0
large enough, we have by using (A2)∫

Ω
M(
|a(x,∇zn)|

µ
) dx ≤ 1

µ

∫
Ω
M(c(x)) dx+ c2 +

k1

µ

∫
Ω
M(λ|∇zn|). (4.3)

From (4.2) and (4.3) we deduce that (a(x,∇zn))n is bounded in (LM (Ω))N .

Remark 4.4. Note that the previous lemma holds, also in the general case
where a ≡ a(x, s, ξ).
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Proposition 4.1. Assume that (A1)–(A5), (3.3) and (3.4) hold true and let
un be a solution of the approximate problem (4.1). Then for all k > 0, there
exists a constant c(k) (which does not depend on the n) such that,

‖Tk(un)‖W 1
0LM (Ω) ≤ c(k).

Proposition 4.2. Assume that (A1)–(A5), (3.3) and (3.4) hold true and
let un be a solution of the approximate problem (4.1), then there exists a
measurable function u such that, for all k > 0 we have,

1) un → u a.e. in Ω,
2) Tk(un) ⇀ Tk(u) weakly in W 1

0LM (Ω) for σ
(∏

LM ,
∏
EM

)
,

3) Tk(un)→ Tk(u) strongly in EM (Ω) and a.e. in Ω.

Proposition 4.3. Assume that (A1)–(A5), (3.3) and (3.4) hold true and
let un be a solution of the approximate problem (4.1). Then for all k > 0,

1) (a(x,∇Tk(un)))n is bounded in (LM (Ω))N ,
2) M(|∇Tk(un)|)→M(|∇Tk(u)|) in L1(Ω).

4.3. Proof of Theorem 3.1.
Let v ∈ Kψ∩W 1

0EM (Ω)∩L∞(Ω). Taking un−Tk(un−v) as test function
in (4.1), we can write, for n large enough (n > k + ‖v‖∞),∫

Ω
a(x,∇un)∇Tk(un − v) dx+

∫
Ω
φ(un)∇Tk(un − v) dx

≤
∫

Ω
fnTk(un − v) dx, (4.4)

which implies that,∫
{|un−v|≤k}

a(x,∇un)∇(un − v0) dx

+
∫
{|un−v|≤k}

a(x,∇Tk+‖v‖∞(un))∇(v0 − v) dx

+
∫

Ω
φ(un)∇Tk(un − v) dx ≤

∫
Ω
fnTk(un − v) dx. (4.5)

Now, applying the assertion 2) of Proposition 4.3, assertions 1), 3) of Propo-
sition 4.2 and Fatou’s lemma, we have,∫

{|u−v|≤k}
a(x,∇u)∇(u− v0) dx

≤ lim inf
n→∞

∫
{|un−v|≤k}

a(x,∇un)∇(un − v0) dx. (4.6)
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On the other hand, by Proposition 4.3 we get,

a(x,∇Tk+‖v‖∞(un)) ⇀ a(x,∇Tk+‖v‖∞(u))

weakly in (LM (Ω))N for σ(
∏

LM ,
∏

EM ),

which and assertion 1) of Proposition 4.2, Lebesgue’s theorem, allow to
deduce ∫

{|un−v|≤k}
a(x,∇Tk+‖v‖∞(un))∇(v0 − v) dx

→
∫
{|u−v|≤k}

a(x,∇Tk+‖v‖∞(u))∇(v0 − v) dx. (4.7)

Moreover, thanks to assertion 1) and 2) of Proposition 4.2, we have∫
Ω
φ(un)∇Tk(un − v) dx→

∫
Ω
φ(u)∇Tk(u− v) dx. (4.8)

Combining (4.5)–(4.8), we get∫
{|u−v|≤k}

a(x,∇u)∇(u−v0) dx+
∫
{|u−v|≤k}

a(x,∇Tk+‖v‖∞(u))∇(v0−v) dx

+
∫

Ω
φ(u)∇Tk(u− v) dx

≤
∫

Ω
fTk(u− v) dx. (4.9)

Hence, ∫
Ω
a(x,∇u)∇Tk(u− v) dx+

∫
Ω
φ(u)∇Tk(u− v) dx

≤
∫

Ω
fTk(u− v) dx. (4.10)

Now, let v ∈ Kψ ∩ L∞(Ω). By the condition (A5) there exists vj ∈ Kψ ∩
W 1

0EM (Ω) ∩ L∞(Ω) such that vj converges to v in the modular sense. Let
h ≥ max(‖v0‖∞, ‖v‖∞) and taking v = Th(vj) in (4.10), we have∫

Ω
a(x,∇u)∇Tk(u− Th(vj)) dx+

∫
Ω
φ(u)∇Tk(u− Th(vj)) dx

≤
∫

Ω
fTk(u− Th(vj)) dx. (4.11)

We can easily pass to the limit as j → +∞ and get,∫
Ω
a(x,∇u)∇Tk(u− Th(v)) dx+

∫
Ω
φ(u)∇Tk(u− Th(v)) dx

≤
∫

Ω
fTk(u− Th(v)) dx ∀ v ∈ Kψ ∩ L∞(Ω). (4.12)
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Finally, since h ≥ max(‖v0‖∞, ‖v‖∞), we get∫
Ω
a(x,∇u)∇Tk(u− v) dx+

∫
Ω
φ(u)∇Tk(u− v) dx

≤
∫

Ω
fTk(u− v) dx ∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0, (4.13)

this, completes the proof of Theorem 3.1.

5. Proof of intermediates results

5.1. Proof of Lemma 4.2.
Fix r > 0 and let s > r, since Ωr ⊂ Ωs we have,

0 ≤
∫

Ωr
[a(x,∇zn)− a(x,∇z)][∇zn −∇z] dx

≤
∫

Ωs
[a(x,∇zn)− a(x,∇z)][∇zn −∇z] dx

=
∫

Ωs
[a(x,∇zn)− a(x,∇zχs)][∇zn −∇zχs] dx (5.1)

≤
∫

Ω
[a(x,∇zn)− a(x,∇zχs)][∇zn −∇zχs] dx.

Which with c) imply that,

lim
n→∞

∫
Ωr

[a(x,∇zn)− a(x,∇z)][∇zn −∇z] dx = 0. (5.2)

So, (as in [12])

∇zn → ∇z a.e. in Ω. (5.3)

On the one side, we have∫
Ω
a(x,∇zn)∇zn dx =

∫
Ω

[a(x,∇zn)− a(x,∇zχs)]× [∇zn −∇zχs] dx

+
∫

Ω
a(x,∇zχs)(∇zn −∇zχs) dx (5.4)

+
∫

Ω
a(x,∇zn)∇zχs dx.

Since (a(x,∇zn))n is bounded in (LM (Ω))N , from (5.3), we obtain

a(x,∇zn) ⇀ a(x,∇z) weakly in (LM (Ω))N for σ
(∏

LM ,
∏

EM

)
. (5.5)

Consequently, ∫
Ω
a(x,∇zn)∇zχs dx→

∫
Ω
a(x,∇z)∇zχs dx (5.6)



EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L1 165

as n→∞.
Letting also s→∞, we obtain,∫

Ω
a(x,∇z)∇zχs dx→

∫
Ω
a(x,∇z)∇z dx. (5.7)

On the other hand, it is easy to see that the second term of the right hand
side of (5.4) tends to 0 as n→∞ and s→∞.

Moreover, from c), (5.6) and (5.7) we have,

lim
n→∞

∫
Ω
a(x,∇zn)∇zn dx =

∫
Ω
a(x,∇z)∇z dx, (5.8)

hence

lim
n→∞

∫
Ω
a(x,∇zn)(∇zn −∇v0) dx =

∫
Ω
a(x,∇z)∇(z −∇v0) dx.

Finally, using (A4) one obtain by Lemma 2.6 and Vitali’s theorem,

M(|∇zn|) −→M(|∇z|) in L1(Ω).

5.2. Proof of Proposition 4.1.
Let k > 0. Taking un − Tk(un − v0) as test function in (4.1), we obtain

for n large enough∫
Ω
a(x,∇un)∇Tk(un − v0) dx+

∫
Ω
φ(un)∇Tk(un − v0) dx

≤
∫

Ω
fnTk(un − v0) dx.

Since, ∇Tk(un− v0) is identically zero on the set where |un(x)− v0(x)| > k,
hence we can write∫

Ω
a(x,∇un)∇Tk(un − v0) dx ≤

∫
{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))||∇un| dx

+
∫
{|un−v0|≤k}

|φ(Tk+‖v0‖∞(un))||∇v0| dx

+
∫

Ω
fnTk(un − v0) dx,

which gives, by using (3.4) and Young’s inequality,∫
{|un−v0|≤k}

a(x,∇un)∇(un − v0) dx

≤ α

2

∫
{|un−v0|≤k}

M(|∇un|) dx+ c1(k), (5.9)
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where c1(k) is a constant which depends of k, which with (A4) yields∫
{|un−v0|≤k}

M(|∇un|) dx ≤ c2(k). (5.10)

Since k is arbitrary and

{|un| ≤ k} ⊂ {|un − v0| ≤ k + ‖v0‖∞},

we deduce that,∫
Ω
M(|∇Tk(un)|) dx ≤

∫
{|un−v0|≤k+‖v0‖∞}

M(|∇un|) dx ≤ c3(k), (5.11)

from which, we get

‖Tk(un)‖W 1
0LM (Ω) ≤ c(k). (5.12)

5.3. Proof of Proposition 4.2.
Step 1. We claim that: for k > h > ‖v0‖∞∫

Ω
M(|∇Tk(un − Th(un))|) dx ≤ kC (5.13)

where C is a constant does not depends of n, k and h.
Using the Proposition 4.1, there exists some vk ∈W 1

0LM (Ω) such that,

Tk(un) ⇀ vk weakly in W 1
0LM (Ω) for σ

(∏
LM ,

∏
EM

)
,

Tk(un)→ vk strongly in EM (Ω) and a.e. in Ω. (5.14)

On the other hand, let k > h ≥ ‖v0‖∞. By using v = un − Tk(un − Th(un))
as test function in (4.1) we obtain,∫

Ω
a(x,∇un)∇Tk(un − Th(un)) dx+

∫
Ω
φ(Tn(un))∇Tk(un − Th(un)) dx

≤
∫

Ω
fnTk(un − Th(un)) dx.

The second term of the left hand side of the last inequality vanishes for n
large enough. Indeed, we have by virtue of Lemma 2.7,∫

Ω
φ(Tn(un))∇Tk(un − Th(un)) dx =

∫
Ω
φ(un)∇Tk(un − Th(un)) dx

=
∫

Ω
div
[∫ un

0
φ(s)χ{h≤|s|≤k+h} ds

]
dx

= 0,

(this is due to
∫ un

0 φ(s)χ{h≤|s|≤k+h} ds lies in W 1
0LM (Ω)).



EXISTENCE OF SOLUTIONS FOR UNILATERAL PROBLEMS IN L1 167

Thus,∫
Ω
a(x,∇un)∇Tk(un − Th(un)) dx ≤

∫
Ω
fnTk(un − Th(un)) dx

which implies that,∫
Ω
a(x,∇un)∇Tk(un − Th(un)) dx ≤ kc3, (5.15)

where c3 is a nonnegative constant independent of n, k and h.
Now, let a constant c such that 0 < c < 1 and satisfies

α(1− c)
2c

> λ > 1 + k1.

(Such constant c is well existed since lim
c→0+

α(1− c)
2c

= +∞.)

From (5.15) we have∫
Ω
a(x,∇Tk(un − Th(un)))[∇Tk(un − Th(un))− (1− c)∇v0] dx

≤ c3k +
∫

Ω
a(x,∇Tk(un − Th(un)))(c− 1)∇v0 dx

= c3k + c

∫
Ω
a(x,∇Tk(un − Th(un)))

(
c− 1
c
∇v0

)
dx

and from the monotonicity condition (A3) we get,∫
Ω
a(x,∇Tk(un − Th(un)))[∇Tk(un − Th(un))− (1− c)∇v0] dx

≤ c3k + c

∫
Ω
a(x,∇Tk(un − Th(un)))∇Tk(un − Th(un)) dx

− c
∫

Ω
a(x,

c− 1
c
∇v0)[∇Tk(un − Th(un))− c− 1

c
∇v0] dx.

Consequently,

(1− c)
∫

Ω
a(x,∇Tk(un − Th(un)))[∇Tk(un − Th(un))−∇v0] dx

≤ c3k + c4 + c

∫
Ω

∣∣∣∣a(x, c− 1
c
∇v0

)∣∣∣∣ |∇Tk(un − Th(un))| dx

= c3k+c4+
α(1− c)

2
.

2c
α(1− c)

∫
Ω

∣∣∣∣a(x, c− 1
c
∇v0

)∣∣∣∣ |∇Tk(un−Th(un))| dx

= c3k + c4 +
α(1− c)

2

∫
Ω

∣∣∣∣∣∣∣∣
a

(
x,
c− 1
c
∇v0

)
α(1− c)

2c

∣∣∣∣∣∣∣∣ |∇Tk(un − Th(un))| dx.
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Thanks to Young’s inequality, we can deduce that

(1− c)
∫

Ω
a(x,∇Tk(un − Th(un)))[∇Tk(un − Th(un))−∇v0] dx

≤ c3k + c4 +
α(1− c)

2

∫
Ω
M


∣∣∣∣a(x, c− 1

c
∇v0

)∣∣∣∣
λ

 dx

+
α(1− c)

2

∫
Ω
M(|∇Tk(un − Th(un))|) dx

from which we can deduce (5.13) after using (A4).

Step 2. Convergence in measure of un. In this step, we prove that un
converges to some function u in measure (and therefore, we can always
assume that the convergence is a.e. after passing to a suitable subsequence).
We shall show that un is a Cauchy sequence in measure.

Let k > h > ‖v0‖∞ large enough. Thanks to Lemma 5.7 of [12] and
(5.13), there exist two positive constants c7 and c8 independent of k and h
such that, ∫

Ω
M(c7|Tk(un − Th(un))|) dx

≤ c8

∫
Ω
M(|∇Tk(un − Th(un))|) dx ≤ c9k. (5.16)

This yields, using (5.16),

M(c7k)meas{|un − Th(un)| > k}

=
∫
{|un−Th(un)|>k}

M(c7|Tk(un − Th(un))|) dx

≤ c8

∫
Ω
M(|∇Tk(un − Th(un))|) dx

≤ kc9.

So,

meas({|un − Th(un)| > k}) ≤ kc9

M(kc7)
for all n and for all k > h > ‖v0‖∞. (5.17)

Hence,

meas({|un| > k})≤meas({|un−Th(un)| > k−h})≤ (k − h)c9

M((k − h)c7)
for all n.
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Therefore, as k tends to infinity, using
t

M(t)
→ 0 as t→∞,

we obtain

meas({|un| > k}) → 0 as k tends to infinity uniformly in n. (5.18)

Now, let λ > 0, we have

meas({|un − um| > λ}) ≤ meas({|un| > k}) + meas({|um| > k})
+ meas({|Tk(un)− Tk(um)| > λ}).

From (5.14), we can assume that Tk(un) is a Cauchy sequence in measure
in Ω.

Let ε > 0, by (5.18), (5.19) and the fact that Tk(un) is a Cauchy sequence
in measure, there exists some k(ε) > 0 such that meas({|un−um| > λ}) < ε
for all n, m ≥ n0(k(ε), λ). This proves that (un)n is a Cauchy sequence
in measure in Ω, thus converges almost everywhere to some measurable
function u. Then we deduce the result of Proposition 4.2.

5.4. Proof of Proposition 4.3.
1) Boundedness of (a(x,∇Tk(un))n in (LM (Ω))N .
Let w ∈ (EM (Ω))N be arbitrary. By condition (A3) we have,

(a(x,∇un)− a(x,w))(∇un − w) ≥ 0

which implies that,

a(x,∇un)(w −∇v0) ≤ a(x,∇un)(∇un −∇v0)− a(x,w)(∇un − w).

Consequently, ∫
{|un−v0|≤k}

a(x,∇un)(w −∇v0) dx

≤
∫
{|un−v0|≤k}

a(x,∇un)(∇un −∇v0) dx

+
∫
{|un−v0|≤k}

a(x,w)(w −∇un) dx. (5.20)

Combining (5.9) and (5.10), we get∫
{|un−v0|≤k}

a(x,∇un)(∇un −∇v0) dx ≤ C11, (5.21)

with C11 is a positive constant.
On the other hand, we have by (A2)

|a(x,w)| ≤ c(x) + k1M
−1
M(k2|w|).
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Therefore,∫
Ω
M(

a(x,w)
λ

) dx ≤
∫

Ω
M(

c(x)
λ

) +
∫

Ω

k1

λ
M(k2|w|) ≤ C12 (5.22)

when λ > 0 is large enough.
Which implies that the second term on the right in (5.20) is also bounded.

By the theorem of Banach-Steinhaus, the sequence (a(x,∇un)χ{|un−v0|≤k})n
remains bounded in (LM (Ω))N . Since k is arbitrary, we deduce that
(a(x,∇Tk(un)))n is also bounded in (LM (Ω))N . Which implies that, for
all k > 0, there exists a function ρk ∈ (LM (Ω))N such that,

a(x,∇Tk(un)) ⇀ ρk weakly in (LM (Ω))N

for σ
(∏

LM (Ω),
∏

EM (Ω)
)
. (5.23)

2) We claim that M(|∇Tk(un)|)→M(|∇Tk(u)|) in L1(Ω).
We fix k > 0 and let Ωr = {x ∈ Ω, |∇Tk(u(x))| ≤ r} and denote by χr the
characteristic function of Ωr. Clearly, Ωr ⊂ Ωr+1 and meas(Ω\Ωr) −→ 0 as
r −→∞.

By using (A5), there exists a sequence vj ∈ Kψ ∩W 1
0EM (Ω) ∩ L∞(Ω)

which converges to Tk(u) for the modular convergence in W 1
0LM (Ω).

We will introduce the following function of one real variable s, which is
defined as

hm(s) =


1 if |s| ≤ m
−|s|+m+ 1 if m ≤ |s| ≤ m+ 1
0 if |s| ≥ m+ 1.

The choose of the un − hm(un − v0)(Tk(un) − Tk(vj)) as test function in
(4.1), we gives (using the fact that the derivative of hm(s) is different from
zero only where m < |s| < m+ 1),∫

Ω
a(x,∇un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx

+
∫
{m<|un−v0|<m+1}

a(x,∇un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

+
∫
{m<|un−v0|<m+1}

φ(un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

+
∫

Ω
φ(un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx

≤
∫

Ω
fnhm(un − v0)(Tk(un)− Tk(vj)) dx. (5.24)
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In the sequel and throughout the paper, we will denote ε(n, j,m, s) all quan-
tities (possibly different) such that

lim
s→+∞

lim
m→+∞

lim
j→+∞

lim
n→+∞

ε(n, j,m, s) = 0

and this will be the other in which the parameters we use will tend to
infinity, that is, first n, then j, m and finally s. Similarly, we write only
ε(n), or ε(n, j), . . . to mean that the limits are made only on the specified
parameters.

We will deal with each term of (5.24). First of all, observe that∫
Ω
fnhm(un − v0)(Tk(un)− Tk(vj)) dx = ε(n, j). (5.25)

Indeed. In view of assertion 1) of Proposition 4.2, we have

hm(un − v0)(Tk(un)− Tk(vj))→ hm(u− v0)(Tk(u)− Tk(vj))
weakly∗ as n→ +∞ in L∞(Ω),

and then, ∫
Ω
fnhm(un − v0)(Tk(un)− Tk(vj)) dx

→
∫

Ω
fhm(u− v0)(Tk(u)− Tk(vj)) dx as n→ +∞.

Since

hm(u− v0)(Tk(u)− Tk(vj))→ 0 weak∗ in L∞(Ω) as j → +∞,
we get ∫

Ω
fhm(u− v0)(Tk(u)− Tk(vj)) dx→ 0 as j → +∞.

For what concerns the third term of the left hand side of (5.24), we have by
letting n→∞∫
{m<|un−v0|<m+1}

φ(un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

=
∫
{m<|u−v0|<m+1}

φ(u)∇(u− v0)(Tk(u)− Tk(vj))h′m(u− v0) dx+ ε(n)

since

φ(un)χ{m<|un−v0|<m+1}(Tk(un)− Tk(vj))
→ φ(u)χ{m<|u−v0|<m+1}(Tk(u)− Tk(vj)),

strongly in (EM (Ω))N by assertion 1) of Proposition 4.2 and Lebesgue the-
orem while ∇Tm+1(un) ⇀ ∇Tm+1(un) weakly in (LM (Ω))N by assertion 2)
of Proposition 4.2.
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Letting j →∞ in the right term of the above equality, one has, by using
the modular convergence of (vj)j∫

{m<|u−v0|<m+1}
φ(u)∇(u− v0)(Tk(u)− Tk(vj))h′m(u− v0) dx = ε(j)

and so∫
{m<|un−v0|<m+1}

φ(un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

= ε(n, j). (5.26)

Similarly, we have∫
Ω
φ(un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx = ε(n, j). (5.27)

Starting with the second term of the left hand side of (5.24), we have∣∣∣∣∣
∫
{m<|un−v0|<m+1}

a(x,∇un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

∣∣∣∣∣
≤ 2k

∣∣∣∣∣
∫
{m<|un−v0|<m+1}

a(x,∇un)∇(un − v0) + δ(x) dx

∣∣∣∣∣
+ 2k

∫
{m<|un−v0|<m+1}

δ(x) dx. (5.28)

Moreover, since {m < |un − v0| < m + 1} ⊂ {l < |un| < l + s} where
l = m− ‖v0‖∞, s = 2‖v0‖∞ + 1, we get

2k

∣∣∣∣∣
∫
{m<|un−v0|<m+1}

(a(x,∇un)∇(un − v0) + δ(x)) dx

∣∣∣∣∣
≤ 2k

∫
{l<|un|<l+s}

(a(x,∇un)∇(un − v0) + δ(x)) dx

= 2k
∫
{l<|un|<l+s}

a(x,∇un)∇un dx− 2k
∫
{l<|un|<l+s}

a(x,∇un)∇v0 dx

+ 4k
∫
{l<|un|<l+s}

δ(x) dx. (5.29)

Now, we take un − Ts(un − Tl(un)) as test function in (4.1), we get∫
{l<|un|<l+s}

a(x,∇un)∇un dx+
∫

Ω
div
[∫ un

0
φ(t)χ{l≤|t|≤l+s} dt

]
dx

≤
∫

Ω
fnTs(un − Tl(un)) dx ≤ s

∫
{|un|>l}

|fn| dx
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and using the fact that∫ un

0
φ(t)χ{l≤|t|≤l+s} dt ∈W 1

0LM (Ω)

and Lemma 2.7 one has,∫
{l<|un|<l+s}

a(x,∇un)∇un dx ≤
∫

Ω
fnTs(un − Tl(un)) dx

≤ s
∫
{|un|>l}

|fn| dx. (5.30)

On the other side, the Hölder’s inequality gives∣∣∣∣∣−2k
∫
{l<|un|<l+s}

a(x,∇un)∇v0 dx

∣∣∣∣∣
≤ 4k‖a(x,∇Ts(un − Tl(un)))‖M‖∇v0χ{|un|>l}‖M . (5.31)

Furthermore, by the same argument as in the proof of the Proposition 4.3
(step 1), we get

‖a(x,∇Ts(un − Tl(un)))‖M ≤ C14,

where C14 is a positive constant independent of n and m.
Combining (5.29), (5.30) and (5.31), we deduce∣∣∣∣∣2k
∫
{m<|un−v0|<m+1}

(a(x,∇un)∇(un − v0) + δ(x)) dx

∣∣∣∣∣
≤ C15

∫
{|un|>l}

(δ(x) + |fn|) dx+ C16‖∇v0χ{|un|>l}‖M . (5.32)

Letting successively first n, then m (l = m − ‖v0‖∞) go to infinity, we
find, by using the fact that δ ∈ L1(Ω), v0 ∈ W 1

0EM (Ω) and the strong
convergence of fn∣∣∣∣∣

∫
{m<|un−v0|<m+1}

(a(x,∇un)∇(un − v0) + δ(x)) dx

∣∣∣∣∣
= ε(n,m). (5.33)

Finally, we have∣∣∣∣∣
∫
{m<|un−v0|<m+1}

a(x,∇un)∇(un − v0)(Tk(un)− Tk(vj))h′m(un − v0) dx

∣∣∣∣∣
= εj(n,m). (5.34)

By means of (5.24)–(5.27), (5.34), we obtain∫
Ω
a(x,∇un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx
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≤ ε(n,m) + ε(n, j). (5.35)

Splitting the integral on the left hand side of (5.35) where |un| ≤ k and
|un| > k, we can write,∫

Ω
a(x,∇un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx

=
∫

Ω
a(x,∇Tk(un))[∇Tk(un)−∇Tk(vj)]hm(un − v0) dx

+
∫
{|un|>k}

a(x, 0)∇Tk(vj)hm(un − v0) dx

−
∫
{|un|>k}

a(x,∇un)∇Tk(vj)hm(un − v0) dx (5.36)

≥
∫

Ω
a(x,∇Tk(un))[∇Tk(un)−∇Tk(vj)]hm(un − v0) dx

−
∫
{|un|>k}

∣∣a(x, 0) + a(x,∇Tm+‖v0‖∞+1(un))||∇vj
∣∣ dx.

Since (|a(x, 0) + a(x,∇Tm+‖v0‖∞+1(un))|)n is bounded in LM (Ω), we get,
for a subsequence still denoted un

|a(x, 0) + a(x,∇Tm−‖v0‖∞+1(un))|⇀ lm weakly in LM (Ω) for σ(LM , EM ),

and since, |∇vj |χ{|un|>k} converges strongly to |∇vj |χ{|u|>k} in EM (Ω), we
have by letting n→∞

−
∫
{|un|>k}

|a(x, 0) + a(x,∇Tm+‖v0‖∞+1(un))|∇vj | dx→−
∫
{|u|>k}

lm|∇vj | dx

as n tends to infinity.
Using now, the modular convergence of (vj)j , we get

−
∫
{|u|>k}

lm|∇vj | dx→ −
∫
{|u|>k}

lm|∇Tk(u)| dx

as j tends to infinity.
Since ∇Tk(u) = 0 in {|u| > k} we deduce that,

−
∫
{|un|>k}

|a(x, 0) + a(x,∇Tm+‖v0‖∞+1(un))|∇vj | dx = ε(n, j). (5.37)

We then have by (5.36),∫
Ω
a(x,∇un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx (5.38)

≥
∫

Ω
a(x,∇Tk(un))[∇Tk(un)−∇Tk(vj)]hm(u− v0) dx+ ε(n, j).
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It is easily to see that,∫
Ω
a(x,∇un)(∇Tk(un)−∇Tk(vj))hm(un − v0) dx

≥
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(vj)χjs)]

× [∇Tk(un)−∇Tk(vj)χjs)]hm(un − v0) dx (5.39)

+
∫

Ω
a(x,∇Tk(vj)χjs)[∇Tk(un)−∇Tk(vj)χjs)]hm(un − v0) dx

−
∫

Ω\Ωjs
|a(x,∇Tk(un))||∇vj | dx+ ε(n, j),

where χjs denotes the characteristic function of the subset Ωj
s =

{x ∈ Ω: |∇Tk(vj)| ≤ s}, and as above we have

−
∫

Ω\Ωjs
|a(x,∇Tk(un))||∇vj | dx

= −
∫

Ω\Ωs
ρk|∇Tk(u)| dx+ ε(n, j). (5.40)

where ρk is some function in LM (Ω) such that

|a(x,∇Tk(un))|⇀ ρk weakly in LM (Ω) for σ(LM , EM ).

For what concerns the second term of the right hand side of (5.39) we can
write, ∫

Ω
a(x,∇Tk(vj)χjs)[∇Tk(un)−∇Tk(vj)χjs)]hm(un − v0) dx

=
∫

Ω
a(x,∇Tk(vj)χjs)∇Tk(un)hm(Tk(un)− v0) dx (5.41)

−
∫

Ω
a(x,∇Tk(vj)χjs)∇Tk(vj)χjshm(un − v0) dx.

Starting of the second term of the last equality, we have∫
Ω
a(x,∇Tk(vj)χjs)∇Tk(un)hm(un − v0) dx

=
∫

Ω
a(x,∇Tk(vj)χjs)∇Tk(u)hm(u− v0) dx+ ε(n)

since

a(x,∇Tk(vj)χjs)hm(Tk(un)− v0)→ a(x,∇Tk(vj)χjs)hm(Tk(u)− v0)
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strongly in (EM (Ω))N by Lemma 2.3 while ∇Tk(un) ⇀ ∇Tk(u) weakly in
(LM (Ω))N for σ

(∏
LM ,

∏
EM

)
. Letting again j →∞, one has, since

a(x,∇Tk(vj)χjs)hm(Tk(u)− v0)→ a(x,∇Tk(u)χs)hm(Tk(u)− v0)

strongly in (EM (Ω))N by using the modular convergence of vj and Lebesgue
theorem ∫

Ω
a(x,∇Tk(vj)χjs)∇Tk(un)hm(un − v0) dx

=
∫

Ω
a(x,∇Tk(u)χs)∇Tk(u)hm(u− v0) dx+ ε(n, j).

In the same way, we have

−
∫

Ω
a(x,∇Tk(vj)χjs)∇Tk(vj)χjshm(un − v0) dx

=
∫

Ω\Ωs
a(x,∇Tk(u)χs)∇Tk(u)χshm(u− v0) dx+ ε(n, j).

Adding the two equalities we conclude∫
Ω
a(x,∇Tk(vj)χjs)[∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx

=
∫

Ω\Ωs
a(x, 0)∇Tk(u)hm(u− v0) dx+ ε(n, j).

Since 1− hm(u− v0) = 0 in {|u(x)− v0(x)| ≤ m} and since {|u(x)| ≤ k} ⊂
{|u(x)− v0(x)| ≤ m} for m large enough, we deduce∫

Ω
a(x,∇Tk(vj)χjs)[∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx

=
∫

Ω\Ωs
a(x, 0)∇Tk(u) dx+ ε(n, j). (5.42)

Combining (5.39), (5.40) and (5.42), we get∫
Ω
a(x,∇un)[∇Tk(un)−∇Tk(vj)]hm(un − v0) dx

≥
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(vj)χjs)] (5.43)

× [∇Tk(un)−∇Tk(vj)χjs)]hm(un − v0) dx

−
∫

Ω\Ωs
ρk|∇Tk(u)| dx+

∫
Ω\Ωs

a(x, 0)∇Tk(u) dx+ ε(n, j).

This and (5.35) yield
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Ω

[a(x,∇Tk(un))− a(x,∇Tk(vj)χjs)]

× [∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx

≤
∫

Ω\Ωs
ρk|∇Tk(u)| dx+

∫
Ω\Ωs

a(x, 0)∇Tk(u) dx (5.44)

+ ε(n, j) + ε(n,m).

On the other hand, we have∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

−
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(vj)χjs)]

× [∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx

=
∫

Ω
a(x,∇Tk(vj)χjs)[∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx (5.45)

−
∫

Ω
a(x,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

+
∫

Ω
a(x,∇Tk(un))[∇Tk(vj)χjs −∇Tk(u)χs]hm(un − v0) dx,

an, as it can be easily seen that the term of the right-hand side is the form
ε(n, j) implying that∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx (5.46)

=
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(vj)χjs)]

× [∇Tk(un)−∇Tk(vj)χjs]hm(un − v0) dx+ ε(n, j).

Furthermore, using (5.45) and (5.47), we have∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

≤
∫

Ω\Ωs
ρk|∇Tk(u)| dx+

∫
Ω\Ωs

a(x, 0)∇Tk(u) dx

+ ε(n, j) + ε(n,m). (5.47)

Now, we remark that
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Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

=
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

+
∫

Ω
a(x,∇Tk(un))[∇Tk(un)−∇Tk(u)χs](1− hm(un − v0)) dx

−
∫

Ω
a(x,∇Tk(u)χs)[∇Tk(un)−∇Tk(u)χs](1− hm(un − v0)) dx+ ε(n, j)

+ ε(n,m). (5.48)

Since 1 − hm(un − v0) = 0 in {|un(x) − v0(x)| ≤ m} and since {|un(x)| ≤
k} ⊂ {|un(x)− v0(x)| ≤ m} for m large enough, we deduce from (5.48)∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

=
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

−
∫
{|un(x)|>k}

a(x, 0)∇Tk(u)χs(1− hm(un − v0)) dx (5.49)

+
∫
{|un(x)|>k}

a(x,∇Tk(u)χs)∇Tk(u)χs(1− hm(un − v0)) dx.

It is easy to see that, the two last terms of the last inequality tends to zero
as n→∞, this implies that,∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

=
∫

Ω
[a(x,∇Tk(un))− a(x,∇Tk(u)χs)]

× [∇Tk(un)−∇Tk(u)χs]hm(un − v0) dx

+ ε(n, j) + ε(n,m). (5.50)

Combining (5.35), (5.45), (5.47) and (5.50), we have∫
Ω

[a(x,∇Tk(un))− a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

≤
∫

Ω\Ωs
ρk∇Tk(u) dx+

∫
Ω\Ωs

a(x, 0)∇Tk(u) dx+ ε(n, j,m). (5.51)
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By passing to the lim sup over n, and letting j,m, s tend to infinity, we
obtain

lim sup
s→+∞

lim sup
n→+∞

∫
Ω

[a(x,∇Tk(un))−a(x,∇Tk(u)χs)][∇Tk(un)−∇Tk(u)χs] dx

= 0.

Thus, by the Lemma 4.2, we get

M(|∇Tk(un)|)→M(|∇Tk(u)|) in L1(Ω). (5.52)

Remark 5.1. If we assume that AM 6= ∅, then any solution of (3.9) belongs
to W 1

0LQ(Ω) for each Q ∈ AM .

Indeed. Let t ≥ ‖v0‖∞ and take v = Tt(u) in (3.9), we get∫
Ω
a(x,∇u)∇Th(u− Tt(u)) dx+

∫
Ω
φ(u)∇Th(u− Tt(u)) dx

≤
∫

Ω
fTh(u− Tt(u)) dx.

Hence,
1
h

∫
Ω
a(x,∇u)∇Th(u− Tt(u)) dx ≤ c.

Reasoning as above and letting h→ 0, we get

lim
h→0

1
h

∫
{t≤|u(x)|≤t+h}

M(|∇u|) dx ≤ c.

Thus,

− d

dt

∫
{|u(x)|>t}

M(|∇u|) dx ≤ c.

Following the same method used in the work of Benkirane and Bennouna
[7] (see Step 2, pp. 93–97) one proves easily that u ∈W 1

0LQ(Ω) ∀ Q ∈ AM .
In the case where ψ = −∞ (i.e. Kψ = W 1

0LM (Ω)) it is possible to state:

Corollary 5.1. Assume that (A1)–(A4) and (3.3), (3.4) are satisfied. Then
there exists at least one solution of the following problem

u ∈ T 1,M
0 (Ω),∫

Ω
a(x,∇u)∇Tk(u− v) dx +

∫
Ω
φ(u)∇Tk(u− v) dx

≤
∫

Ω
fTk(u− v) dx,

∀v ∈ Kψ ∩ L∞(Ω), ∀k > 0.

(5.53)
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Remark 5.2. Observe that the hypotheses (A5) is not used in the previous
corollary, this is due obviously to the density of D(Ω) in W 1

0LM (Ω)∩L∞(Ω)
in the modular sense (see [13]).

Remark 5.3. In the same particular case as above (i.e. ψ = −∞), the
element v0 introduced in (A4) lies in W 1

0EM (Ω)∩L∞(Ω), then if we assume
that δ = v0 = 0 and AM 6= ∅, then any solution of (5.53) belongs to
W 1

0LQ(Ω) for each Q ∈ AM , which gives the result of [6].

The proof is similar to that given in Remark 5.1.

Remark 5.4. Let M(t) = |t|p and Q(t) = |t|q. Then the condition Q ∈ AM
is equivalent to the following conditions:

1) 2− 1
N
< p < N ,

2) q < q =
N(p− 1)
N − 1

.

Remark 5.5. In the case where M(t) = |t|p. The Corollary 5.1 gives the

result of Boccardo [9] (i.e. u ∈W 1,q
0 (Ω), ∀q < N(p− 1)

N − 1
).
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