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Abstract. We prove that if a pair 〈I, J〉 of ccc, translation invariant
σ-ideals on 2ω has the Fubini Property, then I = J . This leads to a
slightly improved exposition of a part of the Farah-Zapletal proof of an
invariant version of their theorem which characterizes the measure and
category σ-ideals on 2ω as essentially the only ccc definable σ-ideals
with Fubini Property.

1. Introduction

A σ-ideal on an uncountable Polish space X is a family I ⊆ P(X) which
is closed under taking subsets and countable unions. Throughout the paper
we assume that I is proper, i.e., X 6∈ I, contains all singletons and has a
basis consisting of Borel sets, i.e., every set from I is covered by a Borel set
from I (we will sometimes abuse the notation by identifying I with I∩B(X),
where B(X) is the family of all Borel subsets of X).

Given σ-ideals I and J on Polish spaces X and Y , respectively, we say
that the pair 〈I, J〉 has the Fubini Property (FP) if for every Borel set
B ⊆ X × Y , if all its vertical sections Bx = {y : 〈x, y〉 ∈ B} are in J , then
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its horizontal sections By = {x : 〈x, y〉 ∈ B} are in I, for every y outside
a set from J . If the pair 〈I, I〉 has the FP, then we simply say that I has
the Fubini Property. In view of the classical Fubini and Kuratowski–Ulam
theorems (see [5, Theorem 8.41]), the pairs 〈N µ,N ν〉 and 〈M(X),M(Y )〉
have the FP. Here N µ is the collection of all subsets of X, having outer
measure zero with respect to a Borel σ-finite continuous measure µ on X
andM(X) is the family of all meager subsets ofX (we tacitly assume thatX
has no isolated points, so that the σ-idealM(X) contains all singletons). In
particular, if X = 2ω is the Cantor group equipped with the Haar measure,
then the respective σ-ideals will be denoted by N and M and referred to
as the measure and the category σ-ideals.

We say that σ-ideals I and J on spaces X and Y , respectively, are Borel
isomorphic (I ≡B J) if there exists a Borel isomorphism f : X −→Y between
X and Y such that A ∈ I ⇐⇒ f [A] ∈ J for every A ∈ B(X). It is
well-known that all σ-ideals of the form N µ and, respectively, of the form
M(X), are Borel isomorphic.

Thus the Fubini and Kuratowski–Ulam theorems show just two, up to a
Borel isomorphism, examples of σ-ideals with the FP: the measure and the
category one.

We say that a σ-ideal I on X is ccc if there is no uncountable family of
disjoint Borel subsets of X outside I. Note that the measure and category
σ-ideals are ccc.

A σ-ideal I on 2ω is translation invariant (shortly: invariant), if

∀x ∈ 2ω ∀A ⊆ 2ω (A ∈ I ⇒ x+A ∈ I).

The main result of the paper is the following theorem, the proof of which
will be presented in Section 2.

Theorem 1.1. If a pair 〈I, J〉 of ccc invariant σ-ideals on 2ω has the FP,
then I = J .

The classical examples of ccc invariant σ-ideals on 2ω are M and N but
by the work of Ros lanowski and Shelah [10] plenty of other examples exist.
On the other hand, none of them has the FP and a version of a problem
of Kunen (see [7]) is whether M and N are the only ccc invariant σ-ideals
on 2ω with the Fubini Property. Recently, Farah and Zapletal [4] obtained
the positive answer under the additional assumption that the σ-ideals in
question are definable (in the sense to be explained in Section 3).

More precisely, the (ZFC version of) Farah-Zapletal theorem states the
following.

Theorem 1.2 (Farah, Zapletal). If a pair 〈I, J〉 of ccc, definable σ-ideals
on 2ω has the FP, then either I ≡B J ≡B N or I ≡B J ≡BM.



ON THE UNIQUENESS OF MEASURE AND CATEGORY σ-IDEALS ON 2ω 251

In Section 3 we show how Theorem 1.1 can be applied in an exposition of
a part of the Farah-Zapletal proof of the following invariant version of their
theorem.

Theorem 1.3. If a pair 〈I, J〉 of invariant, ccc, definable σ-ideals on 2ω

has the FP, then either I = J = N or I = J =M.

2. Fubini Property for invariant σ-ideals on 2ω

This section is devoted to the proof of Theorem 1.1. Our notation is
standard. The complement of a set A in the space X will be denoted by
Ac.

If J is a σ-ideal on a Polish space X and A ∈ B(X) \ J then we define
J |A = {C ⊆ X : C ∩ A ∈ J}. Clearly, J |A is also a σ-ideal on X and
J ⊆ J |A. Moreover, if I and J are ccc σ-ideals on X and J ⊆ I, then there
is a set A ∈ B(X) with Ac ∈ I (in particular: A /∈ J) such that I = J |A.

Proof of Theorem 1.1. The following lemma takes care of one of the two
inclusions we are going to prove.

Lemma 2.1. If a pair 〈I, J〉 of ccc invariant σ-ideals on 2ω has the FP,
then J ⊆ I.

Proof. Take A ∈ J ∩ B(2ω) and let B = {〈x, y〉 : x + y ∈ A}. Then B ∈
B(2ω × 2ω) and Bx = x+A for every x ∈ 2ω. Since J is invariant it follows
that Bx ∈ J for every x ∈ 2ω. Hence, by the FP, {y ∈ 2ω : By 6∈ I} ∈ J and,
in particular, there exists y ∈ 2ω such that By ∈ I (recall that all σ-ideals
under consideration are proper, so J 6= P(2ω)). But By = y+A, so in view
of the invariance of I we conclude that A ∈ I.

Now let I and J be ccc invariant σ-ideals on 2ω and assume that 〈I, J〉
has the FP. Using remarks preceding the proof fix an A ∈ B(X) such that
Ac ∈ I and I = J |A.

Suppose, towards a contradiction, that J 6= I. Then Ac /∈ J and J =
I ∩ J |Ac.

Lemma 2.2. The σ-ideal J |Ac is invariant.

Proof. Take arbitrary B ∈ J |Ac and t ∈ 2ω. Hence we assume that B∩Ac ∈
J and we want to show that (t + B) ∩ Ac ∈ J . Since (t + B) ∩ (t + Ac) =
t+ (B ∩Ac) ∈ J , it is enough to prove that

(t+B) ∩
(
Ac \ (t+Ac)

)
∈ J
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or, equivalently, translating by t and using the invariance of J , that

B ∩
(
(t+Ac) ∩A)

)
∈ J (∗)

Let C = B ∩
(
(t+Ac)∩A)

)
. Note that since t+C ⊆ Ac we have t+C ∈ I.

Hence, in view of the invariance of I, also C ∈ I. But taking into account
that C ⊆ A and I = J |A we conclude that C ∈ J which gives (∗) and
completes the proof of Lemma 2.2.

Finally, since the FP for 〈I, J〉 easily implies the FP for 〈I, J |Ac〉 it follows
from Lemma 2.1 that J |Ac ⊆ I.

But J = I ∩ J |Ac hence J = J |Ac, so A ∈ J which contradicts the choice
of A, completing the proof of Theorem 1.1. 2

3. The uniqueness of measure and category σ-ideals on 2ω

Actually, Theorem 1.2 referred to in this paper as the Farah-Zapletal the-
orem, relies on a fundamental dichotomy resulting from an earlier theorem
of Shelah [11] and the work of the two authors concerning von Neumann’s
problem on the existence of strictly positive continuous submeasures on
weakly distributive Boolean algebras (see [4]; compare also [2] and [1] where
a much more general approach to von Neumann’s problem is presented). In
order to state the ZFC version of this dichotomy, let us first explain what
is meant by definable σ-ideals in the statement of Theorems 1.2 and 1.3.

We say that a σ-ideal I on 2ω is
• analytic on Gδ if for every Gδ subset G of 2ω× 2ω the set {x : Gx ∈ I}

is an analytic subset of 2ω,
• Souslin if there is a Souslin poset P such that the quotient Boolean

algebra B(2ω)/I is isomorphic to the completion of P (a poset P is
Souslin if its domain is an analytic subset of an uncountable Polish
space and both the order and the incompatibility relation of P are
analytic, see [3]),
• definable if it is analytic on Gδ and Souslin.
It is well-known that the σ-ideals N and M are definable.
If I1 and I2 are σ-ideals on Polish spaces X1 and X2, respectively, we

write I2 ≤B I1 if there exists a Borel function ϕ : X1−→X2 such that

C ∈ I2 ⇔ ϕ−1[C] ∈ I1 for every C ∈ B(X2).

Note that if I2 ≤B I1 and 〈I1, J〉 has the FP then 〈I2, J〉 has the FP as well
(see [14, Proposition 2.3]).

Now the dichotomy mentioned above can be summarized in the following
two theorems (see comments in Section 4). Let I be a ccc σ-ideal on 2ω.
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Theorem 3.1 (Shelah, [11]). If I is Souslin and the quotient Boolean al-
gebra B(2ω)/I is not weakly σ-distributive, then M ≤B I|A for a certain
A ∈ B(X) \ I.

Theorem 3.2 (Farah-Zapletal, [4]). If I is analytic on Gδ and the quotient
Boolean algebra B(2ω)/I is weakly σ-distributive, then there exists a contin-
uous diffused Borel submeasure Φ such that I = Null(Φ), the collection of
its null sets. Moreover, if additionally I has the FP, then Null(Φ) ≡B N .

Taking the above for granted, a proof of the invariant version of the
Farah-Zapletal Theorem (Theorem 1.3) can now be completed with the
help of Theorem 1.1 as follows.

Proof of Theorem 1.3. Let I, J be invariant, ccc, definable σ-ideals on
2ω and assume that the pair 〈I, J〉 has the FP. We want to prove that either
I = J = N or I = J =M.

Since I and J are invariant and ccc we readily have from Theorem 1.1
that I = J . Since I and J are, moreover, definable, by the dichotomy above
it is enough to consider two cases.
• Case 1. There is a set A ∈ B(2ω) \ I such that M ≤B I|A. Then

the FP for 〈I, I〉 immediately gives the FP for 〈I|A, I〉 which in turn
implies the FP for 〈M, I〉. Finally, Theorem 1.1 gives I =M.
• Case 2. There is a continuous diffused Borel submeasure Φ such that
I = Null(Φ) and Null(Φ) ≡B N . Then the FP for 〈I, I〉 implies the
FP for 〈N , I〉, which again by Theorem 1.1 gives I = N , completing
the proof.

4. Additional remarks

4.1. Translation invariant ccc ideals on 2! with the FP. Although
the family of ccc invariant σ-ideals on 2ω with the FP has just two members
(N and M) that have been identified so far (and, by Theorem 1.3, no more
definable members) the following consequence of Theorem 1.1 seems to be
of some interest. Let us say that σ-ideals I and J on a Polish space X are
orthogonal (the fact denoted in this paper by I ⊥ J) if there exist a Borel
set B ⊆ X such that Bc ∈ I and B ∈ J . Equivalently, I ⊥ J iff there is no
(proper!) σ-ideal on X extending both I and J . Note that N ⊥M.



254 P. ZAKRZEWSKI

Proposition 4.1.
1. If I is a ccc invariant σ-ideal on 2ω with the FP, then I is a maximal

invariant σ-ideal on 2ω. In particular, for every Borel set B not in I
there are countably many elements tn ∈ 2ω such that 2ω \

⋃
n<ω (tn +

B) ∈ I.
2. If I1 and I2 are ccc invariant σ-ideals on 2ω with the FP, then either
I1 = I2 or I1 ⊥ I2.

Proof. To prove part (1) assume that Ī is an invariant σ-ideal on 2ω with
I ⊆ Ī (clearly, Ī is ccc as well). Then the FP for 〈I, I〉 implies the FP for
〈I, Ī〉 which by Theorem 1.1 gives I = Ī.

To prove part (2) assume that I1 and I2 are not orthogonal and let J
be the σ-ideal generated by I1 ∪ I2. Since, clearly, J is invariant, it follows
from part (1) that J = I1 = I2.

4.2. Shelah’s Theorem 3.1 and forcing. The conclusion of Shelah’s the-
orem (3.1) is usually formulated in forcing terms as “forcing with B(2ω)/I
adds a Cohen real”. This in turn in Boolean algebraic terms means that
there exists a set A ∈ B(X) \ I such that the Cohen algebra B(2ω)/M is
a complete subalgebra of the quotient algebra B(2ω)/(I|A). However, by
Sikorski’s theorem on inducing homomorphisms of σ-algebras by point maps
(see [5, 15.9]) the latter condition is equivalent to M≤B I|A which is just
the way we stated it.

The following result and its corollary may perhaps also shed more light
on the meaning of the notion of reducing one σ-ideal to another.

Proposition 4.2. Let I1 and I2 be σ-ideals on Polish spaces X1 and X2,
respectively. For a Borel function ϕ : X1−→X2 the following conditions are
equivalent:

1. ∀B ∈ B(X1) (X1 \B ∈ I1 ⇒ ϕ[B] 6∈ I2),
2. ∀B ∈ B(X2) (B ∈ I2 ⇒ X1 \ ϕ−1[B] 6∈ I1),
3. ϕ witnesses that I2|C ≤B I1|A for certain sets A ∈ B(X1) \ I1 and
C ∈ B(X2) \ I2 where, moreover, A = ϕ−1[C].

Proof. The equivalence of conditions (1) and (2) is almost obvious.
To prove that (3) ⇒ (2) take a B ∈ I2 ∩ B(X2). Then B ∈ I2|C so

ϕ−1[B] ∈ I1|A, i.e., ϕ−1[B] ∩ A ∈ I1. But since A 6∈ I1 the latter implies
that X1 \ ϕ−1[B] 6∈ I1.

To prove that (2)⇒ (3) let

I3 = {B ∈ B(X2) : ϕ−1[B] ∈ I1}.
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Note that I3 is a ccc σ-ideal on X2 and I3 6⊥ I2. Indeed, if B ⊆ X2 is a
Borel set such that X2 \B ∈ I3, then X1 \ϕ−1[B] ∈ I1 which by (2) implies
that B 6∈ I2.

So let J be a σ-ideal on X2 such that I2 ∪ I3 ⊆ J . Then there are Borel
sets C2, C3 ⊆ X2 with C2

c, C3
c ∈ J such that J = I2|C2 and J = I3|C3. Let

C = C2 ∩C3. Then C 6∈ J and I2|C = I3|C. Let A = ϕ−1[C]. Then A 6∈ I1
and we claim that ϕ witnesses I2|C ≤B I1|A. Indeed, take B ∈ B(X2)
and to complete the proof examine the following sequence of conditions:
B ∈ I2|C iff B∩C ∈ I2 iff B∩C ∈ I3 iff ϕ−1[B∩C] ∈ I1 iff ϕ−1[B]∩A ∈ I1
iff ϕ−1[B] ∈ I1|A.

Corollary 4.3. Let I be a ccc σ-ideal on a Polish space X. Then the
following conditions are equivalent:

1. M≤B I|A for a certain A ∈ B(X) \ I.
2. There is a Borel function ψ : X −→ 2ω such that

∀B ∈ B(X) (X \B ∈ I ⇒ ψ[B] 6∈ M).

Proof. This follows immediately from Proposition 4.2 and the fact that for
any C ∈ B(2ω) \M we have M|C ≡BM.

4.3. The definability assumptions on I. Actually, the Farah-Zapletal
theorem (1.2) is formulated in [4] with just one definability assumption on
I and J , namely that both are analytic on Gδ, together with the remark
that if I is analytic on Gδ, then it is easily Souslin (see [4]). However,
the referee’s comments on an earlier version of the present paper and the
correspondence with the authors of [4] caused doubts if the latter is true
in such a generality. Nevertheless, we have the following remark, due in its
final form to J. Zapletal (private communication). It explains the situation
under an additional condition, which covers all known cases and is easily
satisfied by the σ-ideals N and M.

Remark 4.4. Let I be a ccc analytic on Gδ σ-ideal on 2ω and suppose that
the (equivalence classes of) compact sets not in I are dense in the quotient
Boolean algebra B(2ω)/I. Then the σ-ideal I is Souslin.

Proof. Consider the poset P = {K ∈ K(2ω) : K 6∈ I}, ordered by inclusion;
K(2ω) is the hyperspace of all compact subsets of 2ω equipped with Vietoris
topology. Recall that the relation “K ⊆ L” is closed in K(2ω)2 and the map
〈K,L〉 7→ K ∩ L from K(2ω)2 to K(2ω) is Borel (see [5]). Note also that, I
being analytic on Gδ, the set I ∩K(2ω) is analytic and hence actually (by
a theorem of Kechris, Louveau, and Woodin [6]) a Gδ subset of K(X). It



256 P. ZAKRZEWSKI

follows that P is analytic (actually Fσ) in K(2ω) and sets K, L ∈ P are
incompatible iff K ∩ L ∈ I, which in view of the preceding remarks is also
a Borel relation.

When we additionally assume that I is invariant and has the FP, which
is the special case dealt with in this note, the fact that P is analytic (actu-
ally Borel) in K(2ω) can also be proved without resorting to the Kechris-
Louveau-Woodin theorem. Namely, by Proposition 4.1, I is a maximal in-
variant σ-ideal on 2ω. So for a set K ∈ K(2ω) we have that K ∈ P iff there
is a sequence 〈tn : n < ω〉 of elements of 2ω such that 2ω \

⋃
n<ω (tn+K) ∈ I.

This is an analytic statement provided the relation 2ω \
⋃
n<ω (tn+K) ∈ I is

analytic. Since I is analytic on Gδ, to prove the latter it is enough to find a
universal Gδ subset U of 2ω×2ω and a Borel function S : (2ω)ω×K(2ω)−→ 2ω

such that if x = S(〈tn : n < ω〉,K) then 2ω \
⋃
n<ω (tn +K) = Ux, the ver-

tical section of U at x. In fact, we shall identify 2ω with P(2<ω) and use a
well-known universal Gδ-set defined by

U = {〈A, y〉 ∈ P(2<ω)× 2ω : for infinitely many n, y � n ∈ A}.
(see e.g. [4] or [8]). Now, the proof given in [8] that for every Gδ-set V ⊆ 2ω

there is a set A ⊆ 2<ω such that UA = V , applied to V =
⋂
n<ω Vn and

Vn =
⋂
i≤n(ti +K), easily gives a function with desired properties. Namely,

define S(〈tn : n < ω〉,K) = A, where

A = {σ ∈ 2<ω : [σ] ⊆ V or ∃n < ω ([σ] ⊆ Vn and [σ∗] * Vn)}
(if σ is a finite non-empty binary sequence, σ∗ denotes its initial segment of
length exactly one less than σ).

It is easy to check that this is a Borel definition.
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