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Abstract. We establish fairly general sufficient conditions for a lo-
cally compact group (a Baire topological group) to admit partitions
into finitely many congruent µ-thick (everywhere of second category)
subsets.

1. Introduction

It was shown by Sierpiński [13] that a Q-linear subspace H of R of codi-
mension one is a λ-thick set, in the sense that R \ H has Lebesgue inner
measure zero. This of course implies that R can be partitioned into ℵ0-many
congruent (namely, each a translate of the other) λ-thick subsets. In [4],
Erdős and Marcus generalized Sierpiński’s example considerably, proving
that for every cardinal number m such that ℵ0 ≤ m ≤ 2ℵ0 there exists a
subgroup of R of index m that is a λ-thick set (hence there is a decomposi-
tion of R into m-many disjoint congruent λ-thick sets).
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We have recently extended Erdős and Marcus’ result to a rather general
class of locally compact Abelian groups [14] equipped with a Haar measure
µ.

After dealing with the problem of splitting a locally compact group into
infinitely many congruent µ-thick subsets, it is natural to inquire under
which conditions it admits finite partitions of the same type.

In [6, Section 16], Halmos showed that R is a union of two disjoint congru-
ent λ-thick sets. More recently, Bernardi and Bondioli [2] extended Halmos’
argument to locally compact groups and found sufficient conditions for them
to be decomposed into k disjoint congruent µ-thick sets (cf. the comment
at the end of Section 4).

In this paper we deal with the same type of questions as Bernardi and
Bondioli [2]. In Corollary 3.6 we give a precise characterization of those
locally compact Abelian groups that admit a partition into k congruent
µ-thick subsets. We also study finite decompositions of a Baire topologi-
cal group into congruent sets that are “thick” in a topological sense, i.e.,
everywhere of second category. To treat the two notions of µ-thick sets
and everywhere of second category sets simultaneously, in the spirit of [14]
we first examine “thickness” with respect to a generic ideal I (see Defini-
tion 2.1). Both special cases we are mainly interested in are then obtained
by taking for I the ideal of locally µ-null sets or the ideal of first category
sets.

We also present partial results in the noncommutative case (see Corol-
laries 3.7 and 3.8), which allow us to treat some classical noncommutative
groups such as the group GLn(R) of all regular n× n matrices over R, and
the group Sℵ0 of permutations of a countably infinite set.

Throughout the paper, G stands for a multiplicatively written Hausdorff
topological group with neutral element e. If H is a subgroup of G, we write
H ≤ G. If A ⊆ G, then 〈A〉 denotes the subgroup of G generated by A.
The topological closure of A is denoted by cl(A). Two subsets A,B of G
are said to be congruent if A = Bx for some x ∈ G.

2. Thick sets and the Steinhaus property

Let X be a topological space, B its Borel σ-algebra and µ : B → [0,∞]
a Borel measure on X. A subset A of X is called µ-thick if the only Borel
sets contained in X \A are locally µ-null sets.1 As observed in [14], if X is
decomposed into k disjoint µ-thick subsets A1, . . . , Ak (with k > 1), then
the sets Ai are “completely nonmeasurable” in the sense that, for every
Borel set B that is not a locally µ-null set, Ai ∩ B is not measurable (in

1A subset A of X is a locally µ-null set if, for every B ∈ B with µ(B) < ∞, A ∩ B is
contained in some N ∈ B with µ(N) = 0.
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particular, it does not belong to the σ-algebra generated by B and the σ-
ideal N of all locally µ-null sets).

We now give a topological concept which can be considered as the topo-
logical analogue of µ-thickness. A subset A of X is said to be everywhere of
second category (in X) if A ∩ O is of second category for every nonempty
open subset O of X. It turns out that A is everywhere of second category
iff X \A contains no Borel set of second category. If X has a partition into
k everywhere of second category subsets A1, . . . , Ak (with k > 1), then for
every Borel set B of second category the sets Ai ∩ B do not belong to the
σ-algebra generated by B and the σ-ideal F of first category subsets of X
(equivalently, they do not have the Baire property).

The very strict analogy between the two concepts of “µ-thick sets” and
“everywhere of second category sets” suggests a more general notion includ-
ing both:

Definition 2.1. Let I be an ideal2 on X. A subset A of X is I-thick if
the only Borel sets contained in X \A belong to I.

So, “N -thick” means “µ-thick”, and “F-thick” means precisely “every-
where of second category”.

If X is a topological group, then F is both right- and left-invariant (i.e.,
Fx ∈ F and xF ∈ F for every F ∈ F and every x ∈ X).

If X is a locally compact group and µ a left Haar measure on X, i.e., a
nonzero left-invariant Borel measure µ : B → [0,∞] that is finite on compact
sets, (outer) open regular on all Borel sets, and (inner) compact regular on
all open sets, then also N is both right- and left-invariant.

The following definition is essential for our inquiry. In fact, the Steinhaus
property captures the necessary interrelation between a given ideal I and
the structure of G as a topological group:

Definition 2.2. We say that an ideal I on G has the Steinhaus property if,
for every A ∈ P(G) \ I and every B ∈ B \ I, the set AB−1 has a nonempty
interior.3

The Steinhaus property holds true in the most important cases we are
interested in:

Theorem 2.3 ([1], Theorem 1). Let G be locally compact and let µ be a
Haar measure on G. Then the σ-ideal N of locally µ-null subsets of G has
the Steinhaus property.

2i.e., a nonempty system of subsets of X such that A,B ∈ I and C ⊆ A ∪ B imply
C ∈ I

3Note that our definition of “Steinhaus property” slightly differs from that in [3, p. 175].
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Theorem 2.4 ([11], Corollary 4). Let G be a Baire topological group. Then
the σ-ideal F of first category subsets of G has the Steinhaus property.

The following characterization of the Steinhaus property in terms of I-
thick sets is important here:

Proposition 2.5 ([14], Proposition 3.6). An ideal I on G has the Stein-
haus property if and only if, for every A ∈ P(G) \ I and every dense subset
D of G, the set DA is I-thick.

3. Finite partitions into congruent thick sets

3.1. General approach. Proposition 3.1 below serves as an illustration
of the general strategy we shall follow to split G into k congruent subsets:
it is sufficient (even necessary, if G is Abelian) to find H ≤ L ≤ G with
|L : H| = k.

Proposition 3.1. Let k ∈ N. Consider the following conditions:
(i) G has an element of infinite order or a subgroup of order k;
(ii) there exist H ≤ L ≤ G with |L : H| = k;
(iii) G can be partitioned into k congruent subsets.

Then (i) ⇒ (ii) ⇒ (iii). If G is Abelian, then (iii) ⇒ (i).

Proof. (i) ⇒ (ii) If G has an element g of infinite order, put L := 〈g〉 and
H := 〈gk〉; if G contains a subgroup K of order k, then let L := K and
H := {0}.

(ii) ⇒ (iii) Let X be a system of left coset representatives of L in G and
let {a1, . . . , ak} be a system of right coset representatives of H in L. Then
G is the disjoint union of the sets XHa1, . . . , XHak.

Suppose now that G is Abelian. We prove (iii) ⇒ (i). Assume that
there exist A ⊆ G and x1, . . . , xk ∈ G so that G is the disjoint union
of the sets Ax1, . . . , Axk. Moreover, assume that G is a torsion group.
Then K := 〈x1, . . . , xk〉 is a finite subgroup of G. From Axi ∩ K =
(A∩K)xi for all i = 1, . . . , k, it follows thatK is the disjoint union of the sets
(A∩K)x1, . . . , (A∩K)xk. Therefore k divides |K| and consequently K con-
tains a subgroup of order k.

Referring to the proof of (ii) ⇒ (iii), it is important for our purpose to
know what guarantees the “thickness” of the sets XHa1, . . . , XHak forming
the partition of G. Below is an initial answer to this question:
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Proposition 3.2. Let I be a right-invariant ideal on G with the Steinhaus
property and H ≤ L ≤ G with H /∈ I and |L : H| = k ∈ N. Let {a1, . . . , ak}
be a system of right coset representatives of H in L and X a system of left
coset representatives of L in G such that cl(XH) = G. Then the sets
XHa1, . . . , XHak form a partition of G into congruent I-thick subsets.

Proof. By Proposition 2.5 (applied to D := XH and A = H), the set XH
is I-thick. By invariance of I, so are the sets XHa1, . . . , XHak.

In view of Proposition 3.2, we are now looking for conditions which imply
that H does not belong to I and that XH is dense in G. The following
lemma answers the latter problem, while Lemma 3.4 serves the former.

Lemma 3.3. Let H ≤ L ≤ G with |L : H| = k ∈ N. If cl(H) ⊇ L or
| cl(H) : H| ≥ ℵ0, then there exists a system X of left coset representatives
of L in G such that cl(XH) = G.

Proof. If cl(H) ⊇ L, then for every system X of left coset representatives
of L in G we have cl(XH) ⊇ X · cl(H) ⊇ XL = G.

Assume now that | cl(H) : H| ≥ ℵ0. Let {a1, . . . , ak} be a system of
left coset representatives of H in L. We show by induction that, for every
i = 1, . . . , k, there is yi ∈ cl(L) such that yi · cl(H) = ai · cl(H) and
yiL ∩ yjL = ∅ if i 6= j. Put y1 := a1. Suppose that 1 ≤ i < k and that
y1, . . . , yi have already been selected in a proper way. As | cl(H) : H| ≥ ℵ0,
it follows that

ai+1 · cl(H) *
i⋃

j=1

k⋃
r=1

yjarH =
i⋃

j=1

yjL.

Hence, there exists yi+1 ∈ ai+1 · cl(H) \
⋃i
j=1 yjL ⊆ cl(L).

Let Y be a system of left coset representatives of L in cl(L) including
{y1, . . . , yk} and let Z be a system of left coset representatives of cl(L) in
G. Then X := ZY is a system of left coset representatives of L in G. It
remains to check that cl(XH) = G. From

cl(L) =
k⋃
i=1

cl(aiH) =
k⋃
i=1

cl(yiH) ⊆ cl(Y H)

it follows that

G = Z · cl(L) ⊆ Z · cl(Y H) ⊆ cl(ZY H) = cl(XH).
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Lemma 3.4. Let k ∈ N and let A be a direct sum of cyclic groups. Assume
that A has an element of infinite order or a subgroup of order k. Then A
contains a subgroup of index k. Moreover, if |A| > ℵ0, then for every n ∈ N
there are Hn ≤ Ln ≤ A such that Ln ↑ A, |Ln : Hn| = k and |A : Ln| = |A|.4

Proof. One can decompose A as A = B ⊕ C, where B is a direct sum of
cyclic groups and C ∼= Z or C is a finite group containing a subgroup of
order k. In either case, C has a subgroup H ′ of index k. Thus H := B⊕H ′
has index k in A.

Suppose now that |A| > ℵ0. Then B is a direct sum of |A|-many cyclic
groups. A routine argument shows the existence of a sequence Bn of sub-
groups of B such that Bn ↑ B and |B : Bn| = |A| for every n ∈ N. It is
clear that the groups Ln := Bn ⊕C and Hn := Bn ⊕H ′ satisfy all required
properties.

We are now in a position to prove the key result of the paper. Its ab-
stract formulation will find adequate explanation and motivation in the next
subsection.

Theorem 3.5. Let k ∈ N. Let I1, . . . , Im be right-invariant σ-ideals on
G with the Steinhaus property and G0 ≤ G such that G0 /∈ Ii for any
i = 1, . . . ,m. Moreover, let N be a normal subgroup of G0 such that Ĝ0 :=
G0/N is Abelian and contains an element of infinite order or a subgroup of
order k.

(a) If G0 is connected, or
(b) if |Ĝ0| > ℵ0 and |G0 : G0 ∩M | < |Ĝ0| for every open subgroup M of

G,
then G has a partition into k congruent subsets, each being Ii-thick for
i = 1, . . . ,m.

Proof. We split the proof into three steps.
(i) If Ĝ0 contains an element ĝ of infinite order, let K̂ := 〈ĝ〉; otherwise,

let K̂ be a subgroup of Ĝ0 of order k. According to a theorem of Kulikov (see
[5, Theorem 18.4]), there exists an increasing sequence Ĝn of subgroups of
Ĝ0 such that

⋃∞
n=1 Ĝn = Ĝ0, where each Ĝn is a direct sum of cyclic groups

containing a maximal independent system of Ĝ0. We may assume that Ĝ1
contains K̂. Note also that, if |Ĝ0| > ℵ0, then |Ĝ0| = |Ĝn| for every n ∈ N.5

4We write Ln ↑ A to mean that Ln is an increasing sequence with union A.
5Let G be an uncountable Abelian group. It is well known that |G| = rank(G), where

rank(G) is the cardinality of any maximal independent system of G (for details, see [5,
Section 16]).
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(ii) Let φ : G0 → Ĝ0 = G0/N be the canonical map. As G0 /∈ Ii and
Ii are σ-ideals for i = 1, . . . ,m, there exists r ∈ N such that φ−1(Ĝr) /∈ Ii
for i = 1, . . . ,m. It follows from Lemma 3.4 that there exist Ĥ ≤ L̂ ≤ Ĝr
such that |L̂ : Ĥ| = k and L := φ−1(L̂) /∈ Ii, hence H := φ−1(Ĥ) /∈ Ii
for i = 1, . . . ,m and |L : H| = k. If |Ĝ0| > ℵ0, by Lemma 3.4 we may
additionally assume that |Ĝr : L̂| = |Ĝr|. Observing that, by (i), |Ĝr| =
|Ĝ0|, we therefore have |Ĝ0| = |Ĝ0 : Ĥ| = |G0 : H|.

(iii) As cl(H) /∈ I1, it follows from the Steinhaus property that cl(H)
is an open subgroup of G. Hence, if (a) holds, cl(H) ⊇ G0 ⊇ L. By
Lemma 3.3, we therefore have cl(XH) = G for some system X of left
coset representatives of L in G.6 Let us now assume (b). We show that
| cl(H) : H| ≥ ℵ0. This easily follows from

|G0 : G0 ∩ cl(H)| < |Ĝ0| = |G0 : H| = |G0 : G0 ∩ cl(H)| · |G0 ∩ cl(H) : H|
≤ |G0 : G0 ∩ cl(H)| · | cl(H) : H|.

By Lemma 3.3 again, we can select a suitable system X of left coset repre-
sentatives of L in G such that cl(XH) = G. An appeal to Proposition 3.2
finishes the proof.

The topological condition in (b) is rather mild. If G is separable or
Lindelöf (in particular, if G is σ-compact), then |G0 : G0 ∩M | ≤ |G : M | ≤
ℵ0 for every subgroup G0 of G and for every open subgroup M of G.

We would like to comment on the role of the commutativity assumption in
Theorem 3.5, also reflected in some form or other in the following corollaries.
It is Kulikov’s theorem (applied to the Abelian quotient group Ĝ0) that
serves as a major ingredient of the proof of Theorem 3.5.7 But there is
no analogue of Kulikov’s theorem in the noncommutative case. Indeed,
as Shelah [12] showed, there are uncountable groups all of whose proper
subgroups are countable.

3.2. Applications. The general result of the previous subsection is now
applied in the setting of locally compact groups (equipped with a Haar
measure µ) and Baire topological groups.

Corollary 3.6. Let k ∈ N and let G be a nondiscrete, locally compact
Abelian group. The following conditions are equivalent:

6As emphasized in the proof of Lemma 3.3, this is true for any such X.
7Likewise, Kulikov’s theorem is an important tool in other measure-theoretical in-

stances such as, e.g., Kharazishvili’s assertion [10, pp. 112–113] that every nondiscrete
locally compact Abelian group contains a Haar nonmeasurable subgroup, or the result of
[14] already cited in the introduction.
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(i) G can be partitioned into k congruent subsets that are µ-thick and
everywhere of second category;

(ii) G can be partitioned into k congruent subsets;
(iii) G has an element of infinite order or a subgroup of order k.

Proof. (i) ⇒ (ii) is obvious and (ii) ⇒ (iii) follows from Proposition 3.1.
(iii)⇒ (i) Let U be a compact neighbourhood of e containing an element

of infinite order or a subgroup of order k. We shall verify the assumptions of
Theorem 3.5 for G0 = 〈U〉, N = {e}, I1 = N and I2 = F (with the notation
of Theorems 2.3 and 2.4). Since G0 is open, it belongs to neither N nor
F . Moreover, |G0 : N | = |G0| > ℵ0, since G0 is nondiscrete and locally
compact. Finally, as G0 is σ-compact, we have |G0 : G0∩M | ≤ ℵ0 for every
open subgroup M of G. The conclusion now follows from Theorem 3.5.

Corollary 3.7. Suppose that the connected component G0 of e is open, and
that there is a normal subgroup N of G0 such that G0/N is Abelian and is
not a torsion group.

(a) If G is a Baire topological group, then for every k ∈ N there exists a
partition of G into k congruent subsets that are everywhere of second
category.

(b) If G is locally compact, then for every k ∈ N there exists a partition of
G into k congruent subsets that are µ-thick and everywhere of second
category.

Proof. Since G0 is open, it belongs to neither N nor F . Now apply Theo-
rem 3.5.

Corollary 3.8. Let G be an uncountable solvable group that is Lindelöf or
separable.

(a) If G is a Baire topological group, then G admits for some k ∈
N \ {1} a partition into k congruent subsets that are everywhere of
second category.

(b) If G is locally compact, then G admits for some k ∈ N\{1} a partition
into k congruent subsets that are µ-thick and everywhere of second
category.

Proof. Owing to the solvability of G, there are G0 ≤ G and a normal
subgroup N of G0 such that |G : G0| ≤ ℵ0 and G0/N is uncountable and
Abelian. Since |G : G0| ≤ ℵ0, the group G0 belongs to neither N nor F .
Moreover, as G is Lindelöf or separable, |G0 : G0 ∩M | ≤ |G : M | ≤ ℵ0 <
|G0 : N | holds for every open subgroup M of G. Appealing to Theorem 3.5
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we conclude that, for some k ∈ N\{1}, the group G can be partitioned into
k congruent subsets that are everywhere of second category (case (a)) and
additionally µ-thick (case (b)).

We close this section with some examples.

Example 3.9. Let n ∈ N \ {1} and equip the additive group Zn := Z/nZ
with the discrete topology. Then (Zn)ℵ0 becomes a nondiscrete compact
Abelian group. It follows from Corollary 3.6 that (Zn)ℵ0 admits a partition
into k congruent subsets that are µ-thick and everywhere of second category
iff k divides some power of n.

Example 3.10. We show that, for every k ∈ N, the group GLn(R) endowed
with the Euclidean topology can be split into k congruent subsets, each
being µ-thick and everywhere of second category.

To this end, we verify the assumptions of Corollary 3.7. The connected
component C of the identity matrix is an open subgroup of GLn(R), since
GLn(R) is locally connected. Let φ(A) := detA for A ∈ C. Since the range
of φ is a (nontrivial) connected subgroup of R∗, we have φ(C) = {x ∈ R :
x > 0}. Moreover, C/ ker(φ) ∼= φ(C). Now apply Corollary 3.7 (b) with
G0 = C and N = ker(φ).

In much the same way, one sees that for any k ∈ N the group GLn(C)
and its subgroups Tn(R) and Tn(C) of upper triangular matrices over R
and C, respectively, can be split into k congruent subsets that are µ-thick
and everywhere of second category.

4. Final remarks

We will briefly discuss another way to apply Proposition 2.5 for decom-
posing G.

Proposition 4.1. Let I be a left-invariant proper ideal on G with the Stein-
haus property and H ≤ L ≤ G with |L : H| = k ∈ N and cl(H) = G.
Let {a1, . . . , ak} be a system of left coset representatives of H in L and
X a system of right coset representatives of L in G. Then the sets
a1HX, . . . , akHX form a partition of G into I-thick subsets.

Proof. First observe that HX /∈ I, since I is a left-invariant proper ideal
and G is the union of the sets a1HX, . . . , akHX. By Proposition 2.5 (ap-
plied to D = H and A = HX), the set HX is I-thick; by invariance of I,
so are the sets a1HX, . . . , akHX.
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An analogue result can be obtained when the assumption |L : H| = k ∈ N
is replaced with |L : H| = ℵ0 and the ideal I is assumed to be even a σ-ideal:
if {an : n ∈ N} is a system of left coset representatives of H in L, then the
sets anHX, n ∈ N, form a partition of G into I-thick subsets. This remark
and Proposition 4.1 yield, in the special case when G is locally compact
and I = N is the σ-ideal of locally µ-null sets, Bernardi and Bondioli’s
[2, Teorema 2].

It is of interest that the partition of R into two congruent λ-thick subsets
given by Halmos [6, Section 16] can be obtained with the aid of Proposi-
tion 4.1 in a straightforward manner: apply Proposition 4.1 with L := 〈ξ, 1〉
and H := 〈ξ, 2〉, where ξ ∈ R \Q and I is the σ-ideal of Lebesgue null sets
in R. Taking for I the σ-ideal of first category subsets of R, one sees that
the sets of the partition are also everywhere of second category.8

Corollary 4.2. Let k ∈ N. Let I be a left-invariant proper ideal on G
with the Steinhaus property and N a dense normal subgroup of G. If G/N
has an element of infinite order or a subgroup of order k, then there are
a1, . . . , ak ∈ G and A ⊆ G such that the sets a1A, . . . , akA form a partition
of G into I-thick subsets.

Proof. Let Ĝ := G/N and φ : G → Ĝ be the canonical map. By Proposi-
tion 3.1 there are Ĥ ≤ L̂ ≤ Ĝ with |L̂ : Ĥ| = k. Now apply Proposition 4.1
with L := φ−1(L̂) and H := φ−1(Ĥ).

We now give an example of a noncommutative Baire topological group
to which Corollary 4.2 can be applied.

Example 4.3. Endowed with the pointwise-convergence topology, the
group Sℵ0 of all permutations of the integers Z is a Baire topological group.
We will show that, for any k ∈ N, Sℵ0 can be split into k congruent subsets
that are everywhere of second category. The set F of all finitary permuta-
tions of Z (i.e., those permutations moving only finitely many elements of Z)
is a dense normal subgroup of Sℵ0 . Define σ : Z→ Z by σ(z) = z+ 1. Then
σ ∈ Sℵ0 and the image of σ under the canonical map from Sℵ0 onto Sℵ0/F
has infinite order. By Corollary 4.2 there are α1, . . . , αk ∈ Sℵ0 and an ev-
erywhere of second category set A such that Sℵ0 is the disjoint union of the
sets α1A, . . . , αkA. With B := A−1 and βi := α−1

i , we have that Sℵ0 is also
the disjoint union of the everywhere of second category sets Bβ1, . . . , Bβk.

8Another example in R is considered by Wilczyński in [15] (and studied also from the
Baire category viewpoint).
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In Corollary 3.6 we have given a satisfactory answer to the question
whether a locally compact Abelian group G can be decomposed into k con-
gruent “thick” sets. One might ask whether also the easier Proposition 4.1
or Corollary 4.2 can be applied to this end. It therefore becomes interesting
to know when G has a proper dense subgroup. A necessary and sufficient
condition was established by Kabenjuk [8] and, independently, by Khan [9,
Corollary 5.1]: G has no proper dense subgroups iff the torsion group of G
is open and pG is open for every prime p.

For noncommutative locally compact groups, much less is known. In
this direction, Itzkowitz and Shakhmatov’s inquiry is useful [7]. It follows
from their results (in particular, cf. [7, Theorem 5]) that every compact
connected nonmetrizable group has a proper dense normal subgroup.

In our terminology, [2, Teorema 1] states that a locally compact group
G can be decomposed into k disjoint N -thick sets, provided there exist
L ≤ G and a normal subgroup H of L with |L : H| = k and cl(H) ⊇ L.
While Bernardi and Bondioli’s Teorema 2 and its Baire category counterpart
can be deduced (through Proposition 4.1) from the Steinhaus property as
introduced in Definition 2.2, their Teorema 1 cannot. Yet, a close look
at their proof shows that Bernardi and Bondioli’s conclusion holds, more
generally, by replacingN with a left-invariant proper ideal I on a topological
group G, provided I satisfies the following additional property: for every
Borel set B not belonging to I, there exists a neighborhood U of e such
that xB ∩B /∈ I for any x ∈ U .9 It is well known that this is true not only
for the ideal of locally µ-null subsets of a locally compact group, but also
for the ideal of first category subsets of a Baire topological group (see, e.g.,
[3, pp. 173–174]).
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mogènes (French), Acta Math. Acad. Sci. Hungar. 8 (1957), 443–452.

[5] Fuchs, L., Infinite Abelian Groups. Vol. I, Pure Appl. Math. 36-II, Academic Press,
New York-London, 1970.

[6] Halmos, P., Measure Theory, Springer-Verlag, New York, 1974.

9Note that this property for I is stronger than the “Steinhaus property” defined in
[3, p. 175].



12 H. WEBER AND E. ZOLI

[7] Itzkowitz, G. L., Shakhmatov, D., Haar nonmeasurable partitions of compact groups,
Tsukuba J. Math. 21 (1997), 251–262.

[8] Kabenjuk, M. I., Dense subgroups of locally compact abelian groups, Sibirsk. Mat.
Zh. 21 (1980), 202–203.

[9] Khan, M. A., Chain conditions on subgroups of LCA groups, Pacific J. Math. 86
(1980), 517–534.

[10] Kharazishvili, A. B., Selected Topics of Point Set Theory,  Lódź University Press,
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