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Abstract. The purpose of this paper is to prove the existence of a
solution of the following periodic boundary value problem
(
u(4)(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π]
u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)

in the presence of an upper solution β and a lower solution α with
β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.

1. Introduction and main results

In this paper, we study a fourth-order periodic boundary value problem
of the form
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u(4)(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π]
u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π),

(1.1)

where f(t, u, v) is a Carathéodory function.
A function f : [0, 2π] × R2 → R is said to be a Carathéodory function if

it possesses the following three properties:
(i) For all (u, v) ∈ R2, the function t→ f(t, u, v) is measurable on [0, 2π].
(ii) For almost all t ∈ [0, 2π], the function (u, v)→ f(t, u, v) is continuous

on R2.
(iii) For any given N > 0, there exists gN (t), a Lebesgue integrable function

defined on [0, 2π] such that

|f(t, u, v)| ≤ gN (t) for a.e. t ∈ [0, 2π],

whenever |u|, |v| ≤ N .
To develop a monotone method, we need the concepts of upper and lower

solutions. We say that β ∈ W 4,1[0, 2π] is an upper solution to the problem
(1.1), if it satisfies{
β(4)(t) ≤ f(t, β(t), β′′(t)), t ∈ [0, 2π]
β(0) = β(2π), β′(0) = β′(2π), β′′(0) = β′′(2π), β′′′(0) ≤ β′′′(2π).

(1.2)

Similarly, a function α ∈ W 4,1[0, 2π] is said to be a lower solution to (1.1),
if it satisfies{
α(4)(t) ≥ f(t, α(t), α′′(t)), t ∈ [0, 2π]
α(0) = α(2π), α′(0) = α′(2π), α′′(0) = α′′(2π), α′′′(0) ≥ α′′′(2π).

(1.3)

We call a function u ∈ W 4,1[0, 2π] a solution to the problem (1.1), if it is
an upper and a lower solution to (1.1).

Recently, the equation of (1.1) with non-periodic boundary value prob-
lems has been studied by several authors, for examples, see [1], [3], [4],
[6]–[8], [10], [12]–[14], [16], [18]. In [1], [6]–[8], [16], [18], all of the results are
based upon the the Leray-Schauder continuation method and topological
degree. In [3], [4], [10], [13], [14], the upper and lower solutions method
has been studied when f = f(t, u). In [12], the authors have studied the
existence of the methods of lower and upper solutions and the monotone
iterative technique.

Only a few have dealt with the periodic boundary value problem (1.1)
(see [2], [9], [15], [17]). When f = f(t, u), the authors of [2, 15], have
studied the problem by the methods of lower and upper solutions and the
monotone iterative technique. Wang [17] has investigated a special case of
(1.1) (where f(t, u, v) = kv + F (t, u) ) in the presence of a lower solution
α(t) and an upper solution β(t) with β(t) ≤ α(t). Recently, Jiang, Gao and
Wan [9] have dealt with (1.1) by means of a monotone iterative technique
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in the presence of a lower solution α(t) and an upper solution β(t) with
β(t) ≤ α(t). To develop a monotone method, the following hypotheses are
needed in [9]:

(A1) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist
0 < A ≤ B such that

A(v2 − v1) ≤ f(t, u, v2)− f(t, u, v1) ≤ B(v2 − v1)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u ≤ α(t), v1, v2 ∈ R, and v1 ≤ v2.
(A2) Inequality

f(t, u2, v)− f(t, u1, v) ≥ −A
2

4
(u2 − u1)

holds for a.e. t ∈ [0, 2π], whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v ∈ R.

The purpose of this paper is to give the existence result of solution of
(1.1) under the assumption that there exist a lower solution α(t) and an
upper solution β(t) of (1.1) with β(t) ≤ α(t) and f(t, u, v) only satisfies one
side Lipschitz condition. We develop the upper and lower solutions method
and prove that the solution u(t) of (1.1) satisfies β(t) ≤ u(t) ≤ α(t). Our
result extends and complements those in [2], [5], [9], [15], [17].

To develop upper and lower solutions method, we need the following
hypotheses:

(H1) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], there exist
A > 0 and B > 0 such that B2 ≥ 4A and

f(t, u2, v2)− f(t, u1, v1) ≥ −A(u2 − u1) +B(v2 − v1) (1.4)

for a.e. t ∈ [0, 2π] whenever β(t) ≤ u1 ≤ u2 ≤ α(t), v1, v2 ∈ R, and
v1 ≤ v2.

Let m < 0 and M < 0 are two roots to the equation x2 + Bx + A = 0,
then

m+M = −B, mM = A.

Let

A(t) := α′′(t) +mα(t), B(t) := β′′(t) +mβ(t). (1.5)

The main result of this paper is stated as follows.

Theorem 1. Suppose that there exists a lower solution α(t) and an upper
solution β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a
Carathéodory function satisfying the hypotheses (H1): there exist a > 0
and b > 0 such that b2 ≥ 4a and

f(t, u2, v2)− f(t, u1, v1) ≥ −a(u2 − u1) + b(v2 − v1).
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Then A(t) ≤ B(t) on [0, 2π] and (1.1) has one solution u ∈W 4,1[0, 2π] such
that

β(t) ≤ u(t) ≤ α(t), A(t) ≤ u′′(t) +mu(t) ≤ B(t).

2. Proof of Theorem 1

Lemma 1 (Maximum principle). Let y ∈W 2,1[0, 2π], and satisfies{
y′′(t)− ky(t) ≥ 0 for a.e. t ∈ [0, 2π],
y(0) = y(2π), y′(0) ≥ y′(2π),

where k > 0. Then y(t) ≤ 0 on [0, 2π].

Lemma 2. Suppose that there exists a lower solution α(t) and an upper
solution β(t) of (1.1) such that β(t) ≤ α(t) on [0, 2π], and f(t, u, v) is a
Carathéodory function satisfying the hypotheses (H1). Then A(t) ≤ B(t)
on [0, 2π].

Proof. It follows from (1.2) and (1.3) that
A′′(t) +MA(t) ≥ f(t, α(t), A(t)−mα(t)) + (m+M)A(t)−m2α(t),

t ∈ [0, 2π]
A(0) = A(2π), A′(0) ≥ A′(2π),

and
B′′(t) +MB(t) ≤ f(t, β(t), B(t)−mβ(t)) + (m+M)B(t)−m2β(t),

t ∈ [0, 2π]
B(0) = B(2π), B′(0) ≤ B′(2π).

Let y(t) = A(t)−B(t), then y(0) = y(2π), y′(0) ≥ y′(2π).
Assume that y(t) > 0 for some t ∈ [0, 2π]. Since y(t) is a continuous

function defined on a closes interval [0, 2π], it can attain its maximum value
on [0, 2π].

If max y(t) = y(t0) > 0 where t0 ∈ (0, 2π), then there is an interval
[c, d] ⊆ (0, 2π) such that y(c) = y(d) and y(t) > 0 in [c, d], it follows from
(H1) that

y′′ +My(t) ≥f(t, α(t), A(t)−mα(t))− f(t, β(t), B(t)−mβ(t))

+ (m+M)y(t)−m2(α(t)− β(t))

≥− (A+Bm+m2)(α(t)− β(t)) + (B +m+M)y(t)

=0, t ∈ [c, d],

then by Lemma 1, we have y(t) ≤ 0 on [c, d], which is a contradiction.
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If max y(t) = y(0) = y(2π) > 0, and hence there exists s ∈ (0, 2π) with
y(s) > 0, then there would be 0 ≤ a < s < b ≤ 2π such that y(t) > 0 in
(a, b) with y(a) = y(b) = 0. By (1.2) and (1.3), we have

y′′(t) +My(t) ≥ 0, t ∈ [a, b], y(a) = y(b) = 0.

This leads to y(t) ≤ 0 on [a, b], which is again a contradiction.
If y(0) > 0 (then y(2π) = y(0) > 0), then there would be a < b in

(0, 2π) such that y(t) > 0 on [0, a) ∪ (b, 2π] with y(a) = y(b) = 0, y′(a) ≤ 0,
y′(b) ≥ 0. So we have y′′(t) + My(t) ≥ 0 on [0, a) ∪ (b, 2π], hence y′(t) is
strictly increasing in [0, a) ∪ (b, 2π], which implies that y′(0) < y′(a) ≤ 0 ≤
y′(b) < y′(2π), this is a contradiction with the boundary conditions.

The proof of Lemma 2 is completed.

Lemma 3. If m < 0, then for any q(t) ∈ L1[0, 2π],the problem{
u′′ +mu(t) = q(t), for a.e. t ∈ [0, 2π]
u(0) = u(2π), u′(0) = u′(2π),

has a unique solution u ∈W 2,1[0, 2π],and

u(t) = L−1q(t) =
∫ 2π

0
Gm(t, s)q(s)ds,

where ρ =
√
−m and

Gm(t, s) :=


−e

ρ(t−s) + eρ(2π−t+s)

2ρ(e2ρπ − 1)
, 0 ≤ s ≤ t ≤ 2π,

−e
ρ(s−t) + eρ(2π−s+t)

2ρ(e2ρπ − 1)
, 0 ≤ t ≤ s ≤ 2π.

Proof. Let

p(t, x) =


A(t), x < A(t),
x, A(t) ≤ x ≤ B(t),
B(t), x > B(t).

By Lemma 1, we have

α(t) = L−1A(t), β(t) = L−1B(t), β(t) ≤ L−1p(t, x) ≤ α(t).

Now we consider the following modified problem
x′′ +Mx(t) = f(t, L−1p(t, x(t)), (I −mL−1)p(t, x(t)))

+ (m+M)p(t, x(t))−m2L−1p(t, x(t)),
x(0) = x(2π), x′(0) = x′(2π).

(2.1)
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For each x ∈ C[0, 2π],we define the mapping Φ: C[0, 2π]→ C[0, 2π]

(Φx)(t) =
∫ 2π

0
GM (t, s)(Fx)(s)ds, (2.2)

where

(Fx)(t) :=f(t, L−1p(t, x(t)), (I −mL−1)p(t, x(t)))

+ (m+M)p(t, x(t))−m2L−1p(t, x(t)).

Since p(t, x(t)) and L−1p(t, x(t)) are bounded and f(t, u, v) is a
Carathéodory function, there exists g(t), a Lebesgue integrable function
defined on [0, 2π] such that

|(Fx)(t)| ≤ g(t) for a. e. t ∈ [0, 2π].

Thus (Φx)(t) is also bounded.
We can easily prove that Φ: C[0, 2π]→ C[0, 2π] is completely continuous.

Then Leray-Schauder fixed point Theorem assures that Φ has a fixed point
x ∈ C[0, 2π] and

x(t) =
∫ 2π

0
GM (t, s)(Fx)(s)ds, (2.3)

thus the modified problem (2.1) has one solution x ∈W 2,1[0, 2π]. The proof
of Lemma 3 is completed.

Lemma 4. Suppose that (H1) holds. Assume that α(t) and β(t) are lower
and upper solutions to (1.1) and β(t) ≤ α(t) on [0, 2π]. Let x ∈W 2,1[0, 2π]
be a solution to (2.1), then A(t) ≤ x(t) ≤ B(t) on [0, 2π].

Remark 1. Lemma 4 implies u(t) = L−1x(t) =
∫ 2π

0 Gm(t, s)x(s)ds is a
solution to (1.1), since u′′ +mu(t) = x(t), u(0) = u(2π), u′(0) = u′(2π) and
A(t) ≤ x(t) ≤ B(t).

Proof of Lemma 4. Since α(t) = L−1A(t), β(t) = L−1B(t),
B′′(t) +MB(t) ≤ f(t, L−1B(t), (I −mL−1)B(t))−m2L−1B(t)

+ (m+M)B(t),
B(0) = B(2π), B′(0) ≤ B′(2π),

and 
A′′(t) +MA(t) ≥ f(t, L−1A(t), (I −mL−1)A(t))−m2L−1A(t)

+ (m+M)A(t),
A(0) = A(2π), A′(0) ≥ A′(2π).
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Let y(t) = x(t)−B(t) and z(t) = A(t)− x(t), then

y(0) = y(2π), y′(0) ≥ y′(2π)

and
z(0) = z(2π), z′(0) ≥ z′(2π).

Applying an analogous approach used in the proof of Lemma 2, we can
show that y(t) ≤ 0 and g(t) ≤ 0, and that is, A(t) ≤ x(t) ≤ B(t).

The proof of Lemma 4 is completed.

By Remark 1, we have the results of Theorem 1.

3. Example

In this section, we consider the periodic boundary value problem:{
u(4)(t)− ku′′(t) = F (t, u), t ∈ [0, 2π]
u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π),

(3.1)

where F (t, u) is a Carathéodory function, k > 0.
To develop upper and lower solutions method, we also need the following

hypothesis:

(H) For any given β, α ∈ C[0, 2π] with β(t) ≤ α(t) on [0, 2π], inequality

F (t, u2)− F (t, u1) ≥ −k
2

4
(u2 − u1)

holds for a.e. t ∈ [0, 2π], whenever β(t) ≤ u1 ≤ u2 ≤ α(t).

Let A = k2/4, B = k, then (H1) holds. Hence the conclusions of Theorem
1 hold. Then

α′′(t)− k

2
α(t) ≤ β′′(t)− k

2
β(t)

and problem (3.1) has one solution u ∈W 4,1[0, 2π] such that

β(t) ≤ u(t) ≤ α(t), α′′(t)− k

2
α(t) ≤ u′′(t)− k

2
u(t) ≤ β′′(t)− k

2
β(t).

In [17], Wang studied the problem (4.1) when F is continuous on [0, 2π]×
R. In [9, 17], the authors obtained one solution u ∈W 4,1[0, 2π] of (3.1) such
that β(t) ≤ u(t) ≤ α(t).

We have improved the results of [9, 17].
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sian), Latv. Univ. Zināt Raksti 553 (1990), 84–91.

[14] Schroder, J., Fourth-order two-point boundary value problems; estimates by two side
bounds, Nonlinear Anal. 8 (1984), 107–114.

[15] Seda, V., Nieto, J. J., Gera, M., Periodic boundary value problems for nonlinear
higher order ordinary differential equations, Appl. Math. Comput. 48 (1992), 71–82.

[16] Usmani, R. A., A uniqueness theorem for a boundary value problem, Proc. Amer.
Math. Soc. 77 (1979), 327–335.

[17] Wang, H.-Z., Periodic solutions of four-order differential equations (Chinese), Acta
Sci. Natur. Univ. Jilin. 4 (1993), 415-422.

[18] Yang, Y., Fourth-order two-point boundary value problem, Proc. Amer. Math. Soc.
104 (1988), 175–180.



UPPER AND LOWER SOLUTIONS METHOD FOR FOURTH-ORDER PROBLEMS 61

Shiyou Weng Haiyin Gao

General Course Department College of Applied Science

Suzhou Vocational University Changchun University

Suzhou 215104, P. R. China Changchun, Jilin 130022

e-mail: wengshiyou2001@yahoo.com.cn P. R. China

e-mail: gaohaiyinhealthy@yahoo.com

Daqing Jiang Xuezhang Hou

School of Mathematics Mathematics Department

and Statistics Towson University

Northeast Normal University Baltimore

Changchun 130024, P. R. China Maryland 21252, USA

e-mail: daqingjiang@vip.163.com e-mail: xhou@towson.edu


