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1. Introduction and main results

The complementarity theory is a new domain of applied mathematics and
it has many applications in optimization, economics, finance, engineering,
mechanics and game theory (see, for example, [6, 7, 15, 16] and the refer-
ences therein). It is well known that some complementarity problems are
equivalent to the related variational inequalities under certain conditions.

Vector variational inequality was first introduced and studied by Gian-
nessi [11] in the setting of the finite-dimensional Euclidean spaces. Later
on, Chen and Yang [3] considered general vector variational inequalities and
vector complementary problems in infinite dimensional spaces. Since then,
existence results of solutions for several kinds of vector variational inequal-
ities and vector complementarity problems have been derived. At the same
time, vector variational inequalities and vector complementarity problems
have found many of its applications in vector optimization, set-valued opti-
mization, approximate analysis of vector optimization problems and vector
network equilibrium problems. For details, we refer to [4, 12, 14] and the
references therein.

In 2001, Yin, Xu and Zhang [20] introduced a class of F -complementarity
problems (F-CP) for finding x ∈ K such that

〈Tx, x〉+ F (x) = 0 and 〈Tx, y〉+ F (y) ≥ 0, ∀y ∈ K,

where K is a nonempty closed convex cone of a real Banach space X,
T : K → X∗, the dual space, is a mapping and F : K → (−∞,+∞) is
a function, and proved that it is equivalent to the following generalized
variational inequality problems: find x ∈ K such that

〈Tx, y − x〉+ F (y)− F (x) ≥ 0, ∀y ∈ K,

where K is a nonempty closed convex cone and F is a positively homoge-
neous and convex function. They also proved the existence of solutions for
(F-CP) under some assumptions with F -pseudomonotonicity.

Recently, by using the combination of demicontinuity and pseudomono-
tonicity, Fang and Huang [9] introduced and studied a new class of vector
F -complementarity problems with demipseudomonotone mappings in Ba-
nach spaces. They also presented the solvability of this class of vector F
complementarity problems with demipseudomonotone mappings and finite-
dimensional continuous mappings in reflexive Banach spaces. Huang and
Li [13] introduced and studied a class of scalar F -implicit complementarity
problems and another class of F -implicit variational inequality problems in
Banach spaces. In 2006, Li and Huang [18] generalized the result from the
scalar case in [13] to the vector case. They proved the equivalence between
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the vector F -implicit complementarity problem and vector F -implicit vari-
ational inequality problem and obtained some new existence theorems for
solutions for vector F -implicit complementarity problems.

Very recently, Lee, Khan, and Salahuddin [17] introduced a new class
of generalized vector F -implicit complementarity problems and a corre-
sponding new class of generalized vector F -implicit variational inequality
problems in Banach spaces, which generalized some results of [13, 18] to
a more generalized vector case. The equivalence between the generalized
F -implicit complementarity problem and generalized F -implicit variational
inequality problem was presented, and some new existence theorems of solu-
tions for generalized F -implicit complementarity problems and generalized
F -implicit variational inequality problems were also proved in [17].

Inspired and motivated by the above works, in this paper, we introduce
a new class of general mixed vector F -implicit complementarity problems
and general mixed vector F -implicit variational inequality problems, and
study the equivalence between of them under certain assumptions in Ba-
nach spaces. We also derive some new existence theorems of solutions for
the general mixed vector F -implicit complementarity problems and the gen-
eral mixed vector F -implicit variational inequality problems by using the
FKKM theorem under some suitable assumptions without monotonicity.
Moreover, we establish sufficient conditions for the upper semicontinuity
and lower semicontinuity of the solution mapping of the general mixed vec-
tor F -implicit variational inequality problems. The results presented in this
paper extend and improve the corresponding results of works [9, 13, 17, 18].

2. Preliminaries

Let Y be a real Banach space. Let P ⊂ Y be a nonempty closed convex
and pointed cone with the apex at the origin, that is, P is a closed set with
the following conditions:

(i) λP ⊂ P, ∀λ > 0;
(ii) P + P ⊂ P ;
(iii) P ∩ (−P ) = {0}.

An ordered Banach space (Y, P ) is a real Banach space Y with an ordering
defined by a closed cone P ⊂ Y with an apex at the origin as follows: for
any x, y ∈ Y ,

x ≥ y ⇐⇒ x− y ∈ P ;
x 6≥ y ⇐⇒ x− y 6∈ P .

Definition 2.1. Let X and Y be vector spaces and K a cone of X. A
mapping F : K → Y is said to be positively homogeneous if F (αx) = αF (x)
for all x ∈ K and α ≥ 0.
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Definition 2.2. A mapping G : M ⊂ X → 2X is said to be a KKM map-
ping if, for any finite set A ⊂M , coA ⊂

⋃
x∈AG(x), where 2X denotes the

family of all the nonempty subsets of X and coA is the convex hull of A.

Lemma 2.1 (FKKM theorem [8]). Let M be a nonempty subset of a Haus-
dorff topological vector space X and G : M ⊂ X → 2X be a KKM mapping.
If G(x) is closed in X for every x ∈M and compact for some x ∈M , then⋂
x∈M G(x) 6= ∅.

Lemma 2.2 ([18]). Let (Y, P ) be an ordered Banach space induced by a
pointed closed convex cone P . Then x ≥ 0 and y ≥ 0 imply that x+ y ≥ 0,
for all x, y ∈ Y .

A set-valued mapping W : E ⊂ X → Y is upper semicontinuous at x0 ∈
E if for every open set V containing W (x0) there exists an open set U
containing x0 such that W (U) ⊂ V . W is lower semicontinuous at x0 ∈ E if
every open set V intersecting W (x0) there exists an open set U containing x0
such that W (x)∩V 6= ∅ for every x ∈ U . W is upper semicontinuous (lower
semicontinuous) on E if it is upper semicontinuous (lower semicontinuous)
at every point of E. W is continuous on E if it is both upper semicontinuous
and lower semicontinuous on E.

Lemma 2.3 ([10]). Let W : X → Y be a set-valued mapping.
(i) If for any x ∈ X, W (x) is compact, then W is upper semicontinuous

at x0 if and only if for any net {xα} ⊂ X such that xα → x0 and for
every yα ∈W (xα), there exists y0 ∈W (x0) and a subnet {yαi} of {yα}
such that yαi → y0.

(ii) W is lower semicontinuous at x0 ∈ X if and only if for any net {xα} ⊂
X with xα → x0, and for any y0 ∈W (x0), there exists a net {yα} such
that yα ∈W (xα) and yα → y0.

3. Existence results

In this section, unless otherwise specified, we suppose that K is a
nonempty closed convex cone of a real Banach space X and (Y,≤) is an
ordered Banach space induced by a pointed closed convex cone P . We
will discuss the following general mixed vector F -implicit complementarity
problem (GMVF-ICP): find x ∈ K such that

Q(x, h(x)) + F (h(x)) = 0

and

Q(x, g(y)) + F (g(y)) ≥ 0, ∀y ∈ K. (3.1)
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Some Special Cases
(1) If h(x) = g(x) for all x ∈ K, the (GMVF-ICP) collapses to the general

vector F -complementarity problem (GVF-CP) of finding x ∈ K such
that

Q(x, g(x)) + F (g(x)) = 0

and

Q(x, g(y)) + F (g(y)) ≥ 0, ∀y ∈ K. (3.2)

(2) Let A, T : K → L(X,Y ), g : K → K, F : K → Y and N : L(X,Y ) ×
L(X,Y ) → L(X,Y ) be mappings, where L(X,Y ) is the space of
all continuous linear operators from X to Y . If we set Q(x, y) =
〈N(Ax, Tx), y〉, the (GMVF-ICP) collapses to the generalized vector
F -implicit complementarity problem (GVF-CP) of finding x ∈ K such
that

〈N(Ax, Tx), g(x)〉+ F (g(x)) = 0

and

〈N(Ax, Tx), g(y)〉+ F (g(y)) ≥ 0, ∀y ∈ K
which was considered and studied by Lee, Khan, and Salahuddin [17].

(3) Let g is an identity mapping on K, the (GMVF-ICP) collapses to the
vector F -complementarity problem of finding x ∈ K such that

Q(x, h(x)) + F (h(x)) = 0

and

Q(x, y)) + F (y) ≥ 0, ∀y ∈ K. (3.3)

(4) If F = 0, then we obtain the following vector complementarity problem

Q(x, h(x)) = 0

and

Q(x, g(y))) ≥ 0, ∀y ∈ K. (3.4)

Summing up the above arguments, it shows that, for a suitable choice of
the mappings Q, g, h, F and the spaces X and Y , we can obtain a number of
known and new classes of complementarity problems, which include many
complementarity problems studied in [2]–[6], [9, 11, 12, 13], [15]–[20] as
special cases. It is worthy noting that problems (3.2)–(3.4) are all new.

We also introduce the following general mixed vector F -implicit varia-
tional inequality problem (GMVF-IVIP): find x ∈ K such that

Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x)) ≥ 0, ∀y ∈ K. (3.5)

We first establish the equivalence between (GMVF-ICP) and (GMVF-
IVIP).
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Theorem 3.1. The following conclusions hold:
(i) If x solves (GMVF-ICP), then x solves (GMVF-IVIP).
(ii) Assume that F : K → Y is a positively homogeneous mapping, Q : K×

K → Y is positively homogeneous in the second argument, and g : K →
K is surjective. If x solves (GMVF-IVIP), then x solves (GMVF-
ICP).

Proof. (i) Suppose that x solves (GMVF-ICP). Then it is easy to see that
x solves (GMVF-IVIP).

(ii) Let x ∈ K be a solution of (GMVF-IVIP). Then

Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x)) ≥ 0, ∀y ∈ K.
Since F : K → Y is a positively homogeneous mapping and K is a convex
cone, letting g(y) = 2h(x) and g(y) = h(x)/2 in (3.5), we have

Q(x, h(x)) + F (h(x)) ≥ 0

and

Q(x, h(x)) + F (h(x)) ≤ 0.

Since P is a pointed cone, then

Q(x, h(x)) + F (h(x)) = 0.

Moreover, we obtain

Q(x, g(y)) + F (g(y)) =Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x))

+Q(x, h(x)) + F (h(x))

=Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x))
≥0

for all y ∈ K. Hence x solves (GMVF-ICP). The proof is completed.

Now we consider the existence of solutions to (GMVF-IVIP) and the
properties of the solution sets.

Theorem 3.2. Let K be nonempty closed and convex subset of X. Assume
that

(a) mappings Q : K ×K → Y , g : K → K, h : K → K, and F : K → Y
are continuous;

(b) there exists a mapping T : K ×K → Y such that
(b1) T (x, x) ≥ 0, ∀x ∈ K;
(b2) Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x))− T (x, y) ≥ 0,

∀x, y ∈ K;
(b3) the set {y ∈ K : T (x, y) 6≥ 0} is convex for all x ∈ K;
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(c) there exists a nonempty compact convex subset C of K such that for
all x ∈ K\C there exists y ∈ C such that

Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x)) 6≥ 0.

Then (GMV F -IV IP ) has a solution. Furthermore, the solution set of
(GMV F -IV IP ) is closed.

Proof. Define a set-valued mapping G : K → 2C by

G(y) = {x ∈ C : Q(x, g(y))−Q(x, h(x))+F (g(y))−F (h(x)) ≥ 0}, y ∈ K.
For any y ∈ K, the assumption (a) implies thatG(y) is closed in C. Since ev-
ery element x ∈

⋂
y∈K G(y) is a solution of (GMVF-IVIP), we have to show

that
⋂
y∈K G(y) 6= ∅. Since C is compact, it is sufficient to prove that the

family {G(y)}y∈K has the finite intersection property. Let {y1, y2, . . . , yn}
be a finite subset of K and set B := co(C ∪ {y1, y2, . . . , yn}). Then B is a
compact and convex subset of K.

Define two set-valued mappings F1, F2 : B → 2B as follows:

F1(y) = {x ∈ B : Q(x, g(y))−Q(x, h(x))+F (g(y))−F (h(x)) ≥ 0}, y ∈ B.
and

F2(y) = {x ∈ B : T (x, y) ≥ 0}, y ∈ B.
From the conditions (b1) and (b2), we have

T (y, y) ≥ 0

and

Q(y, g(y))−Q(y, h(y)) + F (g(y))− F (h(y))− T (y, y) ≥ 0.

Now Lemma 2.2 implies

Q(y, g(y))−Q(y, h(y)) + F (g(y))− F (h(y)) ≥ 0

and so F1(y) is nonempty. Similarly, we can prove that for any y ∈ B, F1(y)
is closed. Since F1(y) is a closed subset of a compact set B, we know that
F1(y) is compact. Next, we prove that F2 is a KKM-mapping. Suppose that
there exists a finite subset {u1, u2, . . . , un} of B and λi ≥ 0 (i = 1, 2, . . . , n)
with

∑n
i=1 λi = 1 such that

u =
n∑
i=1

λiui /∈
n⋃
j=1

F2(uj).

Then
T (u, uj) 6≥ 0, j = 1, 2, . . . , n.

From the condition (b3), we have

T (u, u) 6≥ 0.
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which contradicts the condition (b1). Hence F2 is a KKM-mapping. On the
other hand, from the condition (b2), we have

F2(y) ⊂ F1(y), ∀y ∈ B.

In fact, x ∈ F2(y) implies that T (x, y) ≥ 0 and by the condition (b2), we
have

Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x))− T (x, y) ≥ 0.

It follows from Lemma 2.2 that

Q(x, g(y))−Q(x, h(x)) + F (g(y))− F (h(x)) ≥ 0

and so x ∈ F1(y). Thus F1 is also a KKM-mapping and Lemma 2.1 implies
that there exists x∗ ∈ B such that x∗ ∈ F1(y) for all y ∈ B. That is, there
exists x∗ ∈ B such that

Q(x∗, g(y))−Q(x∗, h(x∗)) + F (g(y))− F (h(x∗)) ≥ 0, ∀y ∈ B.

By assumption (c), we get x∗ ∈ C. Moreover, x∗ ∈ G(yi) for i = 1, 2, . . . , n.
Hence {G(y)}y∈K has the finite intersection property.

Since Q,F, g and h are continuous, the solution set of (GMVF-IVIP) is
obviously closed.

Let D = K in the condition (c) of Theorem 3.2. Then we have the
following result.

Theorem 3.3. Let K be a nonempty, compact and convex subset of X, and
assume that the conditions (a) and (b) of Theorem 3.2 hold, then (GMV F -
IV IP ) has a solution.

Proof. The conclusion follows directly from Theorem 3.2.

Theorem 3.4. Assume that Q : K ×K → Y is positively homogeneous in
the second argument and continuous, F : K → Y is positively homogeneous
and continuous, g : K → K is surjective and continuous, and h : K → K is
continuous. If assumptions (b) and (c) in Theorem 3.2 hold, then (GMVF-
ICP) has a solution. Furthermore, the solution set of (GMV F -ICP ) is
closed.

Proof. The conclusion follows directly from Theorems 3.1 and 3.2.
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Example 3.1. Let X = Y = R2, K = P = R2
+ = [0,∞) × [0,∞), and

C = [0, 1]× [0, 1]. Let

g(x) =
(x2

2
,
x1

3

)
, h(x) =

(x2

3
,
x1

4

)
, F (x) = (x1, 0)

and Q(x, y) = (y1 + y2, 0) for any x, y ∈ K, with x = (x1, x2) and y =
(y1, y2). Then,

Q(x, g(y))−Q(x, h(x)) =
((y1

3
+
y2

2

)
−
(x1

4
+
x2

3

)
, 0
)

for any x, y ∈ K, with x = (x1, x2) and y = (y1, y2). If we set

T (x, y) =
((y1

3
+ y2

)
−
(
x1

4
+

2x2

3

)
, 0
)

for any x, y ∈ K, with x = (x1, x2) and y = (y1, y2), then all assumptions
in Theorem 3.2 hold. In fact, it is easy to see that (0, 0) ∈ K is a unique
solution of (GMVF-IVIP).

Definition 3.1. Let E ⊂ X, Q : E × E → Y , g : E → E and F : E → Y .
We say that Q and F are locally non-positive at x0 ∈ E with respect to g
if there exist a neighborhood V (x0) of x0 and z0 ∈ E ∩ intV (x0) such that

Q(x, g(z0))−Q(x, g(x)) + F (g(z0))− F (g(x)) ≤ 0, ∀x ∈ E ∩ ∂V (x0),

where ∂V (x0) denotes the boundary of V (x0).

Theorem 3.5. Let K be a nonempty closed and convex subset of X. As-
sume that

(a) mappings Q : K×K → Y , g : K → K and F : K → Y are continuous;
(b) there exists a mapping T : K ×K → Y such that

(b1) T (x, x) ≥ 0, ∀x ∈ K;
(b2) Q(x, g(y))−Q(x, g(x)) + F (g(y))− F (g(x))− T (x, y) ≥ 0,

∀x, y ∈ K;
(b3) the set {y ∈ K : T (x, y) 6≥ 0} is convex for all x ∈ K;

(c) the mappings Q and F are locally non-positive at x0 ∈ K with respect
to g and there exists a nonempty compact convex subset C of K∩V (x0)
such that for all x ∈ K ∩ V (x0)\C there exists y ∈ C such that

Q(x, g(y))−Q(x, g(x)) + F (g(y))− F (g(x)) 6≥ 0;

(d) the set {y ∈ K : Q(x, g(y)) − Q(x, g(x)) + F (g(y)) − F (g(x)) ≥ 0} is
convex for all x ∈ K.

Then (GMV F -IV IP ) has a solution in the neighborhood of x0, that is,
there exists x∗ ∈ K ∩ V (x0) such that

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0, ∀y ∈ K.
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Proof. Since the mappings Q and F are locally non-positive at x0 ∈ K
with respect to the mapping g, without loss of generality, we can assume
that V (x0) is closed and convex. Then, K∩V (x0) is also closed and convex.
From Theorem 3.2, (GMVF-IVIP) has a solution x∗ ∈ K ∩V (x0) such that

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0,

∀y ∈ K ∩ V (x0). (3.6)

Next we show

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0, ∀y ∈ K.
If x∗ ∈ K ∩ intV (x0), then V (x0) − x∗ is a neighborhood of the origin
and so it is absorbing. For any y ∈ K, there exists t ∈ (0, 1) such that
t(y − x∗) ∈ V (x0) − x∗ and so yt = ty + (1 − t)x∗ ∈ K ∩ V (x0). It follows
from (3.6) that

Q(x∗, g(yt))−Q(x∗, g(x∗)) + F (g(yt))− F (g(x∗)) ≥ 0.

From the condition (d), we have

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0.

Note Q and F are locally non-positive at x0 ∈ E with respect to g. If
x∗ ∈ K ∩ ∂V (x0), then there exists z0 ∈ K ∩ intV (x0) such that

Q(x∗, g(z0))−Q(x∗, g(x∗)) + F (g(z0))− F (g(x∗)) ≤ 0. (3.7)

Similarly, for any y ∈ K, there exists a t ∈ (0, 1) such that t(y − z0) ∈
V (x0)−z0 and so zt = ty+(1− t)z0 ∈ K ∩V (x0). It follows from (3.6) that

Q(x∗, g(zt))−Q(x∗, g(x∗)) + F (g(zt))− F (g(x∗)) ≥ 0. (3.8)

Letting t→ 0 in (3.8), we obtain

Q(x∗, g(z0))−Q(x∗, g(x∗)) + F (g(z0))− F (g(x∗)) ≥ 0,

which together with (3.7) implies that

Q(x∗, g(z0))−Q(x∗, g(x∗)) + F (g(z0))− F (g(x∗)) = 0.

From the condition (d), we have

tQ(x∗, g(y)) + (1− t)Q(x∗, g(x∗))−Q(x∗, g(z0)) + tF (g(y))

+ (1− t)F (g(x∗))− F (g(z0)) ≥ 0.

Therefore,

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0.

This completes the proof.

Let D = K in the condition (c) of Theorem 3.5. Then we have the
following result.
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Theorem 3.6. Let K be a nonempty, compact and convex subset of a real
Banach space X, and assume that the condition (a), (b) and (d) of Theorem
3.5 and the following condition hold:

(c)’ the mappings Q and F are locally non-positive at x0 ∈ K with respect
to the mapping g.

Then (GMV F -IV IP ) has a solution in the neighborhood of x0, that is,
there exists x∗ ∈ K ∩ V (x0) such that

Q(x∗, g(y))−Q(x∗, g(x∗)) + F (g(y))− F (g(x∗)) ≥ 0, ∀y ∈ K.

Theorem 3.7. Assume that

(a) Q : K×K → Y is continuous and positively homogeneous in the second
argument, g : K → K is continuous and surjective, and F : K → Y is
continuous and positively homogeneous;

(b) there exists a mapping T : K ×K → Y such that
(b1) T (x, x) ≥ 0, ∀x ∈ K;
(b2) Q(x, g(y))−Q(x, g(x)) + F (g(y))− F (g(x))− T (x, y) ≥ 0,

∀x, y ∈ K;
(b3) the set {y ∈ K : T (x, y) 6≥ 0} is convex for all x ∈ K;

(c) the mappings Q and F are locally non-positive at x0 ∈ K with respect
to the mapping g, and there exists a nonempty compact convex subset
C of K ∩ V (x0) such that for all x ∈ K ∩ V (x0)\C there exists y ∈ C
such that

Q(x, g(y))−Q(x, g(x)) + F (g(y))− F (g(x)) 6≥ 0;

(d) the set {y ∈ K : Q(x, g(y)) − Q(x, g(x)) + F (g(y)) − F (g(x)) ≥ 0} is
convex for all x ∈ K.

Then (GMV F -IV CP ) has a solution in the neighborhood of x0, that is,
there exists x∗ ∈ K ∩ V (x0) such that

Q(x∗, g(x∗)) + F (g(x∗)) = 0

and

Q(x∗, g(y))) + F (g(y)) ≥ 0, ∀y ∈ K.

Proof. The conclusion follows directly from Theorems 3.1 and 3.5.
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4. Stability results

In this section, let X be a real Banach space, (Y,≤) be an ordered Banach
space induced by a pointed closed convex cone P , and E be a nonempty
convex subset of X. Let Λi (i = 1, 2) be Hausdorff topological vector spaces
(the parametric spaces), and let K : Λ1 → 2X be a set-valued mapping
such that for any λ ∈ Λ1, K(λ) is a nonempty closed and convex subset
of X with K(Λ1) =

⋃
λ∈Λ1

K(λ) ⊂ E. In this section, we establish some
sufficient conditions for the upper semicontinuity and lower semicontinuity
of the solution mapping of the general mixed vector F -implicit variational
inequalities in Banach spaces.

Theorem 4.1. Assume that

(a) mappings Q : Λ2×E×E → Y , g : E → E, h : E → E, and F : E → Y
are continuous;

(b) there exists a mapping T : E × E → Y such that
(b1) T (x, x) ≥ 0, ∀x ∈ E;
(b2) Q(ε, x, g(y))−Q(ε, x, h(x)) + F (g(y))− F (h(x))− T (x, y) ≥ 0,

∀x, y ∈ E, ε ∈ Λ2;
(b3) the set {y ∈ E : T (x, y) 6≥ 0} is convex for all x ∈ E;

(c) K : Λ1 → 2X is a continuous set-valued mapping such that for any
λ ∈ Λ1, K(λ) is a nonempty, compact and convex subset of X.

Then, we have

(1) for every (λ, ε) ∈ Λ1 × Λ2, S(λ, ε) 6= ∅;
(2) the solution mapping S : Λ1 × Λ2 → 2X is upper semicontinuous on

Λ1 × Λ2.

Proof. (1) For every (λ, ε) ∈ Λ1 × Λ2, Q(ε, ·, ·), g, h, F and K(λ) satisfy
all conditions in Theorem 3.2. Then, from Theorem 3.2, S(λ, ε) 6= ∅.

(2) For every (λ, ε) ∈ Λ1 × Λ2,

S(λ, ε) ={x∗ ∈ K(λ) : Q(ε, x∗, g(y))−Q(ε, x∗, h(x∗)) + F (g(y))

− F (h(x∗)) ≥ 0, ∀y ∈ K(λ)}.

It follows from the condition (a) that S(λ, ε) a closed subset of K(λ) and
so it is compact. We now prove that S is upper semicontinuous. In fact,
let a net {(λα, εα)} be such that (λα, εα) → (λ, ε), and take a net {xα}
with xα ∈ S(λα, εα). From Lemma 2.3, we only need to prove that there
exist x ∈ S(λ, ε) and a subnet {xαi} of {xα} such that xαi → x. Since
xα ∈ K(λα) and K is upper semicontinuous, by Lemma 2.3, there exist
x ∈ K(λ) and a subnet {xαi} of {xα} such that xαi → x. We now show
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that x ∈ S(λ, ε). Suppose to the contrary that x 6∈ S(λ, ε). Then, there
exists y ∈ K(λ) such that

Q(ε, x, g(y))−Q(ε, x, h(x)) + F (g(y))− F (h(x)) 6≥ 0. (4.1)

Since K is lower semicontinuous, by Lemma 2.3, for the above y, there
exists a net {yni} such that yni ∈ K(λni) and yni → y. It follows from
xni ∈ S(λni , εni) that

Q(εni , xni , g(yni))−Q(εni , xni , h(xni)) + F (g(yni))− F (h(xni)) ≥ 0. (4.2)

Since Q, f , h and F are continuous, from (4.2), we have

Q(ε, x, g(y))−Q(ε, x, h(x)) + F (g(y))− F (h(x)) ≥ 0,

which contradicts (4.1). Thus, x ∈ S(λ, ε). This completes the proof.

Theorem 4.2. Assume that
(a) mappings Q : Λ2 ×E ×E → Y , g : E → E and F : E → Y are contin-

uous;
(b) there exists a mapping T : E × E → Y such that

(b1) T (x, x) ≥ 0, ∀x ∈ E;
(b2) Q(ε, x, g(y))−Q(ε, x, g(x)) + F (g(y))− F (g(x))− T (x, y) ≥ 0,

∀x, y ∈ E, ε ∈ Λ2;
(b3) the set {y ∈ E : T (x, y) 6≥ 0} is convex for all x ∈ E;

(c) K : Λ1 → 2X is a lower semicontinuous set-valued mapping such that
for any λ ∈ Λ1, K(λ) is a nonempty, compact and convex subset of
X;

(d) for any given (λ0, ε0) ∈ Λ1×Λ2, there exist neighborhoods U(λ0) of λ0
and I(ε0) of ε0 such that for any λ ∈ U(λ0), ε ∈ I(ε0) and x ∈ K(λ),
the mappings Q(ε, ·, ·) and F are locally non-positive at x with respect
to the mapping g;

(e) the set {y ∈ E : Q(ε, x, g(y))−Q(ε, x, g(x)) + F (g(y))− F (g(x)) ≥ 0}
is convex for all x ∈ E, ε ∈ Λ2.

Then, we have
(1) for every (λ, ε) ∈ Λ1 × Λ2, S(λ, ε) 6= ∅;
(2) the solution mapping S : Λ1 × Λ2 → 2X is lower semicontinuous at

(λ0, ε0).

Proof. (1) For every (λ, ε) ∈ Λ1 × Λ2, Q(ε, ·, ·), g, F and K(λ) satisfy all
conditions in Theorem 3.6. Then, from Theorem 3.6, S(λ, ε) 6= ∅.

(2) For every (λ, ε) ∈ Λ1 × Λ2,

S(λ, ε) ={x∗ ∈ K(λ) : Q(ε, x∗, g(y))−Q(ε, x∗, g(x∗)) + F (g(y))

− F (g(x∗)) ≥ 0, ∀y ∈ K(λ)}.
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Let a net {(λα, εα)} ⊂ Λ1 × Λ2 be such that (λα, εα) → (λ0, ε0). For any
x0 ∈ S(λ0, ε0), by Lemma 2.3 (ii), it is sufficient to prove that there exists
a net {xα} with xα ∈ S(λα, εα) such that xα → x0.

In fact, since x0 ∈ K(λ0) and K is lower semicontinuous, by definition,
for any neighborhood V (x0) of x0, there is a neighborhood H of λ0 with
H ⊂ U(λ0) such that for any λ ∈ H, K(λ)∩V (x0) 6= ∅. Since λα → λ0 and
εα → ε0, there exist a neighborhood B of ε0 with B ⊂ I(ε0) and some α0
such that for any α ≥ α0, λα ∈ H and εα ∈ B. Thus, K(λα) ∩ V (x0) 6= ∅.
By the condition (d) and Theorem 3.6, for any α ≥ α0, there exists xα ∈
K(λα) ∩ V (x0) such that

Q(εα, xα, g(y))−Q(εα, xα, h(xα))+F (g(y))−F (h(xα)) ≥ 0, ∀y ∈ K(λα).

That is, xα ∈ S(λα, εα). Since V (x0) is arbitrary and xα ∈ V (x0) for all
α ≥ α0, we have xα → x0. The proof is completed.

From Theorems 4.1 and 4.2, we can derive the continuity of the solution
mapping.

Theorem 4.3. Assume that
(a) mappings Q : Λ2 ×E ×E → Y , g : E → E and F : E → Y are contin-

uous;
(b) there exists a mapping T : E × E → Y such that

(b1) T (x, x) ≥ 0, ∀x ∈ E;
(b2) Q(ε, x, g(y))−Q(ε, x, g(x)) + F (g(y))− F (g(x))− T (x, y) ≥ 0,

∀x, y ∈ E, ε ∈ Λ2;
(b3) the set {y ∈ E : T (x, y) 6≥ 0} is convex for all x ∈ E;

(c) K : Λ1 → 2X is a continuous set-valued mapping such that for any
λ ∈ Λ1, K(λ) is a nonempty, compact and convex subset of X;

(d) for any (λ0, ε0) ∈ Λ1 × Λ2, there exist neighborhoods U(λ0) of λ0 and
I(ε0) of ε0 such that for any λ ∈ U(λ0), ε ∈ I(ε0) and x ∈ K(λ), the
mappings Q(ε, ·, ·) and F are locally non-positive at x with respect to
the mapping g;

(e) the set {y ∈ E : Q(ε, x, g(y))−Q(ε, x, g(x)) + F (g(y))− F (g(x)) ≥ 0}
is convex for all x ∈ E, ε ∈ Λ2.

Then, we have
(1) for every (λ, ε) ∈ Λ1 × Λ2, S(λ, ε) 6= ∅;
(2) the solution mapping S : Λ1 × Λ2 → 2X is continuous on Λ1 × Λ2.

Proof. (1) For every (λ, ε) ∈ Λ1 × Λ2, Q(ε, ·, ·), g, F and K(λ) satisfy all
conditions in Theorem 3.6. From Theorem 3.6, we know that S(λ, ε) 6= ∅.

(2) The conclusion follows from Theorems 4.1 and 4.2. The proof is
completed.
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