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Abstract. It is known that a Fréchet space F can be realized as a
projective limit of a sequence of Banach spaces Ei. The space Kc(F)
of all compact, convex subsets of a Fréchet space, F, is realized as a
projective limit of the semilinear metric spacesKc(Ei). Using the notion
of Hukuhara derivative for maps with values inKc(F), we prove the local
and global existence theorems for an initial value problem associated
with a set differential equation.

1. Introduction

One of the most convenient generalizations of differential equations is
the notion of Set Differential Equations (SDEs). The main objects in this
framework are multivalued functions of the form U : I → Kc(Rn), where I is
an interval of real numbers and Kc(Rn) the space of all nonempty compact
and convex subsets of Rn. Such functions are sought as solutions of initial
value problems of the form

DHU = F (t, U(t)); U (t0) = U0 ∈ Kc (Rn) ,
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where DHU stands for the Hukuhara derivative of U (cf. [4], [5]).
The basic theory of SDEs in Kc(Rn) is developed in [5]. Natural ex-

tensions to the study of IVPs for SDEs on Kc(E), where E is an infinite
dimensional Banach space, is also initiated there but much work is yet to
be done. On the other hand, the notion of Hukuhara derivatives, Hausdorff
distances and Lipschitz continuity fail to be carried over to the setting of
infinite dimensional locally convex spaces that are not Banach. Despite this,
the increasing need of theoretical models for the study of several problems
emerging in modern Differential Geometry and Theoretical Physics in the
framework of non-Banach infinite dimensional spaces, makes it necessary to
study the SDE in such a setting.

In an earlier paper [2], we proposed the generalizations of the above
notions to a wide class of locally convex topological vector spaces: the
Fréchet spaces. Making ample use of the fact that every Fréchet space F
can be viewed also as a projective limit of Banach spaces, we established on
Kc(F) a separable and complete topological structure. This identification
provides a framework to study SDEs in Fréchet spaces.

The main aim of this paper is to study and solve initial value problems
for SDEs in Fréchet spaces. Since there are inherent difficulties even for
scalar ordinary differential equations in this framework, we also indicate
the application of our results obtained for SDEs to the study of ODEs in
Fréchet spaces.

2. The space Kc(F)

The necessary background for the study of set (multivalued) differential
equations on a Banach space E of finite or infinite dimension has been
provided in [4] and [5] using the notion of Hukuhara differentiation. Recall
that, Kc(E) denotes the collection of all nonempty compact, convex subsets
of E. Kc(E) is a complete metric space with the Hausdorff metric:

D[A,B] = max

[
sup
x∈B

d(x,A), sup
y∈A

d(y,B)

]
where d(x,A) = inf[d(x, y) : y ∈ A], A,B ∈ Kc(E).

A set valued mapping F : I → Kc(E) is said to be continuous at t0 ∈ I if
for any ε > 0 there exists a δ = δ(ε, t0) > 0 such that

D [F (t), F (t0)] < ε, for all t ∈ I with |t− t0| < δ.

On the other hand, we call F Lipschitz continuous, with Lipschitz constant
L, if

D[F (t), F (s)] ≤ L · |t− s|, for all t, s ∈ I.
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Moreover, F is called Hukuhara differentiable if there exists an element
DHF (t0) ∈ Kc(E), t0 ∈ I, such that

lim
∆t→0+

F (t0 + ∆t)− F (t0)
∆t

= lim
∆t→0+

F (t0)− F (t0 −∆t)
∆t

= DHF (t0).

The differences in the numerators are the Hukuhara (geometric) differences
of the involved sets.

However, if we are to deal with a situation where the underlying space is
not a Banach space, the above methodology collapses from the very begin-
ning. Indeed, if the topology of the underlying space is not obtained by a
single norm, then even the definition of continuity, Lipschitz continuity as
well as the notion of Hukuhara derivative cannot be patterned, along the
same lines.

A way out, at least partially, of these problems has been proposed in [2].
Generalizations of all the above notions have been developed in order to
fit in the structure of a wide category of locally convex topological vector
spaces: The Fréchet (i.e. Hausdorff, metrizable and complete) spaces. The
main idea is to replace the Hausdorff metric by a family of corresponding
“semi-metrics”.

To be more precise, let us consider a seperable Fréchet space F with a
topology defined by the family of seminorms {pi}i∈N. Without loss of gen-
erality, we may assume that p1 ≤ p2 ≤ . . . ≤ pi ≤ pi+1 ≤ . . . . Then, F can
viewed as a projective limit of Banach spaces. That is, F ≡ lim←−{Ei; ρji}i,j∈N,
where Ei is the completion of the quotient F/Ker pi (i ∈ N) and ρji are the
connecting morphisms:

ρji : Ej → Ei : [x+ Ker pj ]j 7→ [x+ Ker pi]i; j ≥ i.

Here the bracket [·]i stands for the corresponding equivalence class (see [1],
[6]).

Under this notation the space Kc(F), of all nonempty compact and convex
subsets of F, can be realized as a projective limit space of the corresponding
structures of Eis:

Kc(F) ≡ lim←−
{
Kc

(Ei) ;φji
}
,

where the connecting mappings are defined as

φji : Kc

(Ej)→ Kc

(Ei) : A 7→ ρji(A).

The latter are also continuous, with respect to the topologies induced by the
Hausdorff metrics DEj , DEi . Thus, any element A of Kc(F) can be viewed
alternatively in the form

A ≡
(
ρi(A)

)
i∈N ≡ lim←− ρ

i(A),
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where ρi : F → Ei are the canonical projections of F to its factors. It is
worth also noting that the Minkowski addition and Hukuhara difference are
compatible with projective limits.

The above presented structure of Kc(F) makes it possible to revise the
pathological (in the Fréchet framework) notion of Hausdorff distance:

Definition 2.1. We call
(i) i-distance from x to A:

di(x,A) = inf {pi(x− a); a ∈ A}

(ii) i-separation of A, B ∈ Kc(F):

diH(B,A) = sup
{
di(b, A); b ∈ B

}
(iii) i-Hausdorff distance or i-semi-metric between A and B:

Di(B,A) = max
{
diH(B,A), diH(A,B)

}
.

The following basic connection with the corresponding classical notions
on the Banach factors is valid: If A = lim←−A

i, B = lim←−B
i, Ai, Bi ∈ Kc(Ei),

then

Di(A,B) = DEi
[
Ai, Bi

]
,

DEi standing for the Hausdorff metric of Ei (i ∈ N).
This fact allows us to endow the space Kc(F) with a separable and com-

plete topological structure. It is worth noticing that the notion of a Cauchy
sequence is defined here by means of all semi-metrics (Di)i∈N:

(An)n∈N ⊂ Kc(F) is Cauchy if and only if

lim
n,m→+∞

Di (An, Am) = 0, for every i ∈ N.

In view of the above, we may proceed to the, crucial for our study, notions
of continuity, Lipschitz continuity and Hukuhara differentiability for set
valued mappings within the framework of a Fréchet space F.

Let F : I ⊂ R → Kc(F) be any F-set valued mapping. Then it can be
realized as a projective limit of the corresponding Ei-mappings:

F = lim←−F
i,

where F i := φi ◦F : I → Kc(Ei), if φi : Kc(F)→ Kc(Ei) : A 7→ ρi(A) denote
the canonical projections of the limit Kc(F) ≡ lim←−Kc(Ei). This realization,
gives the opportunity to translate the study of F onto its factors:

(1) F is continuous if and only if each F i is continuous, for every index
i ∈ N.
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(2) F is called Lipschitz continuous if, for any i ∈ N, there exists a positive
constant Li such that

Di
(
F (t), F

(
t′
))
≤ Li ·

∣∣t− t′∣∣ ,
for all t, t′ ∈ I. This property is also characterized by the correspond-
ing behavior onto the factors: F is Lipschitz continuous if and only if
every factor F i (i ∈ N) is Lipschitz continuous.

Since the projective limits are compatible with continuity and Hukuhara
differences, we may extend the classical definition of Hukuhara derivative
in the Fréchet framework:

Definition 2.2. Let I be an interval of R and F : I → Kc(F) a set valued
function. F is called Hukuhara differentiable at t0 ∈ I if there exists a
D ∈ Kc(F) such that

lim
∆t→0+

F (t0 + ∆t)− F (t0)
∆t

= lim
∆t→0+

F (t0)− F (t0 −∆t)
∆t

= D.

Such a D is called the Hukuhara derivative of F at t0 and is denoted by
DHF (t0).

Again, if we adopt the realization of F : I → Kc(F) as a projective limit
F = lim←−F

i; F i : I → Kc(Ei), then the Hukuhara differentiability at t0
reduces to the corresponding notion on the factors:

Proposition 2.3. F = lim←−F
i : I ⊆ R → Kc(F) is Hukuhara differentiable

at t0 if and only if each F i (i ∈ N) is Hukuhara differentiable at t0 and

DHF (t0) = lim←−DHF
i(t0).

For the relevant proof and the full details of this approach we refer to [2].

3. Set differential equations in Banach spaces

Let E be a real Banach space with norm ‖ ·‖ and the metric generated by
it be denoted by d. It is known that if the space Kc(E) is equipped with the
natural algebraic operations of addition and nonnegative scalar multiplica-
tion, then it becomes a semilinear metric space that can be embedded as a
complete cone in a corresponding Banach space (see [7]). For a set valued
mapping F : I → E, by (A)

∫
I0
F (s) ds, we shall denote the integral in the

sense of Aumann, on a measurable set I0 ⊂ I, as

(A)
∫
I0

F (s) ds =
{∫

I0

f(s) ds : f is a Bochner integrable selector of F
}
.
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For a continuous map F : I → Kc(E) the integral
∫
I0
F (s) ds can be intro-

duced in a natural way in the sense of Bochner. Due to the theorem on
differentiation of the Bochner integral (see [7]) it can be shown for a map
Φ: I → Kc(E) that if

Φ(t) = U0 +
∫ t

t0

F (s) ds, U0 ∈ Kc(E), t0 ∈ I, (3.1)

then the Hukuhara derivative DHΦ(t) exists a.e. on I and

DHΦ(t) = F (t).

In view of the above, we first state below a local existence theorem for SDEs
in the framework of Kc(E) where E is a Banach space:

DHU(t) = F (t, U(t)); U(t0) = U0 ∈ Kc(E), (3.2)

where F : I ×Kc(E)→ Kc(E).

Theorem 3.1. Let R0 = J × B(U0, b) where J = [t0, t0 + a], B(U0, b) =
{U ∈ Kc(E) : D[U,U0] ≤ b}. Assume that:

(1) F ∈ C[R0,Kc(E)] and D[F (t, U), 0] ≤M0 on R0.
(2) g ∈ C[J× [0, 2b],R+], g(t, w) ≤M1 on J× [0, 2b], g(t, 0) ≡ 0, g(t, w) is

nondecreasing in w, for each t ∈ J , and w(t) ≡ 0 is the only solution
of

w′ = g(t, w), w(t0) = 0, on J.

(3) D[F (t, U), F (t, V )] ≤ g(t,D[U, V ]) on R0.
Then, the successive approximations defined by

Un+1(t) = U0 +
∫ t

t0

F (s, Un(s)) ds, n = 0, 1, 2, . . . ,

exist as continuous functions on J0 = [t0, t + η), where η = min{a, b/M},
M = max{M0,M1} and converge uniformly to the unique solution of the
IVP on J0.

Assuming the local existence, we can prove the following global existence
result.

Theorem 3.2. Let F ∈ C[R+ ×Kc(E),Kc(E)] and

D[F (t, U), 0] ≤ g(t,D[U, 0]), (t, U) ∈ R+ ×Kc(E),

where g ∈ C[R2
+,R+], g(t, w) is nondecreasing in w, for each t ∈ R+, and

the maximal solution r(t, t0, w0) of

w′ = g(t, w) w(t0) = w0 ≥ 0,
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exists on [t0,∞). Suppose further that F is smooth enough to guarantee
local existence of solutions of (3.2) for any (t0, U0) ∈ R+ × Kc(E). Then
the largest interval of existence of any solution U(t, t0, U0) of (3.2) such that
D[U0, 0] ≤ w0, is [t0,∞].

The proofs of the above stated theorems can be modelled along the lines
of the proofs of Theorem 2.3.1 and Theorem 2.6.1 in [5]. Alternatively,
these results can also be obtained as special cases of Theorem 3.6 (p. 29)
and Theorem 4.1 (p. 31) of [7].

4. Set differential equations in Fréchet spaces

As already mentioned in the Introduction, the local structure of a Fréchet
space F prevents the classical mechanism of set differential equations from
being patterned here. However, the new approach of the space of compact
convex subsets Kc(F) presented in Section 2 and mainly its realization as a
projective limit, gives a way out. In this section we propose a mechanism of
solving multivalued initial problems within the framework of Fréchet spaces
based on this new structure of Kc(F).

To be more specific, let F be an arbitrarily chosen seperable Fréchet space
and its realization as a projective limit of Banach spaces:

F = lim←−
{Ei; ρji}

i,j∈N .

Let also

DHU(t) = F (t, U(t)); U(t0) = U0 ∈ Kc(F), t0 ≥ 0, (4.1)

be an initial value problem for a SDE where F ∈ C[R+ × Kc(F),Kc(F)]
and DHF the Hukuhara derivative of F . Using the required notations and
results from Sections 2 and 3, we can now establish local existence result
for the initial value problem (4.1):

Theorem 4.1. Let R0 = J × B(U0, b) where J = [t0, t0 + a], B(U0, b) =
{U ∈ Kc(F) : Di[U,U0] ≤ b, i ∈ N}. Assume that:

(1) The function F can be realized as a projective limit F = lim←−F
i,

F i ∈ C[R+ × Kc(Ei),Kc(Ei)], and is bounded with respect to every
semi metric of Kc(F), that is there exists a positive M0 > 0 with
Di(F (t, A), 0) ≤ M0, for every i ∈ N, if t ∈ J = [t0, t0 + a] and
A ∈ Kc(F) with Di(A,U0) ≤ b.

(2) g ∈ C[J× [0, 2b],R+], g(t, w) ≤M1 on J× [0, 2b], g(t, 0) ≡ 0, g(t, w) is
nondecreasing in w, for each t ∈ J , and w(t) ≡ 0 is the only solution
of w′ = g(t, w), w(t0) = 0, on J .

(3) Di(F (t, A), F (t, B)) ≤ g(t,Di(A,B)), for every i ∈ N, on R0.
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Then, the successive approximations defined by

Un+1(t) = U0 +
∫ t

t0

F (s, Un(s)) ds, n = 0, 1, 2, . . . ,

exist on J0 = [t0, t + η), where η = min{a, b/M}, M = max{M0,M1} as
continuous functions and converge uniformly to the unique solution of the
IVP on J0.

Proof. Let U i0 := ρi(U0). Then, a sequence of SDEs on the spaces Ei is
defined:

Di
HU

i(t) = F i
(
t, U i(t)

)
, U i(t0) = U i0 ∈ Kc

(Ei) , t0 ≥ 0.
(4.2)

The fact that the semi metrics of Kc(F) are, in a way, an upload of the
metrics of Kc(Ei), ensures that the set valued mapping F i is bounded by M0

on J × {A ∈ Kc(Ei) with DEi [A,U i0] ≤ b}. On the other hand, it satisfies
the condition: For A,B ∈ Kc(Ei),

DEi
[
F i(t, A), F i(t, B)

]
≤ g

(
t,DEi [A,B]

)
, i ∈ N, t ∈ J.

We now appeal to the Theorem 3.1, to obtain the unique solution

U i : [t0, t0 + η)→ Kc

(Ei)
of the IVP (4.2). The sequence of the obtained solutions are related via the
connecting morphisms φji : Kc(Ej) → Kc(Ei) : A 7→ ρji(A). As a matter of
fact, taking into account that the multifunctions (F i)i∈N form a projective
limit, we see that for any choice of indices i, j ∈ N with j ≥ i, next relations
hold:

Di
H

(
φji ◦ U j

)
(t) = lim

∆t→0+

φji(U j(t+ ∆t))− φji(U j(t))
∆t

= lim
∆t→0+

φji
(
U j(t+ ∆t)− U j(t)

∆t

)
=φji

(
lim

∆t→0+

U j(t+ ∆t)− U j(t)
∆t

)
= φji

(
Dj
HU

j(t)
)

=
(
φji ◦ F j

) (
t, U j(t)

)
=
(
F i ◦

(
idR × φji

)) (
t, U j(t)

)
=F i

(
t,
(
φji ◦ U j

)
(t)
)
.

Therefore, the mapping φji◦U j is a solution of (4.2) satisfying also the initial
condition (φji◦U j)(t0) = φji(U j0 ) = U i0. As a result, it coincides with U i, for
every j ≥ i, and the Hukuhara differentiable limit U = lim←−U

i : [t0, t0 +η)→
Kc(F) exists. Moreover,

DHU(t) = lim←−
(
Di
HU

i(t)
)

= lim←−
(
F i
(
t, U i(t)

))
= F (t, U(t)),
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U(t0) =
(
U i(t0)

)
i∈N =

(
U i0
)
i∈N = U0,

and U(t) is the desired solution of the initial value problem (4.1).
On the other hand, the unique solution U i of the IVP (4.2) is the limit of

the sequence of successive approximations, {U in}, defined for n = 0, 1, 2, . . . ,
by

U in+1(t) = U i0 +
∫ t

t0

F i
(
s, U in(s)

)
ds.

These successive approximations are also related via the connecting mor-
phisms φjis. Indeed, by the linearity of the connecting morphisms, and the
fact that each U i0 ∈ Kc(Ei) has been obtained as a projection of U0 ∈ Kc(F),
we have,

φji ◦ U jn+1 = U i0 + φji
(∫ t

t0

F j
(
s, U jn(s)

)
ds

)
.

We have already shown that Di
H ◦ φji = φji ◦Dj

H , j ≥ i. Thus,

Di
H

(
φji
(∫ t

t0

F j
(
s, U jn(s)

)
ds

))
=φji

(
Dj
H

(∫ t

t0

F j
(
s, U jn(s)

)
ds

))
=φji

(
F j
(
t, U jn(t)

))
=F i

(
t, U in(t)

)
.

Thus,

φji
(∫ t

t0

F j
(
s, U jn(s)

)
ds

)
=
∫ t

t0

F i
(
s, U in(s)

)
ds,

and U in+1 = φji ◦ U jn+1. As a result it follows that the projective limits of
U in exist and the successive approximations

Un(t) = lim←−U
i
n(t), n = 0, 1, 2, . . . ,

defined on J0 = [t0, t+ η), are given by

Un+1(t) = U0 +
∫ t

t0

F (s, Un(s)) ds, n = 0, 1, 2, . . . .

It can be easily shown that these successive approximations uniformly con-
verge to the solution U(t) of the IVP (4.1).

As a special case, we state the following theorem where the set valued
map F is assumed to satisfy a Lipschitz type condition with respect to all
semi metrics defined on the space Kc(F).
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Theorem 4.2. Problem (4.1) can be uniquely solved under the following
conditions:

The function F can be realized as a projective limit F = lim←−F
i, F i ∈

C[R+ ×Kc(Ei),Kc(Ei)], and is bounded with respect to every semi metric
of Kc(F), that is there exists a positive M > 0 with Di(F (t, A), 0) ≤ M ,
for every i ∈ N, if t ∈ J = [t0, t0 + a] and A ∈ Kc(F) with Di(A,U0) ≤ b.
Di(F (t, A), F (t, B)) ≤ kDi(A,B), for every index i ∈ N, t ∈ J , if k is a
positive constant. If this is the case, then the unique solution of (4.1) can
be defined on [t0, t0 + η), where η = min{a, b/max{M, 2kb}}.

Theorems 4.1 and 4.2, apart from answering at least partly, to the prob-
lem of solving set differential equations within the framework of Fréchet
spaces, can be also applied to provide generalized solvability methods of
ordinary differential equations in Fréchet spaces. Indeed, if we restrict our
study to single (instead of multi) valued functions, then Theorem 4.2 reduces
to:

Corollary 4.3. Let

u′(t) = F (t, u(t)), u(t0) = u0 ∈ F, (4.3)

be an initial value problem on the Fréchet space F, where

(i) The mapping F : J × F → F, J ⊂ R, is a projective limit F = lim←−F
i

and bounded on F.
(ii) F satisfies the generalized Lipschitz condition

pi(F (t, u), F (t, v)) ≤ k · pi(u, v),

for every index i ∈ N and t ∈ J , where (pi) are the seminorms of F
and k a positive constant.

Then, problem (4.3) admits a unique solution.

This is exactly the main theorem of [3] as well as a generalization of
Theorem 2.2 in [1] for the case of linear differential equations. Therefore,
one obtains, as corollary of the proposed methodology, techniques that lead
to the study of a wide class of differential equations in Fréchet spaces.

Finally, we state a global existence theorem for (4.1), that can be estab-
lished along the lines of the proof of Theorem 4.1, analogously.

Theorem 4.4. Assume that

(1) F ∈ C[R+ × Kc(F),Kc(F)] can be realized as a projective limit F =
lim←−F

i, F i ∈ C[R+ ×Kc(Ei),Kc(Ei)].
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(2) Di[F (t, U), 0] ≤ g(t,Di[U, 0]), (t, U) ∈ R+ × Kc(F), for every i ∈ N,
where g ∈ C[R2

+,R+], g(t, w) is nondecreasing in w for each t ∈ R+
and the maximal solution r(t, t0, w0) of

w′ = g(t, w) = 0, w(t0) = w0 ≥ 0,

exists on [t0,∞).
(3) F is smooth enough to guarantee local existence of solutions of (4.1)

for any (t0, U0) ∈ R+ ×Kc(F).
Then, the largest interval of existence of any solution U(t, t0, U0) of (4.1)

such that D[U0, 0] ≤ w0 is [t0,∞].
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(2005), 41–54.

[4] Hukuhara, M., Integration of measurable maps with compact, convex set values, Funk-
cial. Ekvac. 10 (1967), 205–23.

[5] Lakshmikantham, V., Bhaskar, T. Gnana, Devi, J. Vasundhara, Theory of Set Differ-
ential Equations in a Metric Space, Cambridge Scientific Publ., Cambridge, 2006.

[6] Schaeffer, H. H., Topological Vector Spaces, Springer-Verlag, Berlin, 1980.
[7] Tolstonogov, A., Differential Inclusions in a Banach Space, Kluwer Acad. Publ., Dor-

drecht, 2000.

G. N. Galanis T. Gnana Bhaskar

Section of Mathematics Department of Mathematical

Naval Academy of Greece Sciences

Xatzikyriakion, Piraeus 185 39 Florida Institute of Technology

Greece Melbourne, FL 32901, USA

e-mail: ggalanis@snd.edu.gr e-mail: gtenali@fit.edu

V. Lakshmikantham

Department of Mathematical Sciences

Florida Institute of Technology

Melbourne, FL 32901, USA

e-mail: lakshmik@fit.edu


