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Abstract. Using the Wright’s generalized hypergeometric function, we
investigate a class W (q, s;A,B, λ) of analytic functions with negative
coefficients. We derive many results for the modified Hadamard prod-
uct of functions belonging to the class W (q, s;A,B, λ). Moreover, we
generalize some of the distortion theorems to the classical fractional
integrals and derivatives and the Saigo (hypergeometric) operators of
fractional calculus.

1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +
∞∑
k=2

akz
k, (1)

which are analytic in the unit disc U = {z : z ∈ C and |z| < 1}.
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If f(z) and g(z) are analytic in U , we say that f(z) is subordinate to
g(z), written symbolically f(z) ≺ g(z), if there exists a Schwarz function
w(z) (|w (z)| ≤ |z| in U), such that f(z) = g(w(z)) (z ∈ U).

For analytic functions

f(z) =
∞∑
k=0

akz
k and g(z) =

∞∑
k=0

bkz
k,

by (f ∗ g)(z) we denote the Hadamard product (or convolution) of f(z) and
g(z), defined by

(f ∗ g)(z) =
∞∑
k=0

akbkz
k.

Let α1, A1, . . . , αq, Aq and β1, B1, . . . , βs, Bs (q, s ∈ N = {1, 2, . . . }) be
positive real parameters such that

1 +
s∑

k=1

Bk −
q∑

k=1

Ak ≥ 0.

The Wright generalized hypergeometric function [23] (see also [6], [12] and
[19])

qΨs[(α1, A1), . . . , (αq, Aq); (β1, B1), . . . , (βs, Bs); z]

= qΨs[(αn, An)1,q; (βn, Bn)1,s; z]

is defined by

qΨs[(αk, Ak)1,q; (βk, Bk)1,s; z]

=
∞∑
k=0

{
q∏

n=1

Γ(αn + kAn)

}{
s∏

n=1

Γ(βn + kBn)

}−1
zk

k!
(z ∈ U). (2)

If An = 1 (n = 1, . . . , q) and Bn = 1 (n = 1, . . . , s), we have the relationship:

Ω qΨs[(αn, 1)1,q; (βn, 1)1,s; z] = qFs(α1, . . . , αq;β1, . . . , βs; z), (3)

where qFs(α1, . . . , αq;β1, . . . , βs; z) is the generalized hypergeometric func-
tion (see for details the books on special functions, as [12], [19]) and

Ω =

(
q∏

n=1

Γ(αn)

)−1( s∏
n=1

Γ(βn)

)
. (4)

The Wright generalized hypergeometric functions (2) have been recently
involved in the geometric function theory, see [1], [2], [3], [14], [15] and [16],
as well as: [7], [8], [9] and [13]. It is a special case of Fox’s function (see for
example [6], [12] and [19]).
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Using the Wright generalized hypergeometric functions Dziok and Raina
[2] defined a function qφs[(αn, An)1,q; (βn, Bn)1,s; z] by

qφs[(αn, An)1,q; (βn, Bn)1,s; z] = ΩzqΨs[(αn, An)1,q; (βn, Bn)1,s; z]

and introduced the following linear operator

θ[(αn, An)1,q; (βn, Bn)1,s] : A → A,
defined by the convolution

θ[(αn, An)1,q; (βn, Bn)1,s]f(z) = qφs[(αn, An)1,q; (βn, Bn)1,s; z] ∗ f(z).

We observe that for a function f(z) of the form (1) we have

θ[(αn, An)1,q; (βn, Bn)1,s]f(z) = z +
∞∑
k=2

Ωσkakzk, (5)

where Ω is given by (4) and σk is defined by

σk =
Γ(α1 +A1(k − 1)) · · ·Γ(αq +Aq(k − 1)

Γ(β1 +B1(k − 1)) · · ·Γ(βs +Bs(k − 1))(k − 1)!
. (6)

If, for convenience, we write

θ[α1]f(z) = θ[(α1, A1), . . . , (αq, Aq); (β1, B1), . . . , (βs, Bs)]f(z),

then one can easily verify from the definition (5) that

zA1(θ[α1]f(z))
′

= α1θ[α1 + 1]f(z)− (α1 −A1)θ[α1]f(z). (7)

Using the linear operator θ[α1] Aouf and Dziok [1] defined the class
W (q, s;A,B, λ) of functions of the form

f(z) = z −
∞∑
k=2

akz
k, (ak ≥ 0) (8)

which also satisfy the following condition:
1

(1− λ)

(
α1
θ[α1 + 1]f(z)
θ[α1]f(z)

+A1(1− λ)− α1

)
≺ A1

1 +Az

1 +Bz

(0 ≤ B ≤ 1;−B ≤ A < B; 0 ≤ λ < 1).

In particular, for q = s+1 and αs+1 = As+1 = 1, we write W (s;A,B, λ) =
W (s+ 1, s;A,B, λ). The class W (q, s;A,B, 0) = W (q, s;A,B) was studied
by Dziok and Raina [2] (see also [3]).

If An = 1 (n = 1, . . . , q) and Bn = 1 (n = 1, . . . , s), then we note
that W (q, s;A,B, 0) = V 1

2 (q, s;A,B). This class was studied by Dziok and
Srivastava [4] (see also [5]). Putting moreover α1 = n + 1, α2 = 1 and
β1 = 1, we have the class Tn(λ, ρ)=W (2, 1;−ρ, ρ, λ), which was studied by
Patel and Acharya [11].

For the class W (q, s;A,B, λ) we have following result.
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Lemma 1 ([1]). A function f(z) of the form (8) belongs to the class
W (q, s;A,B, λ) if and only if

∞∑
k=2

Ωδkak ≤ (B −A)(p− λ), (9)

where

δk = [(1 +B)(k − 1) + (B −A)(1− λ)]σk, (10)

and Ω, σk are defined by (4) and (6), respectively.

2. Modified Hadamard product

For the functions

fj(z) = z −
∞∑
k=2

ak,jz
k (ak,j ≥ 0; j = 1, 2), (11)

we denote by (f1 ⊗ f2)(z) the modified Hadamard product or convolution of
the functions f1 and f2 defined by

(f1 ⊗ f2)(z) = z −
∞∑
k=2

ak,1ak,2z
k.

Theorem 1. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class W (q, s;A,B, λ). If the sequence {δk} is nondecreasing, then (f1 ⊗
f2)(z) ∈W (q, s;A,B, γ), where

γ = 1− (1 +B)(B −A)(1− λ)2

Ω[(1 +B) + (B −A)(1− λ)]2σ2 − (B −A)2(1− λ)2 . (12)

The result is sharp.

Proof. We need to find the largest γ such that
∞∑
k=2

Ω[(1 +B)(k − 1) + (B −A)(1− γ)]σk
(B −A)(1− γ)

ak,1ak,2 ≤ 1. (13)

By Lemma 1 and the Cauchy-Schwarz inequality, we obtain
∞∑
k=2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk
(B −A)(1− λ)

√
ak,1ak,2 ≤ 1. (14)

Thus by (13) it is sufficient to show that

√
ak,1ak,2 ≤

[(1 +B)(k − 1) + (B −A)(1− λ)](1− γ)
[(1 +B)(k − 1) + (B −A)(1− γ)](1− λ)

(k ≥ 2).



DISTORTION AND CONVOLUTIONAL THEOREMS 187

By (14) we have

√
ak,1ak,2 ≤

(B −A)(1− λ)
Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk

(k ≥ 2).

Consequently, we need only to prove that

γ ≤ 1− (k − 1)(1 +B)(B −A)(1− λ)2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]2σk − (B −A)2(1− λ)2

(k ≥ 2).

Since

Φ(k)

= 1− (k − 1)(1 +B)(B −A)(1− λ)2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]2σk − (B −A)2(1− λ)2 (15)

is an increasing function of k (k ≥ 2), letting k = 2 in (15), we obtain

γ ≤ Φ(2) = 1 − (1 +B)(B −A)(1− λ)2

Ω[(1 +B) + (B −A)(1− λ)]2σ2 − (B −A)2(1− λ)2 ,

which proves the main assertion of Theorem 1. Finally, by taking the func-
tions fj(z)(j = 1, 2) given by

fj(z) = z − (B −A)(1− λ)
Ω[(1 +B) + (B −A)(1− λ)]σ2

z2 (j = 1, 2), (16)

we can see that the result is sharp.

Theorem 2. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class W (q, s;A,B, λ). If the sequence {δk} is nondecreasing, then the func-
tion

h(z) = z −
∞∑
k=2

(a2
k,1 + a2

k,2) zk (17)

belongs to the class W (q, s;A,B, τ), where

τ = 1− 2(1 +B)(B −A)(1− λ)2

Ω[(1 +B) + (B −A)(1− λ)]2σ2 − 2(B −A)2(1− λ)2 .

The result is sharp for the functions fj(z) (j = 1, 2) defined by (16).

Proof. By Lemma 1, we obtain
∞∑
k=2

{
Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk

(B −A)(1− λ)

}2

a2
k,1
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≤

{ ∞∑
k=2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk
(B −A)(1− λ)

ak,1

}2

≤ 1 (18)

and
∞∑
k=2

{
Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk

(B −A)(1− λ)

}2

a2
k,2

≤

{ ∞∑
k=2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk
(B −A)(1− λ)

ak,2

}2

≤ 1. (19)

It follows from (18) and (19) that
∞∑
k=2

1
2

{
Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk

(B −A)(1− λ)

}2

(a2
k,1 + a2

k,2) ≤ 1.

Therefore, we need to find the largest τ such that
Ω[(1 +B)(k − 1) + (B −A)(1− τ)]σk

(B −A)(1− τ)

≤ 1
2

{
Ω[(1 +B)(k − 1) + (B −A)(1− λ)]σk

(B −A)(1− λ)

}2

(k ≥ 2),

that is,

τ ≤ 1− 2(k − 1)(1 +B)(B −A)(1− λ)2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]2σk − 2(B −A)2(1− λ)2

(k ≥ 2).

Since

D(k) = 1− 2(k − 1)(1 +B)(B −A)(1− λ)2

Ω[(1 +B)(k − 1) + (B −A)(1− λ)]2σk − 2(B −A)2(1− λ)2 ,

is an increasing function of k(k ≥ 2), we readily have

τ ≤ D(2) = 1− 2(1 +B)(B −A)(1− λ)2

Ω[(1 +B) + (B −A)(1− λ)]2σ2 − 2(B −A)2(1− λ)2 ,

and Theorem 2 follows at once.

Putting λ = 0 in Theorems 1 and 2, we obtain the following two corol-
laries.

Corollary 1. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class W (q, s;A,B). If the sequence {δk} is nondecreasing, then (f1⊗f2)(z) ∈
W (q, s;A,B, γ), where

γ = 1− (1 +B)(B −A)
Ω(1 + 2B −A)2σ2 − (B −A)2 .
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The result is sharp.

Corollary 2. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class W (q, s;A,B). If the sequence {δk} is nondecreasing, then the function
h(z) defined by (17) belongs to the class W (q, s;A,B, τ), where

τ = 1− 2(1 +B)(B −A)
Ω(1 + 2B −A)2σ2 − 2(B −A)2 .

The result is sharp.

Taking q = 2, s = 1, A1 = A2 = B1 = 1, α1 = n + 1 ∈ N , α2 = β1 = 1,
B = −A = ρ (0 < ρ ≤ 1) in Theorems 1 and 2, respectively, we obtain the
following consequences:

Corollary 3. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class Tn(λ, ρ). Then (f1 ⊗ f2)(z) ∈ Tn(γ, ρ), where

γ = 1− 2ρ(1 + ρ)(1− λ)2

[1 + ρ(3− 2λ)]2(n+ 1)− 4ρ2(1− λ)2 .

The result is sharp.

Corollary 4. Let the functions fj(z) (j = 1, 2) defined by (11) be in the
class Tn(λ, ρ). Then the function h(z) defined by (17) belongs to the class
Tn(τ, ρ), where

τ = 1− 4ρ(1 + ρ)(1− λ)2

[1 + ρ(3− 2λ)]2(n+ 1)− 8ρ2(1− λ)2 .

The result is sharp.

3. Definitions and applications of fractional calculus

We start with some definitions of fractional calculus operators (that is
fractional derivatives and fractional integrals), as adopted for use in classes
of analytic functions. First we recall the definition of Saigo operator [17],
[18] (see also [21]).

For real numbers γ, ζ and η, the fractional derivative-integral operator
Iγ,ζ,η0,z is defined by

Iγ,ζ,η0,z f(z) =
z−γ−ζ

Γ(γ)

z∫
0

(z − t)γ−1
2F1

(
γ + ζ,−η; γ; 1− t

z

)
f(t)dt for γ > 0

Iγ,ζ,η0,z f(z) =
dn

dzn
Iγ+n,ζ−η,η−n

0,z f(z) for 0 < γ + n ≤ 1, n = 1, 2, . . . ,
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where f(z) is an analytic function in a simply connected region of the
z-plane containing the origin with the order

f(z) = O(|z|ε) (z → 0),

where ε > max(0, ζ− η)− 1 and the multiplicity of (z− t)γ−1 is removed by
requiring log(z−t) to be real when z−t > 0. The function 2F1(a, b; c; z) is the
Gaussian hypergeometric function (3) defined, in terms of the Pochhammer
symbol

(λ)n =

{
1 (n = 0)
λ(λ+ 1) · · · (λ+ n− 1) (n ∈ N),

by

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
(z ∈ U).

In particular we obtain the fractional derivative-integral operator

Dγ
z f(z) = Iγ,γ,η0,z f(z) (20)

introduced by Owa [10] (see also Srivastava and Owa [20]).
In order to prove our result for the operator Iγ,ζ,η0,z , we recall here the

following lemma.

Lemma 2 ([22]). If n > max {0, ζ − η} − 1, then

Iγ,ζ,η0,z zn =
Γ(n+ 1)Γ(n− ζ + η + 1)

Γ(n− ζ + 1)Γ(n+ γ + η + 1)
zn−ζ .

We can prove easy the following theorem.

Theorem 3. Let l ∈ N ∪ {0}, −γ ≤ ζ ≤ l, ζ < 2 + η, and let the
sequence {δk/(k)l} be nondecreasing. If the function f(z) is in the class
W (q, s;A,B, λ) and 0 < |z| < 1, then∣∣∣Iγ,ζ,η0,z f(z)

∣∣∣ ≥ Γ(2− ζ + η)|z|1−ζ

Γ(2− ζ)Γ(2 + γ + η)

{
1− 2(B −A)(1− λ)(2− ζ + η)

Ωδ2(2− ζ)(2 + γ + η)
|z|
}
,∣∣∣Iγ,ζ,η0,z f(z)

∣∣∣ ≤ Γ(2− ζ + η)|z|1−ζ

Γ(2− ζ)Γ(2 + γ + η)

{
1 +

2(B −A)(1− λ)(2− ζ + η)
Ωδ2(2− ζ)(2 + γ + η)

|z|
}
.

The result is sharp for extremal function f of the form

f(z) = z − (B −A)(1− λ)
Ωδ2

z2. (21)

Putting ζ = γ in Theorem 3 and using (20) we obtain the following
corollary.
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Corollary 5. Let l ∈ N ∪ {0}, γ ≥ −l and let the sequence {δk/(k)l}
be nondecreasing. If the function f(z) is in the class W (q, s;A,B, λ) and
0 < |z| < 1, then

|Dγ
z f(z)| ≥ |z|

1−γ

Γ(2− γ)

{
1− 2(B −A)(1− λ)

Ωδ2(2− γ)
|z|
}
,

|Dγ
z f(z)| ≤ |z|

1−γ

Γ(2− γ)

{
1 +

2(B −A)(1− λ)
Ωδ2(2− γ)

|z|
}
.

The result is sharp for extremal function f of the form (21).

Corollary 6. Let l ∈ N ∪ {0}, γ ≥ −l and let the sequence {δk/(k)l} be
nondecreasing. If the function f(z) is in the class W (q, s;A,B, λ), then
Dγ
z f(z) is included in a disc with its center at the origin and radius r given

by

r =
1

Γ(2− γ)

{
1 +

2(B −A)(1− λ)
Ωδ2(2− γ)

}
.

Remark 1. Taking λ = 0 in Theorem 3 and Corollaries 5 and 6, respec-
tively, we obtain the results for the class W (q, s;A,B, 0) = W (q, s;A,B)
studied by Dziok and Raina [2]. Corollaries 1 and 2 are improvements of
the results obtained by Patel and Acharya [11].
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