EXISTENCE OF PARETO EQUILIBRIA FOR NON-COMPACT CONSTRAINED MULTI-CRITERIA GAMES

S. CHEBBI

Received November 22, 2005 and, in revised form, October 17, 2007

Abstract. In this paper, an existence result of quasi-equilibrium problem is proved and used to establish the existence of weighted Nash equilibria for constrained multi-criteria games under a generalized quasi-convexity condition and a coercivity type condition on the payoff functions. As consequence, we prove the existence of Pareto equilibria for constrained multi-criteria games with non-compact strategy sets in topological vector spaces.

1. Introduction

A number of classical problems in game theory are formulated as games with multiple non-comparable criteria (or vector payoffs) (see Prasad and Ghose [5]). The aim of this work is to study the existence of Pareto equilibria in such games.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 91A13, 91B02.

Key words and phrases. Multi-criteria games, weighted Nash equilibria, Pareto equilibria, quasi-equilibrium problem.

In Section 2, we firstly prove a result on the existence of quasi-equilibrium problem in topological vector spaces with generalized coercivity and convexity conditions. Our argument is based on a fixed point theorem recently obtained by Ben-El-Mechaiekh, Chebbi and Florenzano in [1]. Secondly, this result is used to prove the existence of weighted Nash equilibria in constrained multi-criteria games when strategy sets players are convex and not necessarily compacts.

In Section 3 and as consequence, we prove the existence of Pareto equilibria for constrained multi-criteria games under a generalized coercivity type condition on the vector payoffs functions.

Let $\mathbb{N} = \{1, 2, ..., n\}$ and

$$x = (x_1, x_2, \dots, x_n) \in X = \prod_{i \in \mathbb{N}} X^i.$$

For each $i \in \mathbb{N}$, denote

$$X^{-i} = \prod_{j \in \mathbb{N} \setminus \{i\}} X^j.$$

An element of X^{-i} is $x^{-i} = (x^1, x^2, \dots, x^{i-1}, x^{i+1}, \dots, x^n)$. We shall use (x^i, y^{-i}) to denote $z = (z^1, z^2, \dots, z^n)$ such that $z^i = x^i$ and $z^{-i} = y^{-i}$.

First, let us introduce the game model considered in this paper. If $\mathbb{N} = \{1, 2, \dots, n\}$ is a set of players, a collection $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ is called a constrained multi-criteria game if each player i has a non-empty strategy set X^i , a constrained correspondence $A^i \colon X^{-i} \to X^i$ and a vector payoff function (or multi-criteria) $F^i \colon X \to \mathbb{R}^{k_i}$ defined for each $x = (x^1, x^2, \dots, x^n)$ by

$$F^{i}(x) = (f_{1}^{i}(x), f_{2}^{i}(x), \dots, f_{k_{i}}^{i}(x)),$$

where f_j^i , for $i \in \mathbb{N}$ and $j = 1, 2, \ldots, k_i, k_i$ is a positive integer, represent the non-commensurable outcomes. If a strategy $x = (x^1, x^2, \ldots, x^n)$ is played, each player i is trying to minimize her/his own payoff function F^i . Note that for the games with payoff functions, there does not exist a strategy $x \in X$ minimizing all f_i^i (see [8]).

To give the concept of equilibrium used in this paper, we need the following notations:

We denote by \mathbb{R}^m_+ the non-negative orthant of \mathbb{R}^m ,

$$\mathbb{R}_{+}^{m} = \left\{ u = (u^{1}, u^{2}, \dots, u^{m}) \in \mathbb{R}^{m} : u^{j} \ge 0, \ \forall j = 1, 2, \dots, m \right\}$$

and by int \mathbb{R}^m_+ , its non-empty interior,

$$\operatorname{int} \mathbb{R}_{+}^{m} = \{ u = (u_{1}, u_{2}, \dots, u_{m}) \in \mathbb{R}^{m} : u_{j} > 0, \ \forall j = 1, 2, \dots, m \}.$$

We denote by S_{+}^{m} the simplex of \mathbb{R}_{+}^{m} ,

$$S_{+}^{m} = \left\{ u = (u_1, u_2, \dots, u_m) \in \mathbb{R}_{+}^{m} : \sum_{j=1}^{m} u_j = 1 \right\},$$

and int S_{+}^{m} , its relative interior,

int
$$S_+^m = \left\{ u = (u_1, u_2, \dots, u_m) \in \text{int } \mathbb{R}_+^m \colon \sum_{j=1}^m u_j = 1 \right\}.$$

Definition 1. A strategy $\hat{x}^i \in X^i$ of player i is said to be a Pareto efficient strategy (resp. a weak Pareto efficient strategy) with respect to $\hat{x} = (\hat{x}^1, \hat{x}^2, \dots, \hat{x}^n) \in X$ if $\hat{x}^i \in A^i(\hat{x}^{-i})$ and there is no strategy $x^i \in A^i(\hat{x}^{-i})$ such that

$$F^{i}(\hat{x}) - F^{i}(x^{i}, \hat{x}^{-i}) \in \mathbb{R}^{k_{i}}_{+} \setminus \{0\} \quad (\text{resp. } F^{i}(\hat{x}) - F^{i}(x^{i}, \hat{x}^{-i}) \in \text{int } \mathbb{R}^{k_{i}}_{+}).$$

Definition 2. Let $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ be a constrained multi-criteria game. A strategy $\hat{x} \in X$ is said to be a *Pareto equilibrium* (resp. a weak Pareto equilibrium) of the game if for each player i, \hat{x}^i is a Pareto efficient strategy (resp. a weak Pareto efficient strategy) with respect to \hat{x} .

It is clear that each Pareto equilibrium is a weak Pareto equilibrium. The following definition of weighted Nash equilibrium as given by Wang in [6] will be also used:

Definition 3. A strategy $\hat{x} \in X$ is called a weighted Nash equilibrium with respect to the weight vector $W = (W^1, W^2, \dots, W^n)$ of a constrained multicriteria game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ if for each player i, we have:

- (a) $\hat{x}^i \in A^i(\hat{x}^{-i})$.
- (b) $W^i \in \mathbb{R}^{k_i}_+ \setminus \{0\}.$
- (c) For all $x^i \in A^i(\hat{x}^{-i})$, $\langle W^i, F^i(\hat{x}) \rangle \leq \langle W^i, F^i(x^i, \hat{x}^{-i}) \rangle$, where $\langle \cdot, \cdot \rangle$ is the inner product.

In particular, if $W^i \in S^{k_i}_+$ for all $i \in \mathbb{N}$, then the strategy \hat{x} is said to be a normalized weighted Nash equilibrium with respect to W.

Throughout the paper, vector spaces are real and topological spaces are assumed to be Hausdorff. The convex hull of a subset A of a vector space is denoted by co A. A subset B of a topological space E is called *compactly closed* (open respectively) if for every compact set K of X, $B \cap K$ is closed (open, respectively) in K. Set-valued maps will be simply called *correspondences* and represented by capital letters F, G, Functions in the usual sense will be represented by small letters.

2. Existence of weighted Nash equilibria

From Definition 3, it is easy to see that a strategy $\hat{x} \in X$ is a weighted Nash equilibrium with respect to W of the game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ if and only if $\hat{x} \in X$ is a solution of the following constrained optimization problem:

$$\langle W^{i}, F^{i}(\hat{x}) \rangle = \min_{x^{i} \in A^{i}(x^{-i})} \langle W^{i}, F^{i}(x^{i}, \hat{x}^{-i}) \rangle$$
$$\hat{x}^{i} \in A^{i}(\hat{x}^{-i}).$$

Since this problem is a *quasi-equilibrium problem*, we firstly prove the following result:

Lemma 1. Let X be a non-empty convex subset of a topological vector space E, $A: X \to X$ be a correspondence with non-empty convex values and $f: X \times X \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a function such that:

- (1) For all $y \in X$, $A^{-1}(y)$ is compactly open in X.
- (2) The set $D = \{x \in X : x \in A(x)\}$ is compactly closed in X.
- (3) For each fixed $x \in X$, the function: $y \to f(x,y)$ is upper semi-continuous on each non-empty compact subset of X and the function: $x \to f(x,x)$ is lower semi-continuous on each non-empty compact subset of X.
- (4) For all finite subset A of X,

$$\sup_{x \in \operatorname{co} A} \min_{y \in A} \{ f(x, x) - f(y, x) \} \le 0.$$

- (5) There exists a family $\{(C_{\alpha}, K_{\alpha})\}_{\alpha \in I}$ satisfying:
 - (a) For each $\alpha \in I$, C_{α} is contained in a compact convex subset of X and K_{α} is a compact subset of X.
 - (b) For each $\alpha, \beta \in I$, there exists $\gamma \in I$ such that $C_{\alpha} \bigcup C_{\beta} \subseteq C_{\gamma}$.
 - (c) For each $\alpha \in I$, there exists $\beta \in I$ such that for all $x \in X \setminus K_{\alpha} \cup D$, $A(x) \cap C_{\beta} \neq \emptyset$ and for each $x \in D \setminus K_{\alpha}$, $\{y \in A(x) : f(y,x) < f(x,x)\} \cap C_{\beta} \neq \emptyset$.

Then there exists $\hat{x} \in X$ such that

$$\hat{x} \in A(\hat{x}),$$

$$f(\hat{x}, \hat{x}) \le f(y, \hat{x}), \ \forall y \in A(\hat{x}).$$

Proof. Let us consider the correspondence $F: X \to X$ defined by

$$F(x) = \{ y \in X \colon f(x, x) - f(y, x) > 0 \}.$$

By condition (3), for all $y \in X$, $F^{-1}(y)$ is compactly open in X. Now assume that for each $x \in D$, $A(x) \cap F(x) \neq \emptyset$ and define the correspondence

 $G\colon X\to X$ by

$$G(x) = \begin{cases} A(x) \cap F(x) & \text{if } x \in D\\ A(x) & \text{if } x \notin D. \end{cases}$$

G has non-empty values and we can see that

$$G^{-1}(y) = [A^{-1}(y) \cap F^{-1}(y)] \cup [(X \setminus D) \cap A^{-1}(y)]$$

for any given $y \in X$. Hence, by conditions (1) and (2), $G^{-1}(y)$ is compactly open in X. Condition (5) implies that G satisfies all hypothesis of Theorem 3.2 in [1], then there exists $\hat{x} \in \operatorname{co} G(\hat{x})$. By definition of G and A, \hat{x} must be in D. It follows that $\hat{x} \in \operatorname{co} F(\hat{x})$, wich contradicts condition (4). Therefore, there exists $\hat{x} \in D$ such that $A(\hat{x}) \cap F(\hat{x}) = \emptyset$, that is

$$\begin{split} \hat{x} \in A(\hat{x}), \\ f(\hat{x}, \hat{x}) \leq f(y, \hat{x}), \ \forall y \in A(\hat{x}). \end{split}$$

Remark 1.

- (a) If a function f satisfies condition (4) of Lemma 1, then following Zhou and Chen in [10] the function g defined by g(x,y) = f(x,x) f(y,x) is said to be 0-diagonally quasi-convex in the second argument. Note that if g is quasi-convex in the second argument, then g is 0-diagonally quasi-convex in the second argument.
- (b) Condition (5) is a generalized coercivity type condition firstly introduced in [1] where examples of functions satisfying such condition are given. If X is compact, then condition (5) is automatically satisfied.
- (c) It follows by (a) and (b) that Lemma 1 extends Theorem 4.2 in [4].

Lemma 1 is now used to prove the following equilibrium result:

Theorem 1. Let $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ be a constrained multi-criteria game with for each $i \in \mathbb{N}$, X^i is a non-empty convex subset of a topological vector space E^i and $A^i : X^{-i} \to X^i$ has non-empty convex values. Suppose that there exists a vector

$$W = (W^1, W^2, \dots, W^n) \in \prod_{i \in \mathbb{N}} \mathbb{R}^{k_i} \setminus \{0\}$$

satisfying the following conditions for each $i \in I$:

(1) For each $y^i \in X^i$, $(A^i)^{-1}(y^i)$ is compactly open in X^{-i} and the set $D = \{x \in X : x \in A(x)\}$, where $A(x) = \prod_{i \in \mathbb{N}} A^i(x^{-i})$, is compactly closed in X.

(2) The mapping

$$x \mapsto \sum_{i=1}^{n} \left\langle W^i, F^i(x) \right\rangle$$

is lower semi-continuous on each non-empty compact subset of X.

(3) For each fixed $x \in X$, the mapping

$$y \mapsto \sum_{i=1}^{n} \left\langle W^i, F^i(x^i, y^{-i}) \right\rangle$$

is upper semi-continuous on each non-empty compact subset of X.

(4) For all finite subset A of X, for each $x \in co A$:

$$\min_{y \in A} \left\{ \sum_{i=1}^{n} \left\langle W^{i}, F^{i}(x) - F^{i}(y^{i}, x^{-i}) \right\rangle \right\} \le 0.$$

(5) There exists a family $\{(C_{\alpha}, K_{\alpha})\}_{\alpha \in I}$ satisfying (a) and (b) of condition (5) of Lemma 1 and the following one: For each $\beta \in I$, there exists $\alpha \in I$ such that for all $x \in X \setminus K_{\beta} \cup D$, $A(x) \cap C_{\alpha} \neq \emptyset$ and for each $x \in D \setminus K_{\beta}$,

$$\left\{ y \in A(x) \colon \sum_{i=1}^{n} \left\langle W^{i}, F^{i}(x) - F^{i}(y^{i}, x^{-i}) \right\rangle > 0 \right\} \cap C_{\alpha} \neq \emptyset.$$

Then the game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ has a weighted Nash equilibrium with respect to W.

Proof. For each $(x,y) \in X \times X$, consider the map

$$f(x,y) = \sum_{i=1}^{n} \langle W^i, F^i(x^i, y^{-i}) \rangle.$$

It is easy to see that f satisfies all hypothesis of Lemma 1, hence there exists $\hat{x} \in X$ such that $\hat{x} \in A(\hat{x})$ and

$$\sum_{i=1}^{n} \left\langle W^{i}, F^{i}(\hat{x}) - F^{i}(y^{i}, \hat{x}^{-i}) \right\rangle \leq 0.$$

If we take $y = (y^i, \hat{x}^{-i})$, for i = 1, 2, ..., n, then we can verify that \hat{x} is a weighted Nash equilibrium with respect to W of the game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$.

Remark 2. This result extends Theorem 1 of Yuan and Tarafdar in [9] since our conditions (4) and (5) are more general than their conditions (3) and (4) respectively. It also extends Theorem 1 in [2] and Theorem 3.1 in [6] obtained when X is a compact subset of a normed space.

3. Existence of Pareto equilibria

Since a Pareto equilibrium of a multi-criteria game is not necessarily a weighted Nash equilibrium of the game, we will use exactly the same argument as used in the proof of Lemma 2.1 in [6] to obtain:

Lemma 2. A normalized weighted Nash equilibrium of a game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ with respect to the weight

$$W \in \prod_{i \in \mathbb{N}} S_+^{k_i} \quad (resp. \ W \in \prod_{i \in \mathbb{N}} \operatorname{int} S_+^{k_i})$$

is a weak Pareto equilibrium (resp. a Pareto equilibrium) of the game. This result remain valid if the weight

$$W \in \prod_{i \in \mathbb{N}} \mathbb{R}^{k_i}_+ \quad (resp. \ W \in \prod_{i \in \mathbb{N}} \operatorname{int} \mathbb{R}^{k_i}_+).$$

By combining Theorem 1 and Lemma 2, we obtain:

Theorem 2. Let $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ be a constrained multi-criteria game with for each $i \in \mathbb{N}$, X^i is a non-empty convex subset of a topological vector space E^i , $A^i : X^{-i} \to X^i$ has non-empty convex values and $F^i = (f_1^i, f_2^i, \dots, f_{k_i}^i)$. Suppose that for all $i \in \mathbb{N}$, for all $j = 1, 2, \dots, k_i$, the following conditions are satisfied:

- (1) For each $y^i \in X^i$, $(A^i)^{-1}(y^i)$ is compactly open in X^{-i} and the set $D = \{x \in X : x \in A(x)\}$, where $A(x) = \prod_{i \in \mathbb{N}} A^i(x^{-i})$, is compactly closed in X.
- (2) The function f_j^i is lower semi-continuous on each non-empty compact subset of X.
- (3) For each fixed $x^i \in X^i$, the function $y^{-i} \to f^i_j(x^i, y^{-i})$ is upper semi-continuous on each non-empty compact subset of X^{-i} .
- (3) For each fixed $x^{-i} \in X^{-i}$, the function $y^i \to f^i_j(y^i, x^{-i})$ is quasi-convex on X^i .
- (4) There exists a family $\{(C_{\alpha}, K_{\alpha})\}_{\alpha \in I}$ satisfying (a) and (b) of condition (5) of Lemma 1 and the following one: For each $\beta \in I$, there exists $\alpha \in I$ such that for all $x \in X \setminus K_{\beta} \cup D$, $A(x) \cap C_{\alpha} \neq \emptyset$ and for each $x \in D \setminus K_{\beta}$, $\{y \in A(x) : f_j^i(x) f_j^i(x^{-i}, y^i) > 0\} \cap C_{\alpha} \neq \emptyset$.

Then the multi-criteria game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ has at least one Pareto equilibrium.

Proof. Let $W \in \prod_{i \in \mathbb{N}} \operatorname{int} S^{k_i}$ be a fixed weight vector. From conditions (1)–(4), it follows by Theorem 1 that the game $(X^i, A^i, F^i)_{i \in \mathbb{N}}$ has at least one weighted Nash equilibrium \hat{x} with respect to the weight vector W. Since

for each $i \in \mathbb{N}$, $W^i \in \text{int } S^{k_i}_+$, by Lemma 2, \hat{x} is also a Pareto equilibrium of the game.

Remark 3. Theorem 2 generalizes Theorem 5 of [3], Theorem 3 of [9] and Theorem 6 of [7] obtained in the non-compact case. If for each $i \in I$, X^i is a compact subset and $A(x^{-i}) = X^i$, then Theorem 2 is reduced to Theorem 3.2 of [6].

Acknowledgment. I thank the anonymous referee for his useful comments and suggestions.

References

- Ben-El-Mechaiekh, H., Chebbi, S., Florenzano, M., A generalized KKMF principle, J. Math. Anal. Appl. 309 (2005), 583–590.
- [2] Borm, P. E. M., Tijs, S. H., Van Den Aarssen, J. C. M., Pareto equilibrium in multiobjective games, Methods Oper. Res. 60 (1990), 303–312.
- [3] Chang, S. Y., Noncompact qualitative games with applications to equilibria, Nonlinear Anal. 65 (2006), 593–600.
- [4] Cubiotti, P., Existence of solutions for lower semi-continuous quasi-equilibrium problem, Comput. Math. Appl. **30** (1995), 11–22.
- [5] Prasad, U. R., Ghose, D., Formulation and analysis of combat problems as zero-sum bicriterion differential games, J. Optim. Theory Appl. 59 (1988), 1–24.
- [6] Wang, S. Y., Existence of a Pareto equilibrium, J. Optim. Theory Appl. 79 (1993), 373–384.
- [7] Yu, J., Yuan, X. Z., The study of Pareto equilibria for multiobjective games by fixed points and Ky Fan minimax inequality methods, Comput. Math. Appl. 35 (1998), 17–24.
- [8] Yu, P. L., Second-ordered game problems: Decision dynamics in gaming phenomena, J. Optim. Theory Appl. 27 (1979), 147–166.
- [9] Yuan, X. Z., Tarafdar, E., Non-compact Pareto equilibria for multiobjective games,
 J. Math. Anal. Appl. 204 (1996), 156–163.
- [10] Zhou, J. X., Chen, G., Diagonal convexity for problems in convex analysis and quasi-variational inequalities, J. Math. Anal. Appl. 132 (1988), 213–225.

SOUHAIL CHEBBI

"Faculté des Sciences de Bizerte" — Tunisia

AND

KING SAUD UNIVERSITY

DEPARTMENT OF MATHEMATICS

P.O. Box 2455, RIYADH 11451

Saudia Arabia

E-MAIL: SOUHAIL.CHEBBI@LAPOSTE.NET