
Journal of Applied Analysis

Vol. 14, No. 2 (2008), pp. 239–249

BOUNDED CONTROLLERS FOR UNCERTAIN
NONLINEAR SYSTEMS

A. BENABDALLAH and M. A. HAMMAMI

Received October 17, 2006 and, in revised form, July 1, 2008

Abstract. In this paper, we study the stabilization problem of uncer-
tain systems. We treat a class of uncertain systems whose nominal part
is affine in the control and whose uncertain part is bounded by a known
affine function of the control, when the control is bounded by a specified
constant.

1. Introduction

Dynamical systems with uncertainties have attracted considerable atten-
tion in control literature, particularly uncertain systems with linear nomi-
nal part (system without uncertainties). For uncertain systems with linear
nominal part, the problem of state observation was considered in [5] and
[14], sufficient conditions for the existence of an output feedback stabiliz-
ing controller were given in [1] and [5], stabilizing bounded controllers were
proposed in [2], [3], [4], [6], [7], [10], [11], [13].

The stabilization of affine in the control systems has been widely investi-
gated in recent years because of their capability of modelling a large number
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of processes and their intrinsic simplicity. The present work considers the
stabilization of nonlinear uncertain systems whose nominal part is affine. It
extends the result of Corless and Leitmann [4]. In [4], Corless and Leitmann
have addressed the stabilization of nonlinear uncertain systems whose nom-
inal part is linear. Subject to a controller prescribed constraint, they have
proposed controllers that guarantee the uniform exponential convergence of
the solutions towards a neighborhood of the origin.The proposed controller
depends on the solution to the Riccati equation. From optimal control the-
ory, we see that the Riccati equation is used to derive the optimal state
feedback control law for the linear system with a quadratic cost functional.
It is well known ([9]) that for affine in the control systems with arbitrary
cost functional an optimal state feedback control law can be derived from
the solution to the Hamilton-Jacobi-Bellman equation. This motivated us
to consider an uncertain system with affine nominal part.

In this paper, we will consider an uncertain system with affine nominal
part. Subject to a controller constraint, we will give sufficient conditions for
designing a controller that guarantees the uniform exponential convergence
of the solutions towards an arbitrary small neighborhood of the origin. In
[15], Wu and Mizukami investigated the stabilization of such a class of sys-
tems, but there was no given controller constraint. Our work is organized
as follows. In Section 2, we recall the definition of uniform exponential con-
vergence to a neighborhood of the origin. We give also a sufficient condition
for uniform exponential convergence. In Section 3, we present bounded con-
trollers that guarantee uniform exponential convergence of solutions of the
considered system to a neighborhood of the origin with a specified rate of
convergence.

2. Mathematical preliminaries

Consider a system described by
:
x = F (t, x) (1)

where t ∈ R+ is the time, x ∈ Rn is the state, F : R+ × Rn → Rn is
continuous in t locally Lipschitz in x uniformly in t. Let α > 0 and r ≥ 0
and define

B(r) = {x ∈ Rn| ‖x‖ ≤ r}.
Suppose that R ⊂ Rn. We first give the definition of uniform exponential
convergence of (1) towards B(r) with rate α and region of attraction R.

Definition 1. System (1) is uniformly exponentially convergent to B(r)
with rate α > 0 and region of attraction R, if there exists a real scalar
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β ≥ 0 such that, if
x : [t0,∞)→ Rn

is any solution of (1) with x(t0) ∈ R, then

‖x(t)‖ ≤ r + β‖x(t0)‖ exp[−α(t− t0)], ∀t ≥ t0.

Definition 2. System (1) is globally uniformly exponentially convergent
to B(r) if it is uniformly exponentially convergent with Rn as a region of
attraction.

We recall now a sufficient condition to assure uniform exponential con-
vergence.

Theorem 1 ([4]). Consider system (1). Suppose that there exist a C1 func-
tion V : Rn → R and real numbers α, λ1, λ2, V1, V2, with

0 < α, λ1, λ2 <∞

and
0 ≤ V1 < V2 ≤ ∞

such that the following inequalities hold for all t ∈ R+

λ1‖x‖2 ≤ V (x) ≤ λ2‖x‖2

for all x ∈ Rn and

DV (x)F (t, x) ≤ −2α(V (x)− V1)

for all x which satisfy V1 < V (x) < V2. Then, letting

r :=
(
V1

λ1

)1/2

,

system (1) is uniformly exponentially convergent to B(r) with rate α and
region of attraction

R = {x ∈ Rn| V (x) ≤ V2}.

3. Main result

Throughout this paper, we deal with uncertain dynamical systems de-
scribed by

:
x = f(x) + g(x)u+ E(t, x, u) (2)

where t ∈ R+ is the time, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input and f : Rn → Rn, g : Rn → Rn×m are known functions. The function
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E : R+×Rn×Rm → Rn represents uncertainties in the plant. The nominal
system corresponding to system (2) is given by

:
x = f(x) + g(x)u. (3)

The control u is subject to the constraint

‖u‖ ≤ ρ̄ (4)

where ρ̄ is prescribed. Our aim is to design a state controller satisfying (4)
such that system (2) is uniformly convergent towards a small neighborhood
of the origin. We consider the following assumptions pertaining to system
(2).

(A1) There exists a function h such that

E(t, x, u) = g(x)h(t, x, u).

(A2) There exist nonnegative real scalars k1, k2, with k2 < 1, such that

‖h(t, x, u)‖ ≤ k1 + k2‖u‖
for all t ∈ R+, x ∈ Rn, u ∈ Rm.

(A3) The numbers k1 and k2 satisfy

k1

1− k2
< ρ̄.

We will consider the problem of choosing u subject to the controller con-
straint (4) such that, for all uncertainties satisfying (A1), (A2) and (A3),
system (2) is uniformly convergent to an arbitrary small neighborhood of
the origin. It is worth noting that in literature assumption (A1) is referred
to as the “matching condition”.

3.1. Unconstrained controllers.
Let α > 0. We will consider, in this section, the problem of choosing u

so that, for all uncertainties satisfying (A1) and (A2), system (2) is globally
uniformly exponentially convergent to a given ball B(r) with rate α. We
suppose that the assumption below is fulfilled.

(A4) There exists a C1 function V : Rn → R which satisfies

2αV (x) + LfV (x)− LgV (x)(LgV (x))T ≤ 0 (5)

where LfV denotes the Lie derivative of V along f . Moreover, there
exist positive constants λ1, λ2 and λ3 such that

λ1‖x‖2 ≤ V (x) ≤ λ2‖x‖2, (6)

‖DV (x)‖ ≤ λ3‖x‖ (7)

for all x ∈ Rn.
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For any ε > 0, the proposed controller is given by

u(x) = −(1− k2)−1(LgV (x))T − ρs(ε−1(LgV (x))T ) (8)

where V is the Lyapunov function given by assumption (A4),

ρ = (1− k2)−1k1

and the function s is given by

s(y) = (1 + ‖y‖)−1y.

We have the following result.

Theorem 2. Consider an uncertain system described by (2) satisfying as-
sumptions (A1), (A2), (A3) and (A4), and subject to the control given by (8).
Then the resulting closed loop system is globally exponentially convergent to
B(rε) with rate α where

rε =
(
εk1

2αλ1

)1/2

.

Proof. We will use the function V as a Lyapunov function candidate for
the closed loop system. Its derivative along the trajectories of (2) is given
by

:
V (t) = DV (x) (f(x) + g(x)u+ E(t, x, u))

= LfV (x) + LgV (x)u+DV (x)E(t, x, u).

Taking into account assumptions (A1) and (A2) we have
:
V (t) = LfV (x) + LgV (x)u+ LgV (x)h(t, x, u)

≤ LfV (x) + LgV (x)u+ ‖LgV (x)‖‖h(t, x, u)‖
≤ LfV (x) + LgV (x)u+ ‖LgV (x)‖(k1 + k2‖u‖).

Using (8) it follows that
:
V (t) ≤LfV (x)− (1− k2)−1‖LgV (x)‖2

− ρLgV (x)s(ε−1(LgV (x))T ) + k1‖LgV (x)‖
+ k2‖LgV (x)‖

(
(1− k2)−1‖LgV (x)‖+ ρ‖s(ε−1(LgV (x))T )‖

)
≤LfV (x)− (1− k2)−1‖LgV (x)‖2 − ρ ε−1‖LgV (x)‖2

1 + ε−1‖LgV (x)‖

+ k1‖LgV (x)‖+ k2(1− k2)−1‖LgV (x)‖2 + k2ρ
ε−1‖LgV (x)‖2

1 + ε−1‖LgV (x)‖

≤LfV (x)− ‖LgV (x)‖2 + k1‖LgV (x)‖ − (1− k2)ρ
ε−1‖LgV (x)‖2

1 + ε−1‖LgV (x)‖
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=LfV (x)− ‖LgV (x)‖2 + k1‖LgV (x)‖ − k1
ε−1‖LgV (x)‖2

1 + ε−1‖LgV (x)‖

=LfV (x)− ‖LgV (x)‖2 +
k1‖LgV (x)‖

1 + ε−1‖LgV (x)‖
≤LfV (x)− ‖LgV (x)‖2 + k1ε.

Now, using (5), we have

LfV (x) ≤ −2αV (x) + ‖LgV (x)‖2.

So, we obtain the following upper bound on
:
V

:
V ≤ −2α

(
V − k1ε

2α

)
.

Moreover V satisfies (6), so we can use Theorem 1, with

V1 =
k1ε

2α
to conclude.

Remark 1. As in [1]–[5], [13], [15], the controller (8) consists of two parts.
The first one,

u1(x) = −(LgV (x))T ,
stabilizes the nominal system and the second one,

u2(x) = −k2(1− k2)−1(LgV (x))T − ρs(ε−1(LgV (x))T ),

is used to compensate for the system uncertainties and render the uncertain
system globally uniformly exponentially convergent to the ball B(rε).

Remark 2. In [4], the nominal system is linear and it is supposed to be
stabilized by a linear feedback of the states, where the control gains are
obtained by solving a Riccati equation. For system (3), the optimal control
is given by (see [9], [12]):

u∗(x) = −1
2
R−1(x)LgV ∗(x)T

where V is the solution to the Hamilton-Jacobi-Bellman equation:

LfV
∗(x) + l(x) − 1

4
LgV

∗(x)R−1(x)(LgV ∗(x))T = 0, V ∗(0) = 0 (9)

where l(x) ≥ 0 and R(x) > 0 for all x. If there exists a C1-function V ∗ that
satisfies (6) and that is a solution to (9) for R > 0 and l(x) = 8αλ2R‖x‖2,
then V = (1/4)R−1V ∗ or V = (1/2)(R−1 + 1)V ∗ (as in [4] for the linear
case) satisfies (5).



BOUNDED CONTROLLERS FOR UNCERTAIN NONLINEAR SYSTEMS 245

3.2. Constrained controllers.
It is clear that, controller (8) does not satisfy (4). In this subsection, We

will consider the problem of choosing u subject to the constraint (4) such
that, there is a region of attraction R from which all solutions of (2) are
uniformly exponentially convergent to a given ball B(r) with rate α. We
suppose that system (2) satisfies the following assumption.

(A5) g is a globally Lipschitz function with a Lipschitz constant L.

The proposed controllers are given by

ū(x) = −ρ̃ sat
(
ρ̃−1(1− k2)−1(LgV (x))T

)
− ρs

(
ε−1(LgV (x))T

)
(10)

where the saturation function is given by

sat(y) =

{
y if ‖y‖ ≤ 1
‖y‖−1y if ‖y‖ > 1.

ε is any positive real scalar which satisfies

ε <
α(1− k2)ρ̃λ1

k1λ3L

and ρ̃ = ρ̄− ρ.
Now we can state the following result.

Theorem 3. Under assumptions (A1), (A2), (A3), (A4) and (A5) the
closed loop system (2)–(10) is uniformly exponentially convergent to B(rε)
with rate α and region of attraction R where

R =
{
x ∈ Rn| V (x) ≤ (1− k2)ρ̃λ1

Lλ3

}
.

Proof. It is clear that if

‖LgV (x)‖ ≤ (1− k2)ρ̃

we have
ū(x) = u(x).

Moreover, using assumption (A5) and equation (7), we obtain

‖LgV (x)‖ ≤ ‖DV (x)‖‖g(x)‖
≤ λ3L‖x‖2

≤ λ3L

λ1
V (x).

So, whenever

V (x) ≤ (1− k2)ρ̃λ1

Lλ3
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we have
‖LgV (x)‖ ≤ (1− k2)ρ̃

and thus
ū(x) = u(x).

We can now proceed as in the proof of Theorem 2. We show that the
hypotheses of Theorem 1 are satisfied with

V1 =
k1ε

α
and

V2 =
(1− k2)ρ̃λ1

λ2L
.

It is worth noting that if we consider as in [4] a class of uncertain systems
with linear nominal part, assumption (A5) is not satisfied. However, such a
class of systems will satisfy the assumption below.

(A′5) g is globally bounded by a positive constant M .

We consider controller (10) where ε is any positive real scalar which satisfies

ε <
α(1− k2)2ρ̃2λ1

k1λ2
3M

2 .

We may also state the following result.

Theorem 4. Under assumptions (A1), (A2), (A3), (A4) and (A′5) the
closed-loop system (2)–(10) is uniformly exponentially convergent to B(rε)
with rate α and region of attraction R where

R =
{
x ∈ Rn| V (x) ≤ (1− k2)2ρ̃2λ1

M2λ2
3

}
.

Proof. Proceeding as in the proof of Theorem 3, we note that, on the one
hand, if

‖LgV (x)‖ ≤ (1− k2)ρ̃
we have

ū(x) = u(x).
On the other hand, using assumption (A′5) and equations (6) and (7) we
have

‖LgV (x)‖2 ≤‖DV (x)‖2‖g(x)‖2

≤λ2
3M

2‖x‖2

≤λ
2
3M

2

λ1
V (x).
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Whenever

V (x) ≤ (1− k2)2ρ̃2λ1

M2λ2
3

we have
‖LgV (x)‖ ≤ (1− k2)ρ̃.

And so we can deduce the result by applying Theorem 1, with

V1 =
k1ε

α

and

V2 =
(1− k2)2ρ̃2λ1

M2λ2
3

.

3.3. Illustrative example.
Consider the following example:

:
x1 =x2

1x2 + u+ q(t)
:
x2 =− x3

1 + x1

√
1 + sin2 x2 + (u+ q(t))

√
1 + sin2 x2

(11)

where x = (x1, x2)T ∈ R2 and q stands for an unknown bounded function,
that is, there exists q0 > 0 such that |q(t)| ≤ q0, ∀t ≥ 0. It is easy to see
that system (11) is under form (2) with

f(x) =
[

x2
1x2

−x3
1 + x1

√
1 + sin2 x2

]
, g(x) =

[
1√

1 + sin2 x2

]
.

Suppose that the control u is subject to the constraint (4) with q0 < ρ̄.
Therefore assumptions (A1), (A2) and (A3) are satisfied. Let α = 1/2 and
V (x) = (1/2)x2

1 + (1/2)x2
2.

Lf (x) =x1x2

√
1 + sin2 x2

Lg(x) =x1 + x2

√
1 + sin2 x2.

So

2αV (x) + LfV (x)− (LgV (x))2 =− 1
2

(
x1 + x2

√
1 + sin2 x2

)2

− 1
2
x2 sin2 x2

≤0.

Hence, V is a suitable Lyapunov function which satisfies assumption (A4)
with λ1 = λ2 = 1/2 and λ3 = 1. Moreover, ‖g(x)‖ =

√
2 + sin2 x2 ≤

√
3,
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thus, assumption (A′5) is assured with M =
√

3. We can now use Theorem
4 to state that a controller given by (10) with

ε <
(ρ− q0)2

12q0

yields exponential convergence to B(rε).

Conclusion. Throughout this paper, we have proposed continuous state
feedback controllers for a class of uncertain systems that assure global expo-
nential convergence of the solutions towards a neighborhood of the origin.
By saturating these states feedback functions outside a compact region, we
get bounded state feedback controllers and we show that there is a region
of attraction from which solutions of the closed-loop system are uniformly
exponentially convergent towards an arbitrary small neighborhood of the
origin.
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[14] Walcott, B. L., Żak, S. H., State observation of nonlinear uncertain dynamical sys-
tems, IEEE Trans. Automat. Control 32(2) (1987), 166–170.

[15] Wu, H., Mizukami, K., Exponential stapbility of a class of nonlinear dynamical sys-
tems with uncertainties, Systems Control Lett. 21 (1993), 307–313.

Amel Benabdallah Mohamed Ali Hammami

Faculty of Sciences of Sfax Faculty of Sciences of Sfax

Department of Mathematics Department of Mathematics

Route Soukra Km 4, B.P. 1171 Route Soukra Km 4, B.P. 1171

3000 Sfax, Tunisia 3000 Sfax, Tunisia

e-mail: Amel.Benabdallah@fss.rnu.tn

e-mail:Mohamed.Hammami@fss.rnu.tn


