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Abstract. Let (Ω,A, P ) be a complete probability space. We show
that the trivial function is the unique L1-solution of the following re-
finement type equation

f(x) =
Z

Ω
|ϕ′x(x, ω)|f(ϕ(x, ω))dP (ω)

for a wide class of the given functions ϕ. This class contains functions
of the form ϕ(x, ω) = α(ω)x−β(ω) with −∞ <

R
Ω log |α(ω)|dP (ω) < 0.

1. Introduction

Throughout this paper, fix a complete probability space (Ω,A, P ) and a
function ϕ : R× Ω→ R satisfying conditions:

ϕ(·, ω) is a diffeomorphism from R onto R for ω ∈ Ω, (1.1)
ϕ(x, ·) is a measurable function for x ∈ R, (1.2)
(l1 ⊗ P )(ϕ−1(B)) = 0 for B ∈ B(R) with l1(B) = 0. (1.3)
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We are interested in L1-solutions f : R → R of the following refinement
type equation

f(x) =
∫

Ω
|ϕ′x(x, ω)|f(ϕ(x, ω))dP (ω). (1.4)

Before we discuss our assumptions notice that if α : Ω → R \ {0} and
β : Ω→ R are measurable functions, then the function ϕ : R×Ω→ R given
by

ϕ(x, ω) = α(ω)x− β(ω) (1.5)

satisfies conditions (1.1)–(1.3). In this case equation (1.4) takes the form

f(x) =
∫

Ω
|α(ω)|f(α(ω)x− β(ω))dP (ω) (1.6)

and contains the discrete refinement equation f(x) =
∑

n∈Z cnf(αx − n)
and the continuous refinement equation f(x) =

∫
R c(y)f(αx − y)dy, which

appear in many areas of pure and applied mathematics (see [4]–[8], [11]–[13],
[22], [23]; cf. [9] where more details can be found).

2. Discussion on assumptions

Conditions (1.1) and (1.2) imply that both functions ϕ and ϕ′x are mea-
surable with respect to the product σ-algebra B(R)⊗A (see [15]; cf. [21]).
Fix a Lebesgue integrable function f : R → R and a set B ∈ B(R). From
(1.3) we see that the set (f ◦ϕ)−1(B) belongs to the completion B(R)⊗A of
B(R)⊗A. Consequently, the function |ϕ′x(f ◦ϕ)| is measurable with respect
to L1 ⊗A, and∫

R×Ω
|ϕ′x(x, ω)f(ϕ(x, ω))|d(l1 ⊗ P )(x, ω) =

∫
Ω

∫
R
|f(y)|dydP (ω)

=
∫
R
|f(y)|dy < +∞.

(We will need integrability of |ϕ′x|(f ◦ ϕ) later.) Since A is complete we
conclude that |ϕ′x(x, ·)|(f ◦ ϕ)(x, ·) is a measurable and integrable function
for almost all x ∈ R and the integral in (1.4) is a Lebesgue measurable and
Lebesgue integrable function of variable x.

Fix two Lebesgue integrable functions f, g : R → R and a set
B ∈ B(R) of Lebesgue measure zero such that f(x) = g(x) =∫

Ω |ϕ
′
x(x, ω)|g(ϕ(x, ω))dP (ω) for x 6∈ B. By (1.3) we have

0 = (l1 ⊗ P )
(
ϕ−1(B)

)
=
∫
R
P
(
ϕ−1(B)x

)
dx.
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Hence there exists a set C of Lebesgue measure zero such that
P (ϕ−1(B)x) = 0 for x 6∈ C. Consequently,

f(x) =
∫

Ω\ϕ−1(B)x
|ϕ′x(x, ω)|g(ϕ(x, ω))dP (ω)

=
∫

Ω
|ϕ′x(x, ω)|f(ϕ(x, ω))dP (ω)

for x 6∈ B ∪ C.
Concluding, we have proved the following fact. If f : R → R is an L1-

function, then the integral in (1.4) is an L1-function of variable x and if a
representative of f satisfies (1.4) for almost all x ∈ R, then f satisfies (1.4)
in L1-sense. Thus the question on L1-solutions of (1.4) is well posed.

It is clear that the set of all L1-solutions of (1.4) is a vector subspace of
L1.

3. Main results

Fix x0 ∈ R and put Ω1 = {ω ∈ Ω: ϕ′x(x0, ω) > 0}. From (1.1) it follows
that Ω1 does not depend on the choice of x0 ∈ R.

The following proposition is a useful tool for studying the existence of
L1-solutions of (1.4).

Proposition 3.1. Equation (1.4) has a non-trivial L1-solution if and only
if the equation

F (t) =
∫

Ω1

F (ϕ(t, ω))dP (ω)+
∫

Ω\Ω1

[1−F (ϕ(t, ω))]dP (ω) (3.1)

has an absolutely continuous probability distribution solution.

Proof. Fix a non-trivial L1-solution f of (1.4). Without loss of generality
we can assume that ‖f‖1 = 1. Since

1 = ‖f‖1 ≤
∫
R

∫
Ω
|ϕ′x(x, ω)f(ϕ(x, ω))|dP (ω)dx =

∫
R
|f(x)|dx = 1,

we have |f(x)| =
∫

Ω |ϕ
′
x(x, ω)f(ϕ(x, ω))|dP (ω), which means that |f | is

an L1-solution of (1.4). Putting F (t) =
∫ t
−∞ |f(x)|dx we have defined an

absolutely continuous probability distribution function and

F (t) =
∫ t

−∞

∫
Ω
|ϕ′x(x, ω)f(ϕ(x, ω))|dP (ω)dx

=
∫

Ω1

∫ ϕ(t,ω)

−∞
|f(y)|dydP (ω) +

∫
Ω\Ω1

∫ +∞

ϕ(t,ω)
|f(y)|dydP (ω)
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=
∫

Ω1

F (ϕ(t, ω))dP (ω) +
∫

Ω\Ω1

[1− F (ϕ(t, ω))]dP (ω).

The converse implication follows from the above calculation.

In the proof of our first result we will iterate functions from R×Ω to R.
Having a function ψ : R × Ω → R we define its iterates ψn : R × Ω∞ → R,
for n ∈ N, in the following way

ψ1(x, ω1, ω2, . . . ) = ψ(x, ω1),

ψn+1(x, ω1, ω2, . . . ) = ψ(ψn(x, ω1, ω2, . . . ), ωn+1).

This definition of iterates were introduced independently in [3] and [14], and
then studied also in [1], [17] and [20]. It turns out that such iterates are
useful for instance in solving functional equations (see [2], [16], [18]).

Theorem 3.2. Assume that |ϕ(x, ω)−ϕ(y, ω)| ≤ L(ω)|x− y| for x, y ∈ R,
ω ∈ Ω with a measurable function L : Ω → (0,+∞) such that −∞ <∫

Ω logL(ω)dP (ω) < 0. If F : R → R is an uniformly continuous and
bounded solution of (3.1) then F is constant.

Proof. Fix a uniformly continuous solution F : R → [−M,M ] of (3.1),
x0, y0 ∈ R, ε > 0 and choose a δ > 0 such that

|F (x)− F (y)| ≤ ε for x, y ∈ R with |x− y| ≤ δ. (3.2)

We first observe that by induction we get

|ϕn(x0, ω)− ϕn(y0, ω)| ≤
n∏
k=1

L(ωk)|x0 − y0|

for n ∈ N, ω ∈ Ω∞. The Kolmogorov strong law of large numbers now gives

lim
n→+∞

(
n∏
k=1

L(ωk)

) 1
n

= exp
(∫

Ω
logL(ω)dP (ω)

)
< 1 a.s.

Hence

lim
n→+∞

n∏
k=1

L(ωk) = 0 a.s.,

and so
lim

n→+∞
|ϕn(x0, ω)− ϕn(y0, ω)| = 0 a.s.

By the Egoroff theorem there are C ∈ A∞ and N ∈ N such that

P∞(Ω∞ \C) ≤ ε and |ϕN (x0, ω)− ϕN (y0, ω)| ≤ δ for ω ∈ C. (3.3)
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From (3.1) we conclude that

|F (x)−F (y)| ≤
∫

Ω
|F (ϕ(x, ω))−F (ϕ(y, ω))|dP (ω) for x, y ∈ R. (3.4)

Since ϕ is measurable with respect to B(R)⊗A, it follows that its iterates
are measurable with respect to B(R) ⊗ A∞ (see [3]). Thus we can iterate
inequality (3.4). This fact jointly with (3.2) and (3.3) leads to

|F (x0)− F (y0)| ≤
∫

Ω∞
|F (ϕN (x0, ω))− F (ϕN (y0, ω))|dP∞(ω)

≤
∫
C
|F (ϕN (x0, ω))− F (ϕN (y0, ω))|dP∞(ω)

+ 2M
∫

Ω∞\C
dP∞(ω) ≤ ε+ 2Mε,

which completes the proof.

Note that in the case where P (Ω1) = 1 and ϕ is an affine transforma-
tion given by (1.5) with α > 0 a criterion for nonexistence (existence) of
continuous, bounded and nonconstant solutions of (3.1) has been found in
[10]. Theorem 3.2 extends the nonexistence part of that result both by
considering a more general equation and a wider class of the given function
ϕ. In fact, it concerns uniformly continuous solutions, but we do not need
additional conditions guarantying the convergence of iterates.

From Proposition 3.1 and Theorem 3.2 we get the following result on
L1-solutions of (1.4).

Theorem 3.3. Under the assumptions of Theorem 3.2 the trivial function
is the unique L1-solution of (1.4).

If ϕ has form (1.5), then Theorem 3.3 gives the following result on both
(discrete and continuous) refinement equations.

Corollary 3.4. Assume that α : Ω→ R\{0} and β : Ω→ R are measurable
functions and

−∞ <

∫
Ω

log |α(ω)|dP (ω) < 0. (3.5)

Then the trivial function is the unique L1-solution of (1.6).
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