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1. The variational sum, an introduction

In this introduction, we present the main lines of the new concept of “variational sum”
of maximal monotone operators. The definitions and tools required to make this notion
precise are introduced in the next sections. Let H be a real Hilbert space. For an operator

A : H →→ H, we note:
D(A) := {x ∈ H|Ax 6= ∅ },

the domain of A;

R(A) :=
⋃

x∈H
Ax,

the range of A;

graphA := {(u, v) ∈ H ×H| u ∈ D(A), v ∈ Au }

the graph of A; A−1 the operator defined by

x ∈ A−1y ⇐⇒ y ∈ Ax,
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and A, the operator defined by

graphA := graphA.

Given two operators A,B : H →→ H possibly nonlinear, multivalued, not everywhere

defined, the classical notion of sum is the pointwise sum, that is A + B : H →→ H is the
operator defined by:

D(A+B) = D(A) ∩D(B)

(A +B)x = Ax +Bx.

This is an algebraic notion which, as it has been appearing with more and more evidence,
is not always well adapted to problems arising in mathematical analysis. We restrict our
attention in this paper to the case of maximal monotone operators A and B. Indeed, as
pointed out in the following simple example, although the sum of two maximal monotone
operators is a monotone operator, it may fail to be a maximal monotone operator. Define
the linear operator A by

Au := −u′′ with domain D(A) := H2(IR).

Fix f ∈ L1(IR), such that f ≥ 0, and f |Ω /∈ L2(Ω) 1 for all open set Ω ⊆ IR. Define B
by

Bu := f.u and D(B) := {u ∈ L2(IR)| f.u ∈ L2(IR)}.
A and B are linear self-adjoint operators, and maximal monotone operators in L2(IR).
Since their domains have very little in common, (D(A + B) = D(A) ∩ D(B) reduces to
{0}), A+B is clearly not a maximal monotone operator.

However, as observed by Brézis, the above “pointwise” sum is quite satisfactory when
at least one of the two operators is everywhere defined and Lipschitz continuous. So, a
natural idea is, when dealing with two maximal monotone operators, to regularize them,
then to take the pointwise sum and to pass to the limit. A good candidate for this
approximation procedure is the Yosida approximation. We recall that, for any λ > 0 the
resolvent of index λ of B is defined by

JBλ := (I + λB)−1.

It is a contraction which is everywhere defined. The Yosida approximate of index λ of B

Bλ :=
1

λ
(I − JBλ )

1 As noticed by Lapidus [44], if {rn| n ∈ IN} stands for an enumeration of the rational

numbers and if σ is a nonnegative function which belongs to L2([0, 1]) and is non integrable

near the origin, then, f(x) :=
∑∞

n=1

1

n2
τ(x− rn), where

τ(y) :=
{
σ(|y|) if |y| ≤ 1
0 elsewhere

is in L1(IR) and is not in L2(Ω) for all open set Ω in IR.
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is everywhere defined and Lipschitz continuous (with Lipschitz contant 1/λ ). So, for any
λ ≥ 0, µ ≥ 0, such that λ + µ 6= 0, we consider the pointwise sum Aλ + Bµ, where A0

(respectively B0) denotes A (respectively B). Note that since λ + µ 6= 0 , at least one
of the two operators Aλ, Bµ is Lipschitz continuous and the pointwise sum Aλ + Bµ is

maximal monotone according to Brézis [29; Lemma 2.4]. So it is natural to address the
general question:

Does the filtered family {Aλ +Bµ| (λ, µ) ∈ IR2
+, λ+µ 6= 0} graph-converges as λ→ 0 and

µ→ 0 ?

At this point, a few words are necessary in order to explain what is graph-convergence.
It is nothing but the topological set-convergence of the graphs of the operators in the
product space H × H equipped with the product topology. This has been proved to
be the right concept for the convergence of sequences of maximal monotone operators.
Indeed, it has been shown to be equivalent to the pointwise convergence of the resolvents
of the operators (cf. H. Brézis, Ph. Benilan, H. Brézis and A. Pazy, H. Attouch). Note
that the Yosida approximation Bλ of an operator B graph-converges to B as λ goes to
zero which justifies our convention B0 = B (the pointwise convergence only provides, for
any x in D(B), the element of minimal norm of Bx). So, we are led to the following
definition: In the sequel we note F the filter of all the pointed neighbourhoods of the

origin in the set I:= {(λ, µ) ∈ IR2|λ ≥ 0, µ ≥ 0, λ+ µ 6= 0} and lim
F

for lim
λ→0,µ→0
λ+µ 6=0
λ≥0,µ≥0

.

The sum (see section 4) of two maximal monotone operators A and B is defined as

A+
v
B := lim inf

F
(Aλ +Bµ),

where the limit inferior is taken in the sense of Kuratowski-Painlevé, when we identify
the operators with their graphs. The interesting case is when A+

v
B is still a maximal

monotone operator, in which case the limit inferior is in fact a limit. This is a situation
which is considered in sections 4, 5, 6. The graph-convergence A+

v
B = lim

F
(Aλ+Bµ) can

be equivalently formulated in terms of resolvents: for any y ∈ H, the family {uλ,µ| (λ, µ) ∈
I } of solutions of

uλ,µ + Aλuλ,µ +Bµuλ,µ 3 y
converges with respect to the filter F to the solution u of

u+ (A+
v
B)u 3 y.

When the pointwise sum A+B is a maximal monotone operator, then, by an argument ex-
tending the Brézis-Crandall-Pazy theory, the two above notions (classical and variational

sum) coincide. More generally, as proved in section 6, when the graph-closure A+B of
A+B is maximal monotone, then lim

F
(Aλ+Bµ) exists and we have the following equality:

A+
v
B = A+B.

The case of subdifferential operators, which is completely understood, shows that the
variational sum is quite an involved concept, which, in general, cannot be reduced to
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elementary operations like pointwise sum and closure operation. Indeed, as shown in
section 7, if A = ∂f and B = ∂g then

∂f +
v
∂g = ∂(f + g).

We give a formula for ∂f +
v
∂g which makes clear that the variational sum involves ∂f and

∂g not only at the point x but also at nearby points. Similar type results can be obtained
in the case of subdifferentials of closed convex-concave saddle functions. We conclude the
paper by giving the example of the Schrödinger equations for which our theory applies.
Recent contributions on “generalized” sum of maximal monotone operators have been
obtained by several authors in different areas: let us mention M. Lapidus in the study
of the Feynman integral via the Trotter formula [44], Ph. Clément and P. Egberts in
connection with semilinear elliptic systems [37], F. Kubo in the study of electrical networks
via the parallel sum of operarors [43], H. Attouch in the variational averaging of operators
and applications to stochastic homogenization of composite media . . .

2. Set-convergence, Graph-convergence, Epigraphical convergence

We first recall some basic definitions and results on set-convergences (in the Kuratowski-
Painlevé, Mosco and Attouch-Wets sense), just enough in order to make the paper self-
contained. The interested reader may find a fairly complete account on these notions in
[3], [17], [24], [64] and the preface of the Marseille Meeting on “Convergences en Analyse
Multivoque et Unilatérale” [11]. When applying these concepts to operators which are
identified with their graphs, we obtain the graph-convergence of sequences of operators.
In a parallel way, when real extended-valued functions are identified with their epigraphs,
we obtain the epi-convergence of sequences of functions.

In the sequel we will write “
s→”, “

w→” and “
τ→”, to denote respectively, the strong (norm)

convergence, the weak convergence and the convergence with respect to a topology τ .

2.1. Set-convergence

Definition 2.1. Let (X, τ) be a first countable topological space. Given a sequence
{Cn ⊆ X|n ∈ IN } of subsets of X, the τ -lower limit of the sequence {Cn|n ∈ IN },
denoted by τ − lim inf

n→∞
Cn is the closed subset of X defined by

τ − lim inf
n→∞

Cn := {x ∈ X| ∃(xn)n∈IN, ∀n ∈ IN xn ∈ Cn andxn
τ→ x }. (2.1)

The τ -upper limit of the sequence {Cn|n ∈ IN}, denoted by τ − lim sup
n→∞

Cn is the closed

subset of X defined by

τ − lim sup
n→∞

Cn :=

{x ∈ X| ∃(nk)k∈IN, ∃{xk}k∈IN, ∀k ∈ IN xk ∈ Cnk and xk
τ→ x }.

(2.2)

The sequence {Cn|n ∈ IN} is declared Kuratowski-Painlevé convergent for the topology
τ , or briefly τ -convergent, if the following equality holds :

τ − lim sup
n→∞

Cn = τ − lim inf
n→∞

Cn.
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Its limit, denoted by C = τ -lim Cn, is the closed subset of X equal to this common value

C = τ − lim inf
n→∞

Cn = τ − lim sup
n→∞

Cn = τ − lim
n→∞

Cn.

When X is a normed linear space, the sequential weak upper limit of a sequence {Cn|n ∈
IN} of subsets of X is defined by

seq− w− lim sup
n→∞

Cn := {x ∈ X| ∃(nk)k∈IN, ∃(xk)k∈IN, ∀k ∈ IN, xk ∈ Cnk and xk
w→ x}.

Definition 2.2. A sequence {Cn|n ∈ IN} of subsets of a normed linear space X is said
to Mosco converge to a set C, and we write C = M− lim

n→∞
Cn , if :

seq − w − lim sup
n→∞

Cn ⊆ C ⊆ s− lim inf
n→∞

Cn.

Equivalently, C = M- lim
n→∞

Cn , if and only if both of the following conditions hold:

(i) for each x ∈ C, there exists a sequence {xn|n ∈ IN} norm converging to x such that
xn ∈ Cn for each n ∈ IN ;

(ii) for each subsequence {nk| k ∈ IN} and {xk| k ∈ IN} such that xk ∈ Cnk , the weak

convergence of {xk| k ∈ IN} to x ∈ C forces x to belong to C.

It is an immediate consequence of these definitions that the Mosco convergence implies the
Kuratowski-Painlevé convergence and that the two notions coincide whenever X is finite
dimensional. It turns out that the Mosco-convergence is a basic concept when considering
sequences of convex sets in reflexive Banach spaces. For instance, the mapping which
assigns to every f its Fenchel conjugate f ∗ is an homeomorphism from the set of convex
lower semicontinuous functions on X to the set of convex lower semicontinuous functions
on X∗ ([47], [11], [25]).
Let us now turn our attention to the concept of ρ-Hausdorff distance which has been
recently introduced by Attouch-Wets [14] and further developed by Beer [24], Azé-Penot
[21], Beer-Lucchetti [26]. Let X be a normed space with norm ||.|| and unit ball B. For
any C,D ⊆ X, the excess of C on D is defined as

e(C,D) := sup
x∈C

d(x,D),

where d(x, C) := inf
x∈C
||x− y|| is the distance from x to C. We adopt the convention that

if C = ∅, then d(x, C) =∞ and e(C,D) = 0.

For any ρ > 0, the ρ-Hausdorff distance between C and D is given by :

hausρ(C,D) := max{e(Cρ, D), e(Dρ, C)}

where Cρ (resp.Dρ) is defined by Cρ = C ∩ ρB (resp. Dρ = D ∩ ρB).

Definition 2.3. A sequence {Cn ⊆ X|n ∈ IN} of subsets of X is said to converge with
respect to the ρ-Hausdorff distances to a set C, if for each ρ > 0,

lim
n→∞

hausρ(Cn, C) = 0.
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It can be checked, when restricting our attention to convex sets, that lim
n→∞

hausρ(Cn, C) =

0 forces C = M− lim
n→∞

Cn (see [14]).

2.2. Graph-convergence of operators

Definition 2.4. Let (X, τ) and (Y, β) be two first countable topological spaces. A

sequence {An|n ∈ IN } of operators An : X →→ Y , is said to be τ × β−graph convergent

to an operator A : X →→ Y if the sequence of sets {graphAn|n ∈ IN }, τ × β-converges in
X × Y , in the Kuratowski-Painlevé sense, to the set graphA.

We then write
τ × β − graph− lim

n→∞
An = A.

In other words, {An|n ∈ IN} τ × β- graph-converges to A if and only if the following
inclusions hold :

τ × β − lim sup
n→∞

graphAn ⊆ graphA ⊆ τ × β − lim inf
n→∞

graphAn,

with

τ × β − lim inf
n→∞

graphAn =

{(x, y) ∈ X × Y | ∃ (xn, yn), ∀n ∈ IN, yn ∈ An(xn), xn
τ→ x, yn

β→ y }, (2.3)

τ × β − lim sup
n→∞

graphAn =

{(x, y) ∈ X × Y | ∃ (nk), ∃(xk, yk), ∀k ∈ IN, yk ∈ Ank(xk), xk
τ→ x, yk

β→ y }. (2.4)

When X and Y are normed spaces and τ = sX and β = sY are respectively the strong
topologies on X and Y , which is often the case of interest, we shall adopt a simplified
terminology and notation: we shall write briefly graph- lim

n→∞
An = A or even simpler

A =G− lim
n→∞

An in order to denote the sX × sY−graph-convergence of the sequence

{An|n ∈ IN } to A. We shall say that the sequence of operators {An|n ∈ IN } graph-
converges or briefly G-converges to A.
We may equally define, for any ρ ≥ 0, the ρ-Hausdorff graph-distance between two oper-

ators A1 and A2 : X →→ Y :

hausρ(A1, A2) := hausρ(graphA1, graphA2)

where X and Y are two normed spaces and X×Y is equipped with the box norm defined
by |||(x,y)||| = max{||x||,||y||}.

Definition 2.5. A sequence of operators {An : X →→ Y |n ∈ IN } converges with

respect to the ρ-Hausdorff distances to an operator A : X →→ Y , and we write graph-dist-
lim
n→∞

An = A, if for each ρ > 0,

lim
n→∞

hausρ(An, A) = 0.
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Note that this notion is independant of the choice of the product norm on X × Y.

2.3. Epigraphical convergence of functions

Definition 2.6. Let {f, fn| X → IR, n ∈ IN} be a sequence of extended real-valued
functions. If the sequence {epi fn|n ∈ IN } Kuratowski-Painlevé converges to epif in
X× IR for the product topology, then we say that the sequence {fn|n ∈ IN } epiconverges
to f and we write epi- lim

n→∞
fn = f.

Definition 2.7. Let X be a normed space and {f, fn|n ∈ IN } be a sequence of functions
from X into IR∪{+∞}. We say that f is the Mosco-epi-limit of the sequence {fn|n ∈ IN },
and we write f = M− epi lim

n→∞
fn, if the sequence {epi fn|n ∈ IN } Mosco converges to

epi f .

This is equivalent to say that, for any x ∈ X, the two following statements hold:

(i) for any {xn} w→ x then f(x) ≤ lim inf
n→∞

fn(xn)

and

(ii) there exists {xn} s→ x such that lim sup
n→∞

fn(xn) ≤ f(x).

Definition 2.8. For any ρ ≥ 0, the ρ-Hausdorff epi-distance between two extended

real-valued functions f, g : X → IR is defined by :

hausρ(f, g) := hausρ(epif, epig)

where the unit ball of X × IR is the set B := BX × IR = {(x, α) : ||x|| ≤ 1, |α| ≤ 1}.
Note that we may equally consider any equivalent norm on the product space X × IR. It
turns out that, for practical purpose and computation, the box norm is more convenient.
Let us now state some basic facts about the topology induced by the pseudo-distances
{hausρ| ρ > 0} on the space of extended real-valued functions.

Definition 2.9. Let IR
X

be the space of extended real-valued functions defined on

the normed linear space X. The topology on IR
X

generated by the pseudo-distances
{hausρ| ρ > 0} is called the epi-distance topology or the bounded Hausdorff topology or

the Attouch-Wets topology. In other words, for a sequence {fn|n ∈ IN}:

f = epi− dist lim
n→∞

fn ⇔ lim
n→∞

hausρ(fn, f) = 0 for all ρ > 0.

Proposition 2.10. [14, 24] When X = IRm is a finite dimensional space, the epi-
distance topology coincide with the topology of the epi-convergence. When X is a Banach
space and {f, fn : X → IR∪{+∞}, n ∈ IN} is a sequence of lower semicontinuous convex
proper functions, the following implication holds:

lim
n→∞

hausρ(f, fn) = 0 for all ρ sufficiently large, implies that f = M− epi lim
n→∞

fn.
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3. Graph-convergence of maximal monotone operators and Yosida
approximation

From now on, unless specified, we work in a Hilbert space setting. Let us denote by H
a real Hilbert space and || · || the norm generated by the scalar product 〈·, ·〉. Given an

operator A : H →→ H, possibly multivalued and not everywhere defined, it is identified

with its graph. Let us first review some basic facts about such operators. A : H →→ H is
monotone, if for each x1 ∈ D(A), x2 ∈ D(A) and y1 ∈ Ax1, y2 ∈ Ax2 we have

〈y2 − y1, x2 − x1〉 ≥ 0.

It is said to be maximal monotone if its graph is maximal for the inclusion among all
monotone operators. From Minty’s Theorem, this maximality property is equivalent to
say that the range of the operator I + A is the whole space, that is R(I + A) = H. The
resolvent of index λ > 0 of the maximal monotone operator A is the operator

JAλ := (I + λA)−1.

It is a contraction which is everywhere defined. The resolvents are tied by the so-called
resolvent equation:

for any λ > 0, µ > 0, JAλ x = JAµ

[µ
λ
x + (1− µ

λ
)JAλ x

]
. (3.5)

When A = ∂f (the subdifferential of a lower semicontinuous convex proper function

f : H → IR ∪ {+∞}) we will write Jfλ instead of J∂fλ . The Yosida approximate of index

λ > 0 of A, Aλ := 1
λ(I −Jλ) is a Lipschitz continuous monotone operator (with Lipschitz

constant 1/λ) which is everywhere defined. The following relation will be quite useful in
the sequel:

for any x ∈ H, for any λ > 0, Aλx ∈ A(JAλ x). (3.6)

(see [29] for further details). For any x belonging toD(A), the filtered family {Aλx|λ→ 0}
norm-converges to A0x, the unique element of minimal norm of the nonempty closed
convex subset Ax of H.
Let us now review a few facts about the graph-convergence and the graph-distance con-
vergence of maximal monotone operators (see [3]):

Proposition 3.1.
(i) The class of maximal monotone operators on a finite dimensional space H is closed

with respect to the Kuratowski-Painlevé set-convergence, the space H×H being equip-
ped with the product topology; in other words, if a sequence {An|n ∈ IN } of maximal
monotone operators is such that

s× s− lim
n→∞

graphAn = A,

then A is the graph of a maximal monotone operator and graph- lim
n→∞

An = A.

(ii) For any sequence {A,An|n ∈ IN } of maximal monotone operators on a general Hilbert
space H the following equivalence holds:

graph− lim
n→∞

An = A⇔ graphA ⊆ s× s− lim inf
n→∞

graphAn.
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In other words, the sequence {An|n ∈ IN } graph-converges to A if and only if, for
any (x, y) ∈ graphA, there exists a sequence {(xn, yn)|n ∈ IN} such that for all
n ∈ IN yn ∈ An(xn) and {xn|n ∈ IN}, {yn|n ∈ IN} norm-converge respectively to x
and y.

(iii) For any sequence {A,An|n ∈ IN } of maximal monotone operators the following im-
plications hold:





graph− lim
n→∞

An = A

⇒ s× w − lim sup
n→∞

graphAn ⊆ graphA

⇒ w × s− lim sup
n→∞

graphAn ⊆ graphA.

In other words, for any strictly increasing sequence n1 < n2 < n3 < ... and any sequence
{(xk, yk)| k ∈ IN} such that for all k ∈ IN yk ∈ Ank(xk), the strong convergence of

{xk| k ∈ IN} to x and the weak convergence of {yk| k ∈ IN} to y force (x, y) to belong to
graphA. The same property holds by exchanging strong and weak convergences.

This last property is related to the fact that a maximal monotone operator is closed in
s−H × w −H and in w −H × s−H.
Let us now describe the graph convergence of sequences of maximal monotone operators
with the help of their resolvents [3]:

Proposition 3.2. For any sequence {A,An|n ∈ IN } of maximal monotone operators
the following equivalences hold:

(i) graph− lim
n→∞

An = A;

(ii) for any λ > 0, for any x ∈ H, the sequence JAnλ x norm-converges to JAλ x as n→∞;

(iii) for some λ0 > 0, for any x ∈ H, the sequence JAnλ0
x norm-converges to JAλ0

x as
n→∞.

So, the graph-convergence of maximal monotone operators is equivalent to the pointwise
convergence of their resolvents, which is clearly equivalent to the pointwise convergence of

their Yosida approximates2. Let us now examine the graph-distance convergence of such
operators and show that it is equivalent to the uniform convergence on bounded subsets
of H of the resolvents. To that end, following Attouch & Wets [14] let us introduce a
second type of distance between maximal monotone operators expressed with the help of
the Yosida approximates. For all λ > 0, ρ ≥ 0,

dλ,ρ(A,B) := sup
||x||≤ρ

||JAλ x− JBλ x|| = λ. sup
||x||≤ρ

||Aλx−Bλx||,

2 Note that the class of maximal monotone operators on a general Hilbert space H is
closed with respect to the topology of the pointwise convergence of the resolvents, see
[3]. Compare with Proposition 3.2 (i), where a similar property holds with respect to the
Kuratowski-Painlevé convergence, but with dim H < +∞ !
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see also B. Lemaire [45], P. Tossings [68], H. Attouch & A. Moudafi & H. Riahi [10], A.
Moudafi [49].

Proposition 3.3. [10; Prop 1.1] Let A and B be two maximal monotone operators.
Then for every λ > 0 and ρ ≥ 0,

hausρ(A,B) ≤ max(1,
1

λ
).dλ,ρ′(A,B)

where
ρ′ := (1 + λ)ρ.

By taking λ = 1, we have hausρ(A,B) ≤ d1,2ρ(A,B).

Proposition 3.4. [10; Prop 1.2] Let A and B be two maximal monotone operators.
Then, for every λ > 0, ρ ≥ 0

dλ,ρ(A,B) ≤ (2 + λ)hausρ′′(A,B)

where

ρ′′ = max

{
ρ + ||JAλ 0||, 1

λ
(ρ + ||JAλ 0||)

}
.

Taking λ = 1, d1,ρ(A,B) ≤ 3 hausρ+||JA1 (0)||(A,B).

Proposition 3.5. [10; Prop 1.3] Let B,B′ be two maximal monotone operators. Then
for any λ > 0, ρ ≥ 0

dλ,ρ(B,B
′
) ≤ (1 + |1− λ|)d1,ρ

′ (B,B
′
)

where,

ρ
′

=
1

inf(1, λ)
(ρ+ |1− λ|.||JB1 0||).

The following result shows that the Yosida approximations Aλ graph-distance converge
to A (and hence graph-converge) as λ goes to zero. This property and the key role played
by this approximation in the definition of the variational sum, justifies our interest for the
graph-distance convergence of sequences of maximal monotone operators.

Proposition 3.6. Let A be a maximal monotone operator. Then, for every ρ > 0, the
following approximation result holds:

lim
λ→0

hausρ(A,Aλ) = 0.

In other words, Aλ converges to A , as λ goes to zero, for the ρ-graph distance. More
precisely, the following estimation holds:

d1,ρ(A,Aλ) ≤ 2λ

λ+ 1
(2ρ + ||J10||).
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4. The variational sum of maximal monotone operators. Defini-
tion.

We denote by I:= {(λ, µ) ∈ IR2|λ ≥ 0, µ ≥ 0, λ+µ 6= 0}. For any (λ, µ) ∈ I, we consider
the pointwise sum Cλ,µ := Aλ + Bµ, where A0 by convention (respectively B0) denotes

A (respectively B). Note that, since λ+ µ 6= 0 , at least one of the two operators Aλ, Bµ
is Lipschitz continuous and therefore Cλ,µ is maximal monotone (c.f [29]). In the sequel,

we denote by F the filter of all the pointed neighbourhoods of the origin in I, and by
graph− lim inf

F
Cλ,µ (respectively graph− lim sup

F
Cλ,µ ) the lower limit (respectively upper

limit) of the family {graphCλ,µ| (λ, µ) ∈ I} along the filter F with respect to the box

topology on H ×H. Recall that

• (x, y) belongs to graph− lim inf
F

Cλ,µ, whenever for every neighbourhood Q of (x, y),

there is F ∈ F such that for (λ, µ) ∈ F , graphCλ,µ ∩Q 6= ∅
while,

• (x, y) belongs to graph−lim sup
F

Cλ,µ, if for every neighbourhood Q of (x, y) and every

F ∈ F , there is (λ, µ) ∈ F such that graphCλ,µ ∩Q 6= ∅.
The filtered family {Cλ,µ| (λ, µ) ∈ I} is declared graph-convergent to C and we note

graph-lim
F
Cλ,µ = C, if

graph− lim sup
F

Cλ,µ = graph− lim inf
F

Cλ,µ = C.

Definition 4.1. The variational sum of two maximal monotone operators A and B is
defined as

A+
v
B := graph− lim inf

F
(Aλ +Bµ).

Since the box topology on H ×H is first countable and the filter F is countably based, it
amounts to say that:

(x, y) ∈ graph (A+
v
B), if and only if, for every sequences {λn|n ∈ IN}, {µn|n ∈ IN} with

λn ≥ 0, µn ≥ 0, λn + µn 6= 0, lim
n→∞

λn = lim
n→∞

µn = 0, there exist sequences {xn|n ∈ IN}
and {yn|n ∈ IN} such that lim

n→+∞
xn = x, lim

n→+∞
yn = y and yn ∈ (Aλn +Bµn)(xn).

Equivalently, in terms of resolvents this means that, for any y ∈ R(I + (A+
v
B)) (in

particular, by Minty’s Theorem whenever A+
v
B is maximal monotone for every y ∈ H),

the family {uλ,µ| (λ, µ) ∈ I} of solutions of

uλ,µ + Aλuλ,µ +Bµuλ,µ 3 y

converges for (λ, µ) ∈ I to the solution u of

u+ (A+
v
B)u 3 y.
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Proposition 4.2. Let A,B be two maximal monotone operators. Then,

(1) If D(A) ∩D(B) 6= ∅ then D(A+
v
B) 6= ∅;

(2) A+
v
B is monotone;

(3) If A+
v
B is maximal monotone, then the family {Aλ+Bµ| (λ, µ) ∈ I} graph-converges

with respect to the filter F ;

(4) A+
v
B = B+

v
A (commutativity).

Proof. (1), (2) and (4) are a direct consequence of the definition. For (1), notice that

Aλx + Bµx → A0x + B0x. Let us prove (3). If A+
v
B is maximal monotone, then by

virtue of Proposition 3.1 part (ii), we have that A+
v
B ⊆ graph− lim inf

F
(Aλ+Bµ) implies

that A+
v
B = graph− lim

F
(Aλ +Bµ).

5. The case A+B maximal monotone: A+B = A+
v
B

In this section, some classical results on the maximal monotonicity of the pointwise sum
of two maximal monotone operators are revisited from the approximation and graph-
convergence point of view. Given two maximal monotone operators A andB, the pointwise
sum A+B is still monotone. From Minty’s Theorem, the maximal monotonicity of A+B
is equivalent to the solvability for any y in H of the equation:

u+ Au+Bu 3 y. (5.7)

The Brézis-Crandall-Pazy approach, which will be our guideline in this paper (even in the
case where A+B is not maximal monotone) consists in solving the approximate equation

uλ + Auλ +Bλuλ 3 y. (5.8)

The equation (5.8) has always a solution because of the maximal monotonicity of the
operator A+Bλ , which follows from the fact that Bλ is everywhere defined and continuous
[29]. So doing, the problem of the maximality of the sum has been converted into a
convergence problem: Under what conditions can one pass to the limit in the equation
(5.8) as λ goes to zero?

Theorem 5.1. [31; Theorem 2.1] The equation

u + Au + Bu 3 y

has a solution if and only if the family { Bλuλ|λ → 0 } remains bounded. When this
condition is satisfied, the family { uλ|λ > 0 } norm-converges to u as λ goes to 0 and the
family {Bλuλ|λ > 0 } norm-converges to the element of minimal norm of the convex set
Bu ∩ (y−u−Au) as λ goes to 0.

We are led to introduce the following definition:
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Definition 5.2. A pair (A,B) of maximal monotone operators A and B satisfies the
Brézis-Crandall-Pazy condition, if for any y in H the family {Bλuλ|λ > 0}, which is
defined by (5.8), remains bounded in H.

We can reformulate the Brézis-Crandall-Pazy theorem as follows:

Proposition 5.3. For any pair (A,B) of maximal monotone operators A and B the
following statements are equivalent:

(i) The pair (A,B) satisfies the Brézis-Crandall-Pazy condition;
(ii) A+B is a maximal monotone operator;
(iii) graph− lim

F
(A +Bµ) = A +B;

(iv) graph− lim
F

(A +Bµ) = graph− lim
F

(Aλ +B) = graph− lim
F

(Aλ +Bµ) = A+B;

and then the following equality holds: A +B = A+
v
B.

This proposition says more than the initial result of Brézis-Crandall-Pazy and we need
Theorem 6.1 below to conclude that graph− lim

λ→0,µ→0
λ>0,µ>0

Aλ +Bµ = A +B.

In view of Proposition 3.6, which states that Aλ converges to A , as λ goes to zero,
for the graph-distance, it is a natural question to know if the convergence (iii) holds
too for the graph-distance. To answer this question, we need to introduce a reinforced
Brézis-Crandall-Pazy condition (see [10; Theorem 3.1] for further details): Denote by
mA,B : H → IR the finite valued function

mA,B(y) := lim sup
λ→0,λ>0

||Bλuλ||.

Definition 5.4. A pair (A,B) of maximal monotone operators A and B satisfies the
uniform Brézis-Crandall-Pazy condition if for any ρ > 0

MA,B(ρ) := sup
||y||≤ρ

mA,B(y) < +∞.

In other words, the bound on the family {Bλuλ|λ > 0 } has to be independant of y when
y remains in a bounded subset of H.

Theorem 5.5. [10] Suppose that a pair (A,B) of maximal monotone operators A and
B satisfies the uniform Brézis-Crandall-Pazy condition. Then

A+B = graph− dist− lim
λ→0

(A+Bλ).

Moreover, the following estimation holds:

d1,ρ(A+B,A+Bλ) ≤ λ

2
MA,B(ρ).

Indeed, in most practical situations where the sum is maximal monotone, the uniform
Brézis-Crandall-Pazy condition is satisfied. Let us illustrate this fact in the case of the
acute angle condition:
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for all v ∈ D(A) and all λ > 0 〈Av,Bλv〉 ≥ 0,

Proposition 5.6. Suppose that A and B are two maximal monotone operators such
that D(A) ∩D(B) 6= ∅ and which satisfy the acute angle condition. Then they verify the
uniform Brézis-Crandall-Pazy condition with

MA,B(ρ) =
[
2(ρ+ ||vo||) + ||ξ||+ ||η||

]1/2
,

where vo ∈ D(A) ∩D(B), ξ ∈ Avo and η ∈ Bvo have been taken arbitrary.

Proof. Let us multiply the equation (5.8) by Bλuλ and use the acute angle condition.
We obtain

||Bλuλ||2 ≤ ||y||+ ||uλ||.
On the other hand, taking an arbitrary point vo in D(A) ∩ D(B) and using the accretivity
of A+ Bλ, we infer

||uλ − vo|| ≤ ||y − (vo + ξ +Bλv0)||.
Hence, ||Bλuλ||2 ≤ 2(||y||+ ||vo||) + ||ξ||+ ||η||.

6. The case A+B maximal monotone: A+
v
B = A+B

Theorem 6.1. Let A and B be two maximal monotone operators such that A+B is
maximal monotone. Given any y ∈ H, let us denote, for each (λ, µ) ∈ I, by uλ,µ the

solution of
uλ,µ + Aλuλ,µ + Bµuλ,µ 3 y. (6.9)

Then, the filtered family {uλ,µ| (λ, µ) ∈ I} converges to the solution u of u+A+B(u) 3 y.

In other words,

graph− lim
F

(Aλ +Bµ) = A+B.

Proof. Take arbitrary v ∈ D(A)∩D(B), ξ ∈ Av and η ∈ Bv. By virtue of (3.6) we have

Bµuλ,µ ∈ B(JBµ uλ,µ),

and from the monotonicity of B we obtain

〈η −Bµuλ,µ, v − JBµ uλ,µ〉 ≥ 0. (6.10)

Similarly we also have

〈ξ − Aλuλ,µ, v − JAλ uλ,µ〉 ≥ 0. (6.11)

Using the relations JBµ uλ,µ = uλ,µ− µ ·Bµuλ,µ and JAλ uλ,µ = uλ,µ− λ ·Aλuλ,µ we rewrite

(6.10) and (6.11), as
〈η − Bµuλ,µ, v − uλ,µ + µBµuλ,µ〉 ≥ 0 (6.12)
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and
〈ξ − Aλuλ,µ, v − uλ,µ + λAλuλ,µ〉 ≥ 0. (6.13)

Then adding (6.12) and (6.13) we derive

〈η + ξ − (Aλuλ,µ +Bµuλ,µ), v − uλ,µ〉

+〈η −Bµuλ,µ, µBµuλ,µ〉+ 〈ξ − Aλuλ,µ, λAλuλ,µ〉 ≥ 0. (6.14)

If we combine (6.9) and (6.14) we obtain:

〈η + ξ + (uλ,µ − y), v − uλ,µ〉

+〈η −Bµuλ,µ, µBµuλ,µ〉+ 〈ξ − Aλuλ,µ, λAλuλ,µ〉 ≥ 0, (6.15)

that is
||uλ,µ||2 + λ||Aλuλ,µ||2 + µ||Bµuλ,µ||2

≤ 〈uλ,µ, y − η − ξ + v〉+ 〈η, µBµuλ,µ, 〉+ 〈ξ, λAλuλ,µ〉+ 〈v, ξ + η − y〉. (6.16)

From (6.16) we obtain the existence of a constant C such that

||uλ,µ|| ≤ C (6.17)

||µ 1
2Bµuλ,µ|| ≤ C (6.18)

and

||λ 1
2Aλuλ,µ|| ≤ C. (6.19)

Let û be a weak limit point in H of the family {uλ,µ| (λ, µ) ∈ I}. Clearly by (6.18) and

(6.19), lim
F
µBµuλ,µ = lim

F
λAλuλ,µ = 0. Hence, on passing to the limit in (6.16), and using

the lower semicontinuity of || · ||2 for the weak topology we obtain

||û||2 ≤ 〈û, y − ξ − η + v〉+ 〈v, ξ + η − y〉,

that is
〈v − û, ξ + η − y + û〉 ≥ 0.

This being true for any ξ + η ∈ (A+B)v, it follows that for any θ ∈ (A+B)(v)

〈v − û, θ − y + û〉 ≥ 0.

From the maximal monotonicity of A+B, we infer y − û ∈ (A+B)(û), that is

û+ A+B(û) 3 y.

Hence, û = JA+B
λ (y) and the whole family {uλ,µ| (λ, µ) ∈ I} weakly converges to this

element. Returning to (6.16) we derive

lim sup
F
||uλ,µ||2 ≤ 〈û, y − ξ − η + v〉+ 〈v, ξ + η − y〉. (6.20)
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This being true for any v ∈ D(A) ∩D(B), by letting v tend to û, we infer

lim sup
F
||uλ,µ||2 ≤ ||û||2. (6.21)

(6.21) yields lim
F
||uλ,µ|| = ||û|| and therefore, the family {uλ,µ| (λ, µ) ∈ I} norm converges

to û = JA+B
λ (y).

To conclude the proof, we need also to consider the two cases Aλ + B and A + Bµ for λ

and µ strictly positive. Indeed, in theses cases the proof works in the same way (c.f Brézis
[29], Clément & Egberts [37]).

7. The case of subdifferentials of convex functions

Let us first recall that for any convex lower semicontinuous function f : H → IR ∪ {∞},

dom f := {x ∈ H| f(x) < +∞}

is called the domain of f and that f is declared proper if dom f 6= ∅. It is well-known
that for any convex lower semicontinuous proper function f : H → IR ∪ {∞} its sub-
differential operator ∂f is a maximal monotone operator (see [60] for further details).
Graph-convergence of sequences of subdifferential operators has been first investigated in
the case of the set-convergence of the corresponding graphs, the set-convergence being
taken in the Kuratowski-Painlevé sense (equality between the topological limsup and lim-
inf), which corresponds to the pointwise convergence of the resolvent operators. Denoting
by “s” the topology of the norm in H and by “s×s “ the product topology on H ×H and
recalling that the Mosco epiconvergence is the set-convergence of the epigraphs both for
the strong and the weak topologies of H × H (see [47], [4]) this result can be stated as
follows (indeed it is formulated below in a slightly more general setting, the space being
only assumed to be reflexive):

Theorem 7.1. [2, 4] Let X be a reflexive Banach space. For any sequence {f, fn:
X → IR ∪ {+∞}|n ∈ IN } of lower semicontinuous convex proper functions, the two
following properties are equivalent :

(i) f = M− epi− lim
n→∞

fn;

(ii) graph ∂f = s× s− lim
n→∞

graph ∂fn and the “normalization condition (NC)”.

The normalization condition comes from the fact that f is determined by ∂f up to an

additive constant and is described below :
{ ∃(x0, x

∗
0) ∈ graph ∂f, ∃(x0n, x

∗
0n) ∈ graph ∂fn for every n ∈ IN

such that
x0n

s→ x0, x
∗
0n

s→ x∗0 and fn(x0n)→ f(x0).

The recent monograph of Aubin and Frankowska [17] gives a convenient access to this re-
sult. The extension of Theorem 7.1 to arbitrary Banach spaces has been recently obtained
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by Attouch & Beer [8] and requires the introduction of the notion of slice convergence for
sequences of convex functions, a notion which has been introduced by G. Beer precisely
to extend the Mosco convergence to general Banach spaces.
We recall that, given X a normed linear space and f a proper extended real-valued function
from X into IR∪{+∞}, the Moreau-Yosida approximation of index λ of f is the function
fλ defined by:

fλ(x) = inf
u∈X
{f(u) +

1

2λ
||x− u||2}. (7.22)

When X is an Hilbert space and f is a convex lower semicontinuous proper function,
then fλ is a continuously differentiable function which derivative is precisely the Yosida
approximation Aλ of the maximal monotone operator A = ∂f (see [29], [13–15]):

(∂f)λ = ∂fλ. (7.23)

We can now state the following result:

Theorem 7.2. Let A = ∂f and B = ∂g be the subdifferential operators of two convex
lower semicontinuous proper functions f and g : H → IR∪ {+∞}. If dom f ∩ dom g 6= ∅,
then the variational sum of ∂f and ∂g is a maximal monotone operator and is equal to
∂(f + g):

∂f +
v
∂g = ∂(f + g).

Equivalently,

graph− lim
F

[(∂f)λ + (∂g)µ] = graph− lim
F
∂(fλ + gµ) = ∂(f + g).

Proof. We first notice that, because of the assumption dom f ∩ dom g 6= ∅, the function
f + g is a convex lower semicontinuous proper function, and its subdifferential operator
∂(f+g) is therefore by Rockafellar’s Theorem a maximal monotone operator. By definition
of the variational sum, we need to prove that lim

F
[(∂f)λ + (∂g)µ] exists. Let us examine

the operator (∂f)λ + (∂g)µ. Since the mappings fλ and gµ (λ > 0, µ > 0) are everywhere

continuous since C1,1, we know by the Moreau-Rockafellar Theorem that ∂fλ + ∂gµ =

∂(fλ + gµ) ((λ, µ) ∈ I). Since by (7.23), (∂f)λ = ∂fλ (respectively (∂g)µ = ∂gµ ) we
derive,

(∂f)λ + (∂g)µ = ∂(fλ + gµ).

Since the filtered family {fλ|λ → 0}, (respectively {gµ|µ→ 0}) monotonically increases

to f , (respectively to g) as λ, (respectively µ) decreases to zero, by [11; Theorem 3.20]
the family {fλ + gµ|λ→ 0, µ→ 0} Mosco-converges to f + g as λ and µ decrease to zero.

We conclude thanks to Theorem 7.1 that limF ∂(fλ + gµ) = ∂(f + g), which yields the
desired result.

In the following result we give a formulation of ∂(f + g) in terms of ∂f and ∂g only
assuming, as in Theorem 7.2, that dom f ∩ dom g 6= ∅. In particular, the pointwise sum
∂f + ∂g is not assumed to be maximal monotone.
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In the sequel, it is convenient to use the notation lim
n→∞

{∂f(un) + ∂g(vn)} for lim
n→∞

(u∗n +

v∗n) with u∗n ∈ ∂f(un), v∗n ∈ ∂g(vn)

Theorem 7.3. Let f and g : H → IR ∪ {+∞} be two convex lower semicontinuous
proper functions such that dom f ∩ dom g 6= ∅. Then, for any x ∈ dom ∂(f + g), the
following equality holds:

∂(f + g)(x) =

=
{

lim
n→∞

{∂f(un) + ∂g(vn)}| x = lim
n→∞

un = lim
n→∞

vn and lim inf
n→∞

〈∂g(vn), un − vn〉 ≥ 0
}
.

Proof. Set A := ∂(f + g) and

B :=
{

lim
n→∞

{∂f(un) + ∂g(vn)}| x = lim
n→∞

un = lim
n→∞

vn and lim inf
n→∞

〈∂g(vn), un − vn〉 ≥ 0
}

a) Let us first prove the inclusion B ⊇ A. We know from Theorem 7.2 that

graph− lim
F
∂(fλ + gµ) = ∂(f + g).

As a result, for any x ∈ D(∂(f + g)) and y ∈ ∂(f + g)(x), there exists some net
{xλ,µ| (λ, µ) ∈ I } norm converging to x such that y = lim

F
∂(fλ + gµ)(xλ,µ). Since fλ,

(respectively gµ) is everywhere defined and continuous, by the Moreau-Rockafellar Theo-
rem on the additivity of the sum of subdifferentials,

y = lim
F

[∂fλ(xλ,µ) + ∂gµ(xλ,µ)],

which by relation (3.6) gives

y = lim
F

[∂f(Jfλxλ,µ) + ∂g(Jgµxλ,µ)]. (7.24)

Set uλ,µ := Jfλxλ,µ and vλ,µ := Jgµxλ,µ. Let us first verify that x = lim
F
uλ,µ = lim

F
vλ,µ.

To that end, we notice that, from the contraction property of J gµ,

||Jgµxλ,µ − Jgµx|| ≤ ||xλ,µ − x||

and that the limit of Jgµx, as µ goes to zero, is equal to the projection of x on the closure
of the domain of g, that is x. Hence, lim

F
uλ,µ = x and similarly, lim

F
vλ,µ = x. Let us now

consider,

〈∂g(vλ,µ), uλ,µ − vλ,µ〉 = 〈∂gµ(xλ,µ), Jfλxλ,µ − J
g
µxλ,µ〉

= 〈∂gµ(xλ,µ), (Jfλxλ,µ − xλ,µ) + (xλ,µ − Jgµxλ,µ)〉
= 〈∂gµ(xλ,µ), µ∂gµ(xλ,µ)− λ∂fλ(xλ,µ)〉
≥ −λ〈∂gµ(xλ,µ), ∂fλ(xλ,µ)〉
≥ −λ〈∂gµ(xλ,µ) + ∂fλ(xλ,µ), ∂fλ(xλ,µ)〉+ λ|∂fλ(xλ,µ)|2
≥ −λ|∂gµ(xλ,µ) + ∂fλ(xλ,µ)|.|∂fλ(xλ,µ)|+ λ|∂fλ(xλ,µ)|2.
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Now use the elementary minorization:

t2 − αt ≥ −α
2

4

to obtain (take t = |∂fλ(xλ,µ)|)

〈∂g(vλ,µ), uλ,µ − vλ,µ〉 ≥ −
λ

4
|∂gµ(xλ,µ) + ∂fλ(xλ,µ)|2.

Since by assumption, ∂gµ(xλ,µ) +∂fλ(xλ,µ) norm-converges to y ∈ ∂(f +g)(x), and hence

remains bounded, we eventually infer

lim inf
F
〈∂g(vλ,µ), uλ,µ − vλ,µ〉 ≥ 0.

b) Let us now prove the inclusion A ⊇ B. Take uν ∈ D(∂f), vν ∈ D(∂g) such that

Bx = lim
ν→∞

[∂f(uν) + ∂g(vν)],

with x = lim
ν→∞

uν = lim
ν→∞

vν and lim inf
ν→∞

〈∂g(vν), uν − vν〉 ≥ 0.

The subdifferential inequality yields that for any ξ ∈ H
f(ξ) ≥ f(uν) + 〈∂f(uν), ξ − uν〉
g(ξ) ≥ g(vν) + 〈∂g(vν), ξ − vν〉.

By adding these two inequalities we obtain

f(ξ) + g(ξ) ≥ f(uν) + g(vν) + 〈∂f(uν), ξ − uν〉+ 〈∂g(vν), ξ − vν〉
≥ f(uν) + g(vν) + 〈∂f(uν) + ∂g(vν), ξ − uν〉+ 〈∂g(vν), uν − vν〉.

Then passing to the limit and using the definition of Bx we obtain

f(ξ) + g(ξ) ≥ lim inf
ν→∞

[f(uν) + g(vν)] + lim inf
ν→∞

〈∂f(uν) + ∂g(vν), ξ − uν〉+
lim inf
ν→∞

〈∂g(vν), uν − vν〉
≥ f(x) + g(x) + 〈Bx, ξ − x〉.

The above inequality being true for any ξ ∈ H, we infer Ax = ∂(f + g)(x) ⊇ Bx which
completes the proof of the theorem.

Remark 7.4. Let us notice that the sign condition “ lim inf〈∂g(vν), uν − vν〉 ≥ 0 ”
which at a first glance is not symmetric is indeed quite symmetric.

Let us write

〈∂f(uν), vν − uν〉 = 〈∂f(uν) + ∂g(vν), vν − uν〉+ 〈∂g(vν), uν − vν〉.
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Hence,

lim inf
ν→∞

〈∂f(uν), vν − uν〉 = lim
ν→∞
〈∂f(uν) + ∂g(vν), vν − uν〉+ lim inf

ν→∞
〈∂g(vν), uν − vν〉

is nonnegative (the first term of the right hand side is equal to zero and the second term
is nonnegative).
Let us now state the following result from Attouch, Ndoutoume and Théra that relates
the convergence for the epi-distance of a sequence of convex functions to the convergence
for the graph-distance of the associated sequence of subdifferentials.

Theorem 7.5. [12; Theorem 2.3] Let X be a Banach space. For any sequence { f, fn|
X → IR ∪ {+∞}} of lower semicontinuous convex proper functions, the following impli-
cation (i) ⇒ (ii) holds :

(i) f = epi− dist− lim fn;
(ii) ∂f = graph-dist lim ∂fn and the “ normalization condition (NC) ”.

If furthermore X is super-reflexive, then the converse implication holds, that is, (i) and
(ii) are equivalent.

Theorem 7.4 is a topological result. Indeed, in the Hilbert space setting one can give a
metric (quantitative) version of it and prove an Hölder continuous type estimate which
extends the result of Schultz :

Theorem 7.6. [15; Theorem 5.2] Let f and g be two convex lower semicontinuous
proper functions from H into IR ∪ {+∞}. To any ρ > max[d(0, epi f), d(0, epi g)] there
correspond some constants γ and κ (that depend on ρ) such that

hausρ(∂f, ∂g) ≤ κ[hausγ(f, g)]1/2.

In turn, Theorem 7.5 has been extended to the case of general Banach spaces by Riahi
[57] and by Aze & Penot [20] , the main ingredient of the proof being the Ekeland’s
ε−variational principle.
Theorem 7.4 and the estimation below of independant interest show the convergence
property of the Yosida approximation (Proposition 3.6) in a different light :

Proposition 7.7. [15; Lemma 3.6] Let X be a normed linear space and f a proper

extended real-valued function from X into IR ∪ {+∞}, minorized by −α(1 + || · ||2) for

some α ≥ 0. Then, for any 0 < λ < 1
4α and ρ ≥ 0,

hausρ(fλ, f) ≤ Cλ1/2

where the “constant” C is given by

C =

{
2(2αρ2 + ρ + α)

1− 4αλ

}1/2

.
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8. The role of the approximation

It is a natural question to ask whether the Yosida approximation plays a particular role
in this theory. In other words, what happens when we replace Aλ (respectively Bµ) in the

definition of the variational sum by Aν (respectively Bθ) such that:

1) A = graph− lim
ν→+∞

Aν , (respectively, B = graph− lim
θ→+∞

Bθ);

2) Aν and Bθ are everywhere defined and Lipschitzian.

Figure 1

For example, if we take for A,Aν (respectively B,Bθ) the subdifferentials of some convex
proper lower semicontinuous extended real-valued functions, then the previous question
may be formulated as follows:

Let {Φn|n ∈ IN}, {Ψn|n ∈ IN} be two sequences of convex functions everywhere defined
on an Hilbert space H and Mosco-converging respectively to the functions Φ and Ψ. Does
the sequence {Φn + Ψn| n ∈ IN} Mosco-converge to Φ + Ψ?

The answer is generally negative as the following example shows:

Take H = IR2 and define Cn and Dn as in the Figure 1.

Cn := {(x, y) ∈ IR2| x ≤ 0, y ≤ −tnx} and Dn := {(x, y) ∈ IR2| x ≥ 0, y ≤ tnx}.

Let {tn|n ∈ IN} be a sequence of real numbers tending to +∞. Set

Φn =
1

2λn
dist2(.,Cn) = (ICn)λn and Ψn =

1

2λn
dist2(.,Dn) = (IDn)λn,

where ICn (respectively, IDn) stands for the indicator function of the sets Cn (respectively,

Dn). Since, Φn (respectively, Ψn) is the Moreau-Yosida approximate of ICn (respectively,

IDn), it is C1,1, hence continuous on IR2. Set k := lim
n→+∞

λnt
2
n. An easy calculation shows

that: {Φn|n ∈ IN} (respectively, {Ψn|n ∈ IN}) epiconverges to the indicator Φ = IC
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(respectively, Ψ = ID) of the set C:= {(x, y) ∈ IR2| x ≤ 0} (respectively, D: = {(x, y) ∈
IR2| x ≥ 0}), and

1) if k = +∞, then Φn + Ψn epiconverges to IC∩D;

2) if k = 0, then Φn + Ψn epiconverges to I{x=0,y≤0};

3) if k∈ (0,+∞), then Φn + Ψn epiconverges to a mapping which depends on k.

The limit function is equal to +∞ outside {0}× IR and its restriction to {0}× IR has the
profile (which depends on k), as described in Figure 2.

In terms of operators, set An := ∂Φn and Bn := ∂Ψn. By virtue of the Attouch Theorem

on the continuity (for convex functions) of the operation f →→ ∂f , An (respectively,
Bn) graph-converges to ∂Φ := A (respectively, ∂Ψ := B). Hence, An + Bn which is a
maximal operator since it is equal to ∂(Φn+Ψn) necessarily graph-converges to a maximal
monotone operator Ck. According to Rockafellar’s Theorem ([60]), Ck is therefore the
subdifferential of a convex function Fk, which depends on the parameter k, linked to the
chosen approximation. We have Ck = ∂(Φ+Ψ) = A+B = A+

v
B only whenever k = +∞.

As a result, the Yosida approximation plays a central role in the theory developed in this
presentation.

Figure 2

9. An example: The Schrödinger equations

The motivation for the introduction of various generalizations of the concept of sum for
operators comes in particular from the Schrödinger equations and problems arising in
quantum theory ([30], [61], [62], [66]). Let us briefly recall the mathematical setting of

these equations. Let Ω ⊂ IRN be an open subset of IRN (possibly unbounded). Let

V : Ω→ IR+ be a locally integrable function with some singularities (for example, V (x) =
1/||x||p). The differential operator attached to the Schrödinger equations can be formally
written as

Au = −∆u+ V u.

This operator, clearly appears as a “sum” of two operators

Bu := −∆u and Cu := V u.
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A natural objective is to define adequately the domain of A in order to obtain an operator
A which is maximal monotone, self-adjoint. Equivalently, this amounts to define in which

sense one has to add the two operators B and C. Take H = L2(Ω), B = ∂Φ, and C = ∂Ψ
the subdifferential operators of the convex lower semicontinuous proper functions

Φ(u) :=





1
2

∫

Ω
|Du|2dx if u ∈ H1

0 (Ω)

+∞ on L2(Ω) \H1
0 (Ω)

and

Ψ(u) :=

{
1
2

∫

Ω
V u2dx if V u2 ∈ L1(Ω)

+∞ elsewhere.

{
Bu := −∆u with
D(B) := H2(Ω) ∩H1

0 (Ω)

and {
Cu := V u with
D(C) := {u ∈ L2(Ω)|V u ∈ L2(Ω)}.

A naive approach which consists to take for A = B +C the pointwise sum of B and C is

not well adapted to the situation. If u belongs to D(B)∩D(C), then u ∈ H2(Ω) and V u ∈
L2(Ω), these two conditions are usually incompatible. For example, if N = 2, u ∈ H2(Ω)

implies u continuous and V u ∈ L2(Ω) with u continuous and V (x) =
1

||x||1/2 requires

that u(0) = 0. This is a too strong requirement with respect to the physical conditions.
On the opposite, the variational approach developped in this paper consists in taking

Â := B+
v
C.

Since B = ∂Φ and C = ∂Ψ are subdifferential of convex lower semicontinuous proper
functions, by Theorem 7.2

Â = ∂(Φ + Ψ).

Let us compute Â. Indeed, if we follow the approximation method which led us to the
above concept

Â = graph− lim
λ→0

(∂Φ + ∂Ψλ) = graph− lim
λ→0

(B + Cλ).

An elementary computation gives

Cλu =
V

1 + λV
u.

Let us introduce Tλ : IR+ → IR+ the truncation mapping defined by Tλ(r) :=
r

1 + λr
and

set Kλ(r) := inf(r, 1/λ).
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Figure 3

Then, Cλu = Tλ(V )u is a continuous linear operator on L2(Ω), and in order to pass from
C to Cλ, we have “smoothly” truncated V , so that Tλ(V ) belongs to L∞(Ω); indeed,
0 ≤ Tλ(V ) ≤ 1/λ. This method is very closely related to the direct truncation method
of V by Kλ(V ) = inf(V, 1/λ) followed by Brézis [30]. Note that Tλ and Kλ satisfy
0 ≤ Tλ ≤ Kλ and they are tangent at zero and +∞. Using the resolvent formulation of
the graph-convergence, we have to compute the limit u of uλ, where uλ is the solution of

uλ +Buλ + Cλuλ = f.

Note that we know that uλ converges to u which satisfies

u+ (B+
v
C)(u) = f.

So we have just to identify the limit equation satisfied by u. In the following, in order to
simplify the expository, we suppose that Ω is bounded. We have

{
uλ −∆uλ + Tλ(V )uλ = f on Ω
uλ = 0 on ∂Ω.

(9.25)

Multiplying (9.25) by uλ and integrating by part classicaly yield the following estimations:

‖uλ‖H1
0 (Ω) ≤ C

and ∫

Ω
Tλ(V )u2

λ ≤ C.

On relabeling (we still denote by uλ the extracted subnet) uλ tends weakly to u in H1
0 (Ω)

and almost everywhere (by the Rellich-Kondrakov compact embedding of H1
0 into L2).

Using Fatou’s lemma, and noticing that Tλ(V )→ V a.e., we derive

∫

Ω
V u2 ≤ lim inf

λ→0

∫

Ω
Tλ(V )u2

λ < +∞.

From, ∫

Ω
V u ≤

∫

Ω
V (1 + u2)dx < +∞,
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we infer V u ∈ L1(Ω) if V ∈ L1(Ω) and V u ∈ L1
loc(Ω) if V ∈ L1

loc(Ω). Hence, Tλ(V )uλ →
V u a.e. . The difficulty is to prove that the convergence holds in the distribution sense.
To that end we use the argument from Strauss [66] and prove, in order to apply the Vitali
Theorem, that the net {Tλ(V )uλ|λ→ 0} is equi-integrable. Indeed,

Tλ(V )|uλ| = Tλ(V )( 1√
R
|uλ|
√
R)

≤ 1
2Tλ(V )( 1

Ru
2
λ +R).

Hence, for each ∆ ⊆ Ω we have





∫

∆
Tλ(V )|uλ| ≤ 1

2R

∫
∆ Tλ(V )u2

λ + R
2

∫
∆ Tλ(V )

≤ C

2R
+
R

2

∫

∆
V.

(9.26)

The equi-integrability of the net {Tλ(V )uλ|λ→ 0} follows easily from (9.26). By passing
to the limit on (9.25) we obtain:

{
u−∆u+ V u = f on Ω,
u = 0 on ∂Ω, (9.27)

with u ∈ H1
0 (Ω),

∫

Ω
V u2 < +∞, V u ∈ L1

loc(Ω) and −∆u+V u ∈ L2(Ω). Let us summarize

the above results in the following theorem:

Theorem 9.1. Given V ∈ L1
loc(Ω), V ≥ 0 a.e., let us define

{
Âu = −∆u+ V u
D(Â) = {u ∈ H1

0 (Ω)| V u2 ∈ L1(Ω), −∆u+ V u ∈ L2(Ω)}.

Then Â is a self-adjoint linear maximal monotone operator in L2(Ω), and Â = ∂Φ +
v
∂Ψ

= ∂(Φ + Ψ), where Φ(u) =
1

2

∫

Ω
|Du|2 and Ψ(u) =

1

2

∫

Ω
V u2.

As a result, the variational sum approach provides the same operator than the one obtained
by Simon [61, 62], Kato [41] and Brézis [30].

Note, in this direction, the following result obtained by Brézis in the case where Ω = IRN :

Â = A] with

{
A]u = −∆u+ V u
D(A]) = {u ∈ L2(Ω)|V u ∈ L1

loc(Ω),−∆u+ V u ∈ L2(Ω)}.
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[13] H. Attouch, R. Wets: Isometries for the Legendre-Fenchel transform, Transactions of the
American Mathematical Society, 296, 33-60, 1986.

[14] H. Attouch, R. Wets: Quantitative stability of variational systems : I. The epigraphical

distance, Transactions of the American Mathematical Society, 328, n0 2, 695-729 1991.

[15] H. Attouch, R. Wets: Epigraphical analysis, Analyse non linéaire, eds. H. Attouch, J.P.
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Vol 21, exposé 12, 1991.
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