
Journal of Convex Analysis
Volume 1 (1994), No.1, 31–45

Gap Phenomenon for Some Autonomous Functionals

Giovanni Alberti
Istituto di Matematiche Applicate, Universitá di Pisa,
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We give an example of an autonomous functional F (u) =
∫
Ω f(u,Du)dx (Ω open subset of IR2, u :

Ω→ IR2 in the Sobolev space W 1,1) which is sequentially weakly lower semicontinuous in W 1,p for every
p ≥ 1 but does not agree with the relaxation of the same functional restricted to smooth functions when
p < 2. A Lavrentiev phenomenon occurs for a related boundary problem.
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1. Introduction

When dealing with variational problems involving integral functionals, a very surprising
and interesting phenomenon is the so-called Lavrentiev phenomenon; let T be a space of
weakly differentiable functions, X a dense subset of smooth functions and F a (weakly)
lower semicontinuous integral functional on T : then it may happen that the infimum of
F on T is strictly lower than the infimum on X (the first example of such behaviour was
given in [18], many examples and references may be found in [6], [10] and [9], section
3.4.3).

For example Laverentiev phenomenon may occur with T = {u ∈ W 1,2(0, 1) : u(0) =

0, u(1) = 1}, X = {u ∈ T : u is Lipschitz} and F (u) =
∫ 1

0 f(x, u, u′)dx with f contin-

uous, convex in the third variable and satisfying f(x, u, s) ≥ |s|2 (cf. [2]). Notice that
in this particular case F is coercive on T (endowed with the weak topology) and then it
attains a ‘natural’ minimum on T .

Following [6], we consider Lavrentiev phenomenon in a more abstract framework: let T
be a topological space, X a dense subset of T , F a lower semicontinuous function on T ,
and set for all u ∈ T

F (X, T )(u) := inf(lim inf
n→∞

F (un)) : un ∈ X and un → u. (1.1)
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Then we have that F (X, T ) ≥ F but it may happen that equality does not hold: in this
case we say that F has a gap from X to T (see Definition 2.1). Notice that when there
is no gap, then there is no Lavrentiev phenomenon (indeed the infima of F on T and X
are the same). In particular we have that F (X, T )(u) = F (u) if and only if there exists a
sequence (un) ⊂ X such that un → u and F (un)→ F (u); hence there is no gap when F
is continuous with respect to any topology τ finer than the topology of T and such that X

is still τ -dense in T (for example, this happens when T is a Sobolev space W 1,p endowed

with the weak topology, X includes C∞ functions, and F is strongly W 1,p continuous).

A lot of result are available for integral functional on Sobolev spaces, giving examples of
gap and Lavrentiev phenomenon or showing that under some assumption they never occur
(see references in [6], [7] and [10]). An interesting case is the one of autonomous integral

functionals, i.e., T = W 1,p(Ω, IRn), X is the subset of all smooth functions (Lipschitz or

C1) and F (u) =
∫

Ω f(u,Du)dx.

When Ω is one-dimensional and the integrand f is continuous, it may be proved that gap
never occurs (see [1] for a direct proof, even if this can be obtained as a corollary of the
regularity of minima of variational integrals proved in [8]). In this paper we show that a

gap may occur when T = W 1,p(Ω, IR2) with p < 2 and Ω two-dimensional. In particular,
if we take

F (u) =

∫

Ω
(|u|2 − 1)2|Du|2dx (1.2)

and u0(x) = (x − x0)/|x − x0| where x0 ∈ Ω, then F (u0) = 0 but lim inf F (un) ≥ 2π/3

whenever un are smooth functions which weakly converge to u0 in W 1,1 (see Theorem 2.3).
In Theorem 2.12 we give an example of Lavrentiev phenomenon for a related boundary
value problem.

The heuristic idea of the proof is the following: recalling that |Du|2 ≥ 2| detDu|, by
area formula we have that for all smooth functions u

F (u) ≥ 2

∫

Ω
(|u|2 − 1)2| detDu| dx ≥ 2

∫

u(Ω)
(|y|2 − 1)2dy . (1.3)

Now F (u0) = 0 because the image of u0 is included in the unit circle in IR2 but since the
functions un are smooth and converge to u0, their images have to ”cover” the unit ball B

of IR2 and then (1.3) yields

lim inf
n→∞

F (un) ≥ 2

∫

B
(|y|2 − 1)2dy =

2π

3
.

Notice that if we replace weak convergence in W 1,1 by a weaker one (for example, Lp

convergence), this argument does not work; indeed we can approximate u0 by smooth
functions un with images included in the unit circle, and then F (un) = 0 for all n (see
Remark 2.8).

Another important remark is that the occurrence of a gap in this example is tightly
connected with the structure of the singularity of u0. In particular we cannot extend this

example to Sobolev spaces W 1,p with p ≥ 2 or to the scalar case W 1,p(Ω, IR), even taking
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functionals with different growth. We think it should be very interesting to understand
what happens in these cases.

Finally, we want to point out the analogy of our example with the problem of relaxation

of Dirichlet energy F (u) =
∫
|Du|2dx for mappings which takes values into the sphere

(see [3], [4], [15] and [16]), and indeed the function (|u|2 − 1)2 in the integrand in (1.2)
plays a role which is very close to the geometrical constraints of this problem.

2. Statements and proofs of the results

In the following (unless differently stated) Ω is a bounded open subset of IR2, u is a

function of Ω into IR2 and we denote a point of the domain Ω as x = (x1, x2) and a point

of the codomain IR2 as y = (y1, y2). B is the unit ball in IR2 and S = ∂B is the unit circle

in IR2.

If A = (Aij) is a matrix in IR2×2, then the norm of A is given as usual by |A| :=

(
∑

i,j A
2
ij)

1/2. Notice that |A| ≥ 2| detA|. I denotes both the 2 × 2 identity matrix and

the identity map on IR2.

If F is a function on the set T and X is a subset of T , then F X denotes the restriction
of F to X.

If u : Ω → IR2 is a continuous function, A is an open set relatively compact in Ω and y

belongs to IR2 \ u(∂A), then deg(u,A, y) is the degree of u restricted to A over the point
y. For the basic results about degree we refer essentially to [11], chapters 1-3.

W 1,p(Ω, IR2) (with 1 ≤ p ≤ ∞), Lip(Ω, IR2) and Ck(Ω, IR2) are the usual spaces of Sobolev,

Lipschitz and Ck functions from Ω into IR2. They are usually endowed with their strong

topologies; we write W 1,p
w to indicate the Sobolev space W 1,p endowed with its weak

topology. For every function u ∈ W 1,2(Ω, IR2) we denote by Ju(x) the determinant of the
matrix Du(x).

If T and V are topological spaces, we write T ↪→ V when T is included in V with
continuous inclusion (i.e., when the topology of T is finer than the topology induced on
T by V ) and sequentially dense image.

Definition 2.1. Let T be a Hausdorff topological space and let F be a sequentially
lower semicontinuous function on T . We say that a sequence {un} ⊂ T approximates u
in energy if un → u and F (un)→ F (u).

Let X be a sequentially dense subset of T (i.e., every point of T is limit of some sequences
of points of X). Then we define the following functions on T :

(i) F1(X, T )(u) := inf(lim infn F (un)) with un ∈ X and un → u,

(ii) F2(X, T ) is the sequential relaxation of F X on T (namely, the maximal sequen-
tially lower semicontinuous function on T which is less than or equal to F on X).

Then F1(X, T ) ≥ F2(X, T ) ≥ F . When T is first countable (i.e., every point has a
countable neighborhood basis) then F1(X, T ) and F2(X, T ) are the same function, that
is, the relaxation of F X on T . If we drop the first countability assumption (for
example when T is a Sobolev space endowed with the weak topology instead of the norm
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topology) we have to be more careful; in particular F1(X, T ) may be not sequentially
l.s.c. and it may not agree with F2(X, T ) (and also F2(X, T ) may be not l.s.c.). Hence
we have two slightly different problems: the approximation problem, that is determine
whether F1(X, T )(u) = F (u) (in other words, whether u can be approximated in energy
by functions in X) and the relaxation problem, that is determine whether F2(X, T )(u) =
F (u).

Equality F1(X, T ) = F may not hold in general: in this case we say that F has a gap
from X to T .

Notice that this equality hold when F is sequentially continuous with respect to some
topology τ finer than the topology of T and such that X is τ dense in T .

Definition 2.2. For all u ∈ W 1,1(Ω, IR2), set

F (u) :=

∫

Ω
f(u)|Du|2dx (2.1)

where f : IR2 → [0,∞[ is a continuous map such that f(y) = 0 whenever |y| = 1, and set

C := 2

∫

B
f(y) dy . (2.2)

Take x0 ∈ Ω and let u0 be the function given by

u0(x) := (x− x0)/|x− x0| . (2.3)

Then u0 belongs to W 1,p(Ω, IR2) for all p ∈ [1, 2[ and the following facts hold:

Theorem 2.3. Let F and u0 be given as in (2.1) and (2.2), and assume that C > 0.
Then

(i) F is sequentially lower semicontinuous in the L1 topology;

(ii) F is (strongly) continuous in W 1,p for all p ≥ 2;

(iii) F1(X,W 1,p) = F2(X,W 1,p) = F W 1,p whenever p ≥ 2, and then F has no gap

from X to W 1,p;

(iv) F1(X, T ) = F1(W 1,2, T ) and F2(X, T ) = F2(W 1,2, T ) whenever X is a dense subset

of W 1,2 and W 1,2 ↪→ T ;

(v) F1(X,W 1,p
w ) ≥ F2(X,W 1,p

w ) 6= F whenever p ∈ [1, 2[ and X is a dense subset of W 1,2,

and then F has a gap from X to W 1,p
w .

In particular, F (u0) = 0 but F1(X,W 1,p
w )(u0) = F2(X,W 1,p

w )(u0) = C.

Remark 2.4. Statement (iii) means that every u ∈ W 1,p with p ≥ 2 may be approx-

imated in energy in the W 1,p topology by smooth functions (Lipschitz or even C∞).
Statement (v) shows that this is false when p < 2 and in particular we can prove

that no sequences in W 1,2 approximates u0 in energy. More precisely, we have that

F1(X,W 1,p
w )(u0) = F2(X,W 1,p

w )(u0) = C.
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The difficult part of this theorem is to prove inequalities F1(X,W 1,p
w )(u0) ≥ C and

F2(X,W 1,p
w )(u0) ≥ C: the proof of the second inequality relies on a result on currents

we develope in section 3. Of course the first inequality may be deduced directly from
the other (recalling that there always holds F1(X, T ) ≥ F2(X, T )), but since this is the
key lemma of this paper, we prefer to give also another indipendent proof which relies on
simple properties of degree.

Proof of Theorem 2.3.

(i). Using Corollary 4.1 in [14], we can prove the lower semicontinuity with respect to the

L1 topology of all functionals of the form

u 7→
∫

Ω
g(u)h(Du) dx, u ∈ W 1,1(Ω, IR2),

where g is bounded and continuous and h is a convex function with linear growth. Since
F is (trivially) the limit of an increasing sequence of such functionals, also F is lower
semicontinuous.

(ii) is well-known (cf. [9], chapter 3, and [5], chapter 2).

(iii) and (iv) follow from (ii).

(v). We may assume with no loss in generality that x0 = 0.

Taking into account (iv), inequalities C ≥ F1(X,W 1,p
w ) ≥ F2(X,W 1,p

w ) are proved if there

exists a sequence of Lipschitz functions (vn) which converges to u0 in W 1,p for all p ∈ [1, 2[
and verifies limn F (vn) = C.

Take indeed ρn ↓ 0 so that ρnB ⊂ Ω for all n and set

vn :=

{
x/ρn if x ∈ ρnB,
x/|x| otherwise.

(2.4)

The sequence (vn) converges to u0 in W 1,p for all p ∈ [1, 2[ and recalling that f(y) = 0
when |y| = 1,

lim
n
F (vn) = lim

n

∫

ρnB
f(x/ρn)

2

ρ2
n
dx = 2

∫

B
f(y) dy = C .

Taking into account (iv), it is enough to prove inequalities F1(X,W 1,p
w )(u0) ≥ C and

F2(X,W 1,p
w )(u0) ≥ C when X is C1. This follows from Lemmas 2.5 and 2.6.

Lemma 2.5. Let F , C and u0 be as in (2.1), (2.2) and (2.3) respectively, and let un be

a sequence of functions in C1(Ω, IR2) which converges to u0 in the weak topology of W 1,1.
Then

lim inf
n→∞

F (un) ≥ 2

∫

B
f(y) dy = C . (2.5)

In other words, F1(C1,W 1,1
w )(u0) ≥ C.
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Proof. First of all, notice that it is enough to prove that for every sequence (un) satisfying
the hypothesis of Lemma 2.5 there exists a subsequence which satisfies (2.5).

Now, let (un) be fixed and take r > 0 so that rB ⊂ Ω. By Lemma 3.9 below, we may find
ρ ∈]0, r[ and a subsequence (uk) such that uk ρS converge to u0 ρS uniformly. We
claim that this subsequence satisfies inequality (2.5).

For every integer k, set gk(y) := card(u−1
k (y)) for all y ∈ IR2.

Since |A|2 ≥ 2| detA| for every matrix A ∈ IR2×2, recalling area formula we obtain
∫

Ω
f(uk)|Duk|2dx ≥ 2

∫

Ω
f(uk)|Juk| dx = 2

∫

IR2
f(y)gk(y) dy .

Thus conclusion follows from Fatou’s Lemma once we show that lim inf gk(y) ≥ 1 for
almost all y in B. To this end, define for all k

vk(x) :=
|x|
ρ
uk

(ρx
|x|
)
∀x ∈ Ω .

Clearly each vk is Lipschitz (and C1 in Ω \ {0}) and vk ρS = uk ρS. Hence

deg(vk, ρB, y) = deg(uk, ρB, y) for all y ∈ IR2 \ vk(ρS) (cf. [11], Theorem 3.1). Moreover,
by the choice of ρ, vk converges uniformly to I/ρ on Ω. Hence for all y ∈ B there holds
definitively y /∈ vk(ρS) and deg(vk, ρB, y) = deg(I/ρ, ρB, y) (cf. [11], Theorem 3.1) and
then

gk(y) ≥ deg(uk, ρB, y) = deg(vk, ρB, y) = deg(I/ρ, ρB, y) = 1 , (2.6)

which ends the proof.

Lemma 2.6. Take F , C and u0 as in (2.1), (2.2) and (2.3) respectively. Then

F2(C1,W 1,1
w )(u0) ≥ 2

∫

B
f(y)dy = C .

Proof. Let ε > 0 be fixed. Since f is continuous we may find a smooth map φ on Ω× IRn

with compact support so that 0 ≤ φ(x, y) ≤ f(y) for all x, y and
∫
φ(0, y) dy ≥

∫

B
f(y) dy − ε = C/2− ε . (2.7)

Recalling that |A|2 ≥ 2(detA) for every matrix A, for all v ∈ C1(Ω, IR2) we get

F (v) =

∫

Ω
f(v)|Dv|2dx ≥ 2

∫

Ω
φ(x, v)Jv dx = 2〈Tv;ω〉 (2.8)

where ω = φ dy1∧dy2 is a 2-form in Ω×IR2 and Tv is the 2-dimensional current in Ω×IR2

associated to the graph of v as in Definition 3.1.

Since the map v 7→ 〈Tv;ω〉 is sequentially weakly continuous on W 1,1 (Theorem 3.2), by
(2.8) and Definition 2.1 we get

F2(C1,W 1,1
w )(u0) ≥ 〈Tu0;ω〉
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and we claim that 〈Tu0;ω〉 = 2
∫
B φ(0, y)dy: taking into account (2.7) and recalling that

ε is arbitrarily taken, this would end the proof. To prove our claim, we take indeed vn as

in formula (2.4). The functions vn converge to u0 in W 1,1 and then

〈Tu0;ω〉 = lim
n
〈Tvn;ω〉 = lim

n

∫

Ω
φ(x, vn)Jvndx

= lim
n

∫

ρnB
φ(x, x/ρn)ρ−2

n dx = lim
n

∫

B
φ(ρny, y) dy

=

∫

B
φ(0, y)dy

Remark 2.7. Lemma 2.6 may be proved without GMT framework using a recent
result in [12] about functions with given Jacobien determinant. Take a smooth function

φ : Ω → [0, 1] with compact support such that φ(0) = 1 and let g : IR2 → [0,∞] be the
continuous function which agrees with f in B and is 0 elsewhere.

Following [12], we may find a Lipschitz function G : IR2 → B so that detDG = g

everywhere and then, for every u ∈ C1, g(u) Ju = J(G(u)), and

F (u) =

∫

Ω
f(u)|Du|2dx ≥

∫

Ω
g(u) Ju φ dx =

∫

Ω
J(G(u))φ dx .

One can show that the map u → 〈DetD(G(u));φ〉 is sequentially weakly continuous on

W 1,1 (cf. [17], and [9], section 4.2). Hence

F2(C1,W 1,1
w )(u0) ≥ 〈DetD(G(u0));φ〉 .

Moreover we may compute explicitly the right term of this inequality taking suitable vn
converging to u0 (e.g., as in formula (2.4)), and we get

F2(C1,W 1,1
w )(u0) ≥ 2

∫

B
g(y)dy = C .

Remark 2.8. It is important to notice the following fact: Lemmas 2.5 and 2.6 do not

hold if we replace the W 1,1 weak topology with the BV topology or any other weaker

topology (we recall that a sequence in W 1,1 converges in the BV topolgy if it converges

in the L1 norm and is bounded in the W 1,1 norm).

In particular we can find a sequence of C∞ functions un which converges to u0 in the
BV topology and F (un) = 0 for all n (and then limn F (un) = F (u0) = 0). As usual, we
assume x0 = 0 and then u0(x) = x/|x|.
Take r > 0 such that rB ⊃ Ω and set K := [0, 2π] × [0, r], and for all integers n, let
φn : K → [0, 1] be a C∞ function s.t.:

(i) φn = 0 in a neighborhood of ∂K,
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(ii) φn = 1 out of a set An with measure less than 1/n,

(iii) ‖Dφn‖1 are uniformly bounded.

Now let un be the function which takes each point x = (ρ cos t, ρ sin t) with (t, ρ) ∈ K into

un(x) := ( cos(φn(t, ρ) t), sin(φn(t, ρ) t)) .

Recalling (i), it is not difficult to verify that each function un is a well-defined C∞ function
from rB into S and then F (un) = 0.

By (ii), un(x) = x/|x| = u0(x) out of the set A′n of all x = (ρ cos t, ρ sin t) with (t, ρ) ∈ An
and since the measures of An converge to 0, the measures of A′n converge to 0, and then un

converge to u0 in L1(Ω, IR2). Using (iii), a simple computation shows that the derivatives

of un are bounded in the L1 norm, and then we have convergence in the BV topology.

Notice that the proof of Lemma 2.5 does not work in the BV topology because Lemma

3.8 fails, and this happens essentially because the BV convergence in W 1,1(0, 1) does not

imply uniform convergence (but the W 1,1 weak convergence does). The proof of Lemma
2.6 fails because Theorem 3.2 fails (cf. Remark 3.4).

Remark 2.9. Let T be W 1,1 endowed with the BV topology (or any weaker topol-
ogy) and take u0 as in Theorem 2.3: in the previous remark, we have showed that
F1(C∞, T )(u0) = F2(C∞, T )(u0) = F (u0) = 0 (and then, taking into account state-

ment (iv) of Theorem 2.3, the same hold if we replace C∞ with any dense subset of W 1,2).
Thus the following question arises: is there a gap (for F ) from C∞ to T ?

Remark 2.10. (The higher dimension case)

Let N > 2 be fixed. Let Ω be a bounded open subset of IRN and for all u ∈ W 1,1(Ω, IRN )
set

F (u) :=

∫

Ω
f(u)|Du|Ndx

where f : IRN → [0,∞[ is a continuous function such that f(y) = 0 whenever |y| = 1. Let

B be the unit ball of IRN and assume that C := NN/2
∫
B f(y)dy > 0. Take x0 ∈ Ω and

set u0(x) := (x− x0)/|x− x0| for all x ∈ Ω (u0 belongs to W 1,p for all p < N).

Then the essential statements of Theorem 2.3 may be generalized as follows (without

essential modifications in the proofs): F is lower semicontinuous on W 1,1 with respect to

the L1 topology, and is continuous on W 1,N with respect to the norm topology. Then

F1(X,W 1,p) = F2(X,W 1,p) = F whenever p ≥ N and X is a dense subset of W 1,p (and

then there is no gap from X to W 1,p).

If p ∈]N − 1, N [, F1(X,W 1,p
w )(u0) = F2(X,W 1,p

w )(u0) = C while F (u0) = 0 (X is a dense

subset of W 1,N ) and then there is a gap from X to W 1,p
w .

If p ∈ [1, N − 1], then F1(X,W 1,p
w )(u0) = F2(X,W 1,p

w )(u0) = F (u0) = 0 whenever X is

a dense subset of W 1,N : in particular we may find a sequence of C∞ functions un which

weakly converge to u0 in W 1,N−1 such that F (un) = 0 for all n (cf. Remark 2.8); in this
case we are not able to say whether there is gap or not (cf. Remark 2.9).
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We end this section with an example of Lavrentiev phenomenon for some boundary value
problems.

Definition 2.11. Let ε > 0 and p ∈]1, 2[ be given, and for all u in W 1,p(B, IR2), set

G(u) :=

∫

B
(f(u)|Du|2 + ε|Du− I|p)dx (2.9)

where f : IR2 → [0,∞[ is taken as in Definition 2.2 (i.e., f is a continuous function such

that f(y) = 0 whenever |y| = 1) and assume C := 2
∫
B f(y)dy > 0. As usual we set

u0(x) := x/|x| for all x ∈ B.

Let C1(B, IR2) denote the class of all functions in C1(B, IR2) which admit a continuous

extension to B.

Thus we have the following result.

Theorem 2.12. G is a weakly lower semicontinuous functional on W 1,p with p-growth,
there exist

M1 := min
{
G(u) : u ∈ W 1,p(B, IR2), u = I on ∂B

}
, (2.10)

M2 := min
{
G(u) : u ∈ C1(B, IR2), u = I on ∂B,

}
, (2.11)

and we have M1 ≤ G(u0) ≤ 5πε

2− p , M2 = G(I) = C. Hence M1 < M2 if ε is small

enough.

Proof. G is weakly lower semicontinuous by well-known theorems. Since it has p-growth,

it is coercive on the affine space of all functions u ∈ W 1,p(B, IR2) such that u = I on ∂B,

endowed with the weak topology of W 1,p. Hence G attains a minimum M1 and

M1 ≤ G(u0) = ε

∫

B
|Du0 − I|pdx ≤

5πε

2− p .

On the other side, G(I) =
∫
B f(y) 2dy = C, and then it is enough to prove that G(u) ≥ C

for all u ∈ C1(B, IR2) such that u = I on ∂B. To this end, notice that for all such u,

deg(u,B, y) = deg(I, B, y) =
{

1 if y ∈ B,
0 otherwise

(cf. Theorem 3.1 in [11]) and then, using area formula,

G(u) =

∫

B
f(u)|Du|2dx ≥ 2

∫

B
f(u)Ju dx

= 2

∫

IR2
f(y) deg(u,B, y) dy ≥ 2

∫

B
f(y)dy = C
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3. Appendix

In this appendix we prove two results used above (Theorem 3.2 and Lemma 3.9). The

first one is a theorem in current theory; Dk(A) is the (locally convex) space of all smooth

k-forms with compact support in the open set A, and Dk(A) is the dual of Dk(A), i.e.,
the space of all k-dimensional currents on A. Dk(A) is always endowed with the dual

topology. In this notation D0(A) is the space of smooth functions on A with compact
support and D0(A) the space of Schwartz distributions. For the basic results and notation
in current theory, we refer to [19].

Definition 3.1. When u : Ω → IR2 is a C1 function, then its graph is a 2-dimensional

submanifold of class C1 of Ω × IR2 without boundary and we may orient it so that the

orientation induced on Ω agrees with the standard orientation of IR2. Thus we may see it

as a current in Ω× IR2 (more precisely, a 2-dimensional current without boundary) which
we denote by Tu.

As usual, the standard basis B of the space of 2-covectors in IR2×IR2 is given by dx1∧dx2,

dxi∧dyj (with i = 1, 2 and j = 1, 2) and dy1∧dy2, and then every 2-form ω ∈ D2(Ω×IR2)
may be written as

ω =
∑

α∈B
ωαα (3.1)

with ωα ∈ D0(Ω × IR2). Moreover, for every u ∈ C1(Ω, IR2) and every φ ∈ D0(Ω × IRn),
we have

〈Tu;φ dx1 ∧ dx2〉 =

∫

Ω
φ(x, u) dx (3.2)

〈Tu;φ dxi ∧ dyj〉 =

∫

Ω
φ(x, u)(−1)i

∂uj

∂x̂ı
dx (3.3)

〈Tu;φ dy1 ∧ dy2〉 =

∫

Ω
φ(x, u)Ju dx (3.4)

where i = 1, 2, j = 1, 2 and ı̂ = 1 if i = 2, ı̂ = 2 if i = 1.

Let T : C1(Ω, IR2) → D2(Ω × IR2) be the map which takes each u in Tu: we claim that

T admits a continuous extension to the space W 1,1
loc (Ω, IR2). More precisely, we have the

following theorem.

Theorem 3.2. Let T be the function given before. Then there exists a unique sequentially

weakly continuous map (which we still denote as T ) from W 1,1
loc (Ω, IR2) into D2(Ω × IR2)

which extends T .

Remark 3.3. Uniqueness is obvious, because C1 is dense in W 1,1
loc . To prove existence,

it is enough to show that for every 2-form ω ∈ D2(Ω, IR2) the map which takes each

u ∈ C1 into 〈Tu;ω〉 admits a continuous extension to W 1,1
loc .

In fact, we shall prove that this extension exists for all 2-forms ω with compact support of

class C1, and not only C∞, and taking into account the decomposition (3.1) and formulas
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(3.2), . . . , (3.4), it is enough to extend to W 1,1
loc the map

u 7→
∫

Ω
φ(x, u)Mudx (3.5)

whenever φ ∈ C1
c (Ω× IR2) and Mu is a minor of the matrix Du.

It is well-known how extend (3.5) to the space W 1,2
loc , because the same formula makes sense

for all functions in this space and gives a sequentially weakly continuous functional (see
[9], section 4.2), and moreover in this case Tu is an integer multiplicity current without
boundary by a well-known compactness theorem (see [19], Theorem 27.3).

In the general case, formula (3.5) does not make sense because the minor of order 2 of

Du, namely the Jacobian determinant, is not given for W 1,1 functions. In this case Tu
may be not a locally rectifiable current and may have not locally bounded mass (but still

it has no boundary); more precisely we show that for all u ∈ W 1,1
loc , Tu actually belongs

to the dual of all 2-forms of class C1 (and not only C∞) with compact support, but by
no means to the dual of all continuous 2-forms with compact support.

Remark 3.4. The (sequential) continuity of the extension does not hold if we replace

in W 1,1
loc the weak topology with the BVloc topology (cf. Remark 2.8) or any other weaker

topology.

With no loss in generality we may assume that 0 belongs to Ω and then set u0 = x/|x|
for all x ∈ Ω. Now take un as in Remark 2.8 and vn as in formula (2.4): they are both
sequences of Lipschitz funtions which converge to u0 in the BV topology, but Tun and
Tvn do not converge to the same current.

Indeed, if we take ω := φ dy1 ∧ dy2 where φ : Ω × IR2 → IR is a smooth functions with
compact support such that

(i) φ(x, y) = 1 in a neighborhood of {0} × 1
2B,

(ii) φ(x, y) = 0 whenever |y| = 1,

an explicit computation shows that 〈Tun;ω〉 = 0 for all n and 〈Tvn;ω〉 ≥ π/4 definitively.

Remark 3.5. Of course, the result of Theorem 3.2 can be extended (without any
essential modifications in the proof) to arbitrary dimensions: if Ω is an open subset of

IRN , and T is the map which takes each function u ∈ C1(Ω, IRM ) in its (oriented) graph,

considered as an N -dimensional current of Ω× IRM (N,M positive integers greater than

1), then we may find a unique continuos extension of T to the space W 1,p
loc (Ω, IRM ) for all

p ≥ N ∧M − 1. This extension is (sequentially) weakly continuous unless p = N ∧M − 1
and N ∧M > 2; in the last case we have the strong continuity only. If N ∧M = 2 and

p = 1, we have (sequential) continuity with respect to the W 1,1
loc weak topology but not

with respect to the BV topology (or any other weaker topology). If p < N ∧M − 1, there
is no continuous extension.

Proof of Theorem 3.2.

Taking into account Remark 3.3, we shall prove that the map u 7→
∫

Ω φ(x, u)Mudx may

be extended to W 1,1
loc whenever φ ∈ C1

c (Ω× IR2) and Mu is a minor of Du.
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When we consider minors of order 1 or 0, it is enough to recall that the map

u 7→
∫

Ω
φ(x, u)Mudx u ∈ W 1,1

loc (Ω, IR2) (3.6)

is a (well-defined) continuous map for every φ ∈ Cc(Ω × IR2) (in fact, for every bounded

continuous φ with support included in K× IR2 for some compact K ⊂ Ω, see Lemma 3.6).

When we consider the minor of order 2 (i.e., the Jacobian determinant) there is no trivial

extension of the function because Ju is not given in general for functions in W 1,1. Using

Lemma 3.8 below, for all φ ∈ C1
c (Ω× IR2) we may find a bounded Rφ ∈ C(Ω× IR2, IR2),

with support included in K × IR2 for some compact K ⊂ Ω, such that

∫

Ω
φ(x, u)Ju dx =

∫

Ω
Rφ(x, u) ·Dudx ∀u ∈ C1(Ω, IR2) (3.7)

and the right term of this equality is a function which can be easily extended to the whole

space W 1,1
loc using Lemma 3.6.

Lemma 3.6. The following facts hold.

(i) For every bounded continuous function φ on Ω× IR2, the mapping

u 7→
∫

Ω
φ(x, u) dx u ∈ W 1,1

loc (Ω, IR2)

is sequentially weakly continuous.

(ii) For every bounded continuous function φ on Ω× IR2 with support included in K× IR2

for some compact K ⊂ Ω, the mapping

u 7→
∫

Ω
φ(x, u)Dudx u ∈ W 1,1

loc (Ω, IR2)

is sequentially weakly continuous.

Proof.

(i). Let un be a sequence in W 1,1
loc which weakly converges to u. Then it strongly converges

in L1
loc and hence, eventually taking a subsequence, we may assume that un converges to

u a.e. Thus φ(x, un(x)) converges to φ(x, u(x)) for a.a. x because φ is continuous, and it
is enough to apply Lebesgue theorem.

(ii). Let un be a sequence in W 1,1
loc which weakly converges to u and let A be a relatively

compact open subset of Ω which includes K and set vn(x) = φ(x, un(x)), v(x) = φ(x, u(x))
for all x and n. As before, we may assume that vn converges a.e. to v. Moreover the
functions vn are uniformly bounded and 0 outside A. Since Dun weakly converges to Du

in L1
loc, it is well-known that vnDun weakly converges to v Du.
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Lemma 3.7. Let α be a function in C1(Ω × IR2) with support included in K × IR2 for

some compact K ⊂ Ω, and let u = (u1, u2) be a function in C1(Ω, IR2). Then we have the
following identity:

∫

Ω

[
α(x, u) + u2 ∂α

∂y2
(x, u)

]
Ju dx =

∫

Ω

(
u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)
·Dudx . (3.8)

Proof. A simple density argument shows that we may assume α and u of class C∞.
Now, writing Ju as a divergence (cf. [17], and [9], section 4.2)

Ju =
∂

∂x1

(
− u2∂u

1

∂x2

)
+

∂

∂x2

(
u2∂u

1

∂x1

)
(3.9)

and integrating by parts α(x, u)Ju we obtain (with some computations)

∫

Ω
α(x, u)Ju dx =

∫

Ω

[ ∂

∂x1
(α(x, u)) u2∂u

1

∂x2
− ∂

∂x2
(α(x, u)) u2∂u

1

∂x1

]
dx

=

∫

Ω

(
u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)
·Dudx−

−
∫

Ω

[
u2 ∂α

∂y2
(x, u)

]
Ju dx .

Lemma 3.8. For every φ ∈ C1
c (Ω × IR2) there exists a bounded Rφ ∈ C(Ω × IR2, IR2)

with support included in K × IR2 for some compact K ⊂ Ω which satisfies

∫

Ω
φ(x, u)Ju dx =

∫

Ω
Rφ(x, u) ·Dudx ∀u ∈ C1(Ω, IR2) . (3.10)

Proof. Let K be the projection on Ω of the support of φ and set

α(x, y) :=

∫ 1

0
φ(x, y1, ty2)dt ∀(x, y) ∈ Ω× IR2 . (3.11)

A simple computation shows that α is a function of class C1 with support included in

K × IR2 which satisfies the equation φ = α + y2
∂α
∂y2

. Hence formula (3.8) yields

∫

Ω
φ(x, u)Ju dx =

∫

Ω

(
u2 ∂α

∂x2
(x, u),−u2 ∂α

∂x1
(x, u)

)
·Dudx , (3.12)

and then it is enough to take

Rφ :=
(
y2
∂α

∂x2
,−y2

∂α

∂x1

)
. (3.13)
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Formulas (3.11) and (3.13) immediately yield that Rφ is bounded and continuous, with

support included in K × IR2.

Lemma 3.9. Let (un) be a sequence of functions in Lip(Ω, IR2) which weakly converges

to u in W 1,1, and take r such that rB ⊂ Ω. Then for almost all ρ ∈]0, r[, (un ρS)
admits a subsequence which converges to u ρS uniformly.

Proof. Since the functions un weakly converge to u in W 1,1(Ω, IR2), they converge also

in L1 and the functions Dun are uniformly integrable in L1 (by Dunford-Pettis theorem).
Hence there exist a finite constant C and a convex function f : [0,+∞] → [0,+∞] such
that lim

t→∞
f(t)/t = +∞ and

∫

Ω
f(|Dun|)dx ≤ C ∀n (3.14)

(cf. [13], chapter II, section 2). For all n and all ρ ∈]0, r[ set

uρn := un ρS, uρ := u ρS

gn(ρ) :=

∫

ρS
|un − u| dH1

hn(ρ) :=

∫

ρS
f(|Dun|) dH1 .

Then
∫ r

0 gn(ρ) dρ ≤ ‖un−u‖1 and gn converges to 0 in L1(0, r). Hence, eventually passing

to a subsequence, we may assume that, for a.a. ρ, gn(ρ) converges to 0, i.e., uρn converge

to uρ in L1(ρS, IR2). Moreover (3.14) yields

∫ r

0
hn(ρ) dρ ≤

∫

Ω
f(|Dun|)dx ≤ C ∀n

and then Fatou’s lemma yields

∫ r

0
lim inf
n→∞

hn(ρ) dρ ≤ lim inf
n→∞

∫ r

0
hn(ρ) dρ ≤ C .

Thus, for a.a. ρ, uρn → uρ, lim infn hn(ρ) <∞, and we may find a subsequence nk so that

hnk(ρ) is bounded. Hence uρnk is a sequence of functions in C1(ρS, IR2) which converges

to uρ in L1 with uniformly integrable derivatives (cf [13], chapter II, section 2) and so we

have convergence in the weak topology of W 1,1, which yields uniform convergence.
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