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In this paper, we prove that if a Banach space X admits a Lipschitz β-smooth bump function, then any
continuous convex function on a convex open subset Ω of X is β-differentiable in a dense Gδ subset of Ω.

In 1990, Preiss, Phelps and Namioka [15] proved that if a real Banach space X admits
a β-smooth norm, then every continuous convex function f on a convex open subset Ω
of X is generically β-differentiable; i.e., there exists a dense Gδ subset G of Ω such that
f is β-differentiable at each point of G. This result with Haydon’s counter example ([9],
[10], see also [7], Chap. VII,) finally resolves the “generalized” famous Asplund conjecture
(see Asplund [1] and Day [4], but only for Fréchet- and Gâteaux-differentiability), which
asks whether the existence of an equivalent β-smooth norm is equivalent to the generic
β-differentiablility of any continuous convex function.

The first partial answer to the Asplund conjecture was obtained in 1976 by Ekeland–
Lebourg [8] who showed that if a Banach space X admits a Fréchet-smooth bump function,
then X is an Asplund space, i.e., every continuous convex function on a convex open subset
of X is generically Fréchet-differentiable. Since Haydon has constructed a Banach space,

which admits a Lipschitz Fréchet-smooth (even C1) bump function, but does not admit
any equivalent Gâteaux-smooth norm, the necessary part of Asplund conjecture is false.

However, Haydon’s counter example does not negate the following “modified” Asplund
conjecture: it is whether the existence of a Lipschitz β-smooth bump function is equivalent
to the generic β-differentiablility of any continuous convex function (cf. [7], Problem II.1).
In this paper, we will prove the sufficient part of this “modified” Asplund conjecture: if
a Banach space X admits a Lipschitz β-smooth bump function, then every continuous
convex function on a convex open subset of X is generically β-differentiable.

The weaker result, where instead of a dense Gδ subset one has only a dense subset,
was proved independently by Deville–Godefroy–Zizler [5], [6] and Li–Shi [12]. [5] also
announced the main result of this paper for the case of the Gâteaux-differentiability with
a sketch of proof. Our contribution is to give a different and general proof.

Our method is similar to that in [15] and in [12]. We adapt the construction used in [15]
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and also invoke a Banach–Mazur game to discuss the generic properties. An essential dif-
ference between Preiss–Phelps–Namioka’s proof and ours is that for a maximal monotone

mapping T :X → 2X
∗
, we do not seek a pair (x0, e0) satisfying

∀x∗ ∈ T (x0),
〈x∗, e0〉
‖e0‖

= sup
e∈X\{0}

〈x∗, e〉
‖e‖ = ‖x∗‖∗ = const, (1)

but seek a pair (x0, e0) such that

∀x∗ ∈ T (x0),
〈x∗, e0〉
ρ(e0)

= sup
e∈X

〈x∗, e〉
ρ(e)

:= ρ∗(x∗) = const, (2)

where ρ∗ is a “topologically equivalent” gauge function (positive sublinear function) of
the norm on X∗ and it is generated by a “β-well function” ρ on X, which is induced
by a Lipschitz β-smooth bump function (see (5)). In particular, it makes the process of
searching for pairs (x0, e0) easier than that in [15] and a subset of any β-neighbourhood of
x∗0 ∈ X∗ may be characterized by ρ and ρ∗ (see Proposition 6). We use also a method by
which we proved a generalization of Ekeland’s ε-variational principle and of its Borwein–
Preiss smooth variant in [12].

Let us begin with some concepts about β-differentiability. All of them can be found in
[14] or [2].

Let X be a real Banach space. A bornology of X, denoted by β, is a family of bounded
subsets of X which forms a covering of X, i.e.,

⋃
S∈β S = X. An (extended real-valued)

function f :X → IR ∪ {±∞} is β-superdifferentiable at x ∈ X if f is finite at x and
there is an x∗ ∈ X∗ such that for any S ∈ β and t > 0,

{
f(x+ th)− f(x) ≤ 〈x∗, th〉+ tε(t, h)

with ε(t, h)→ 0 as t→ 0 uniformly with respect to h ∈ S. (3)

Such an x∗ is called a β-superderivative of f at x and all β-superderivatives of f at

x form a subset ∂βf(x) of X∗. For convenience, we put ∂βf(x) = ∅ if f(x) = −∞
and say that if f(x) = +∞, then f is β-superdifferentiable at x and ∂βf(x) = X∗.
Similarly, we can define β-subdifferentiable, β-subderivative and ∂βf(x). If f is both

β-superdifferentiable and β-subdifferentiable at x, then f is β-differentiable at x and

∂βf(x) = ∂βf(x) is necessarily a singleton; its unique element is the β-derivative of f

at x, denoted by ∇βf(x). Moreover, if f is β-differentiable at each point of a subset D,

we say that f is β-smooth in D. But a β-smooth equivalent norm means that this norm
is β-smooth away from the origin.

A bornology β of X induces a topological vector structure on X∗, which is generated by
the zero-neighbourhood base {DS,ε}, where

∀S ∈ β, ε > 0, DS,ε = { y∗ ∈ X∗ | ∀h ∈ S, 〈y∗, h〉 < ε }. (4)

We denote X∗ equipped with this topological vector structure by (X∗, τβ), which is a

locally convex space. When β is the collection of all bounded subsets of X, τβ becomes
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the strong topology of X∗, and when β is the collection of all finite subsets of X, τβ is

reduced to the w∗-topology of X∗.

Let Ω ⊂ X be an open set. A set-valued mapping T : Ω→ 2X
∗

is said to be β-continuous
at x ([15]) if T (x) is a singleton and upper semicontinuous at x from (X, ‖ · ‖) to (X∗, τβ);

i.e., for any S ∈ β and ε > 0, there is an open ball Bδ,x ⊂ Ω centered at x such that

T (Bδ,x) ⊂ T (x) + DS,ε. Notice that the notion used here is not the notion of continuity

requiring upper and lower semicontinuity. Since T (x) is required to be a singleton, the
lower semicontinuity at x is a direct consequence of the upper one. But generally the
image of T at x is not required to be a singleton.

Proposition 1. ([14], [15]) A continuous convex function on a convex open subset Ω of

X is β-differentiable at x ∈ Ω if and only if its subdifferential mapping ∂f :X → 2X
∗

is
β-continuous at x.

Recall that the subdifferential mapping of a lower semicontinuous convex function on
a Banach space X is maximal monotone ([14]); we reduce our problem to showing the
generic β-continuity of a maximal monotone mapping on X.

The basic assumption of this paper is as follows:

(H)

{
There is a Lipschitz β-smooth bump function ν:X → IR+; i.e.

ν is nonconstant, Lipschitz, β-smooth and zero outside some ball.

Proposition 2. If a Banach space X satisfies (H), then one has:

(H ′)

{
There exists a Lipschitz β-superdifferentiable function

µ:X → [0, 1] such that µ(0) = 0 and
[
‖x‖ ≥ 1

]
=⇒

[
µ(x) = 1

]
.

Proof. Set α := supx∈X ν(x) and R > sup{‖x‖ | ν(x) > 0}. Then, α > 0 and R > 0.

Without loss of generality, we can suppose that ν(0) ≥ α/2 and R = 1. Otherwise, we
replace ν by ν1(x) = ν(2Rx + x0), where x0 satisfies ν(x0) ≥ α/2. Take an increasing
function h ∈ C∞(IR+; [0, 1]) such that

h(t) =

{
1,

0,

when t ≥ α/2;

when t = 0.

Then the function µ(x) = 1− h(ν(x)) satisfies (H ′).

Actually, we need only a Lipschitz β-superdifferentiable function µ such as in (H ′) instead
of a Lipschitz β-differentiable bump function (H). It means that we need only the β-
subdifferentiability of ν in (H).

We say that ρ is a β-well function on X if ρ:X → [1,+∞] is β-superdifferentiable and
continuous, and satisfies

ρ(0) < +∞ and
[
‖x‖ ≥ 1

]
=⇒

[
ρ(x) = +∞

]
, (5)
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where, according to our convention, if ρ(x) = +∞, then ρ is considered to be β-super-
differentiable at x; and the continuity of ρ is for the norm topology on X and the usual
topology on [1,+∞].

Proposition 3. If (H ′) holds, then there exists a β-well function on X.

Proof. Take a real function g: [0, 1)→ [1,+∞) which is an increasing C∞-function with
g(0) = 1 and limt→1 g(t) = +∞. Set g(1) := +∞. Then, the composite function of g

with µ in (H ′), ρ0 = g ◦ µ:X → [1,+∞] is a β-well function on X. In fact, we need
only to show that ρ0 is β-superdifferentiable at x ∈ X with µ(x) < 1. Take S ∈ β
with M := suph∈S ‖h‖ < +∞. Since µ is Lipschitz and β-superdifferentiable, and g is

differentiable in [0, 1) with g′(µ(x)) ≥ 0, we have that for t > 0,

g(µ(x+ th))− g(µ(x))

= g′(µ(x))(µ(x+ th)− µ(x)) + o(|µ(x+ th)− µ(x)|)
≤ g′(µ(x))(〈x∗, th〉+ tε1(t, h)) + LMtε2(t, h) for any x∗ ∈ ∂βµ(x)

= 〈g′(µ(x))x∗, th〉+ tε0(t, h),

where L is a Lipschitz constant of µ and εi(t, h), i = 0, 1, 2, tend to 0 as t→ 0 uniformly
with respect to h ∈ S. So ρ0 is β-superdifferentiable at x.

The β-well function ρ that we will construct to get (2) will be of the form of ρ∞ in the
following proposition.

Proposition 4. Let ρ0 be a β-well function on X, µ be defined as in (H ′), µn(x) =
µ(nx)/2n, n = 1, 2, . . ., and {en}∞n=1 ⊂ X be a sequence. Then

ρn(x) := ρ0(x) +
n∑

k=1

µk(x− ek), n = 1, 2, . . . , (6)

and

ρ∞(x) := ρ0(x) +
∞∑

n=1

µn(x− en), (7)

are all β-well functions on X.

Proof. In fact, µn:X → [0, 1/2n] satisfies:





i) µn(0) = 0 and
[
‖x‖ ≥ 1/n

]
=⇒

[
µn(x) = 1/2n

]
;

ii) µn is β-superdifferentiable everywhere;

iii) µn is Lipschitz of rank nL/2n, where L is a Lipschitz constant of µ.

(8)

Hence, from (6), ρn is obviously a β-well function. On the other hand,
∑∞

n=1 µn(x− en)

converges uniformly, and so, is continuous in x. Since µn is Lipschitz of rank nL/2n, we
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have that

∞∑

n=1

µn(x− en + th)−
∞∑

n=1

µn(x− en)

≤
N∑

n=1

µn(x− en + th)−
N∑

n=1

µn(x− en) + tL‖h‖
∞∑

n=N+1

n/2n.

As any finite sum of β-superdifferentiable functions is also β-superdifferentiable, we can
use the Weierstrass M -test to show that

∑∞
n=1 µn(x− en) is β-superdifferentiable too and

so is ρ∞.

Now for a β-well function ρ, we define a gauge function ρ∗:X∗ → IR on X∗ by

∀x∗ ∈ X∗, ρ∗(x∗) := sup
e∈X

〈x∗, e〉
ρ(e)

. (9)

Obviously, for two β-well functions ρ0 and ρ1,

[
ρ1 ≥ ρ0

]
⇒
[
ρ∗1 ≤ ρ∗0

]
. (10)

Proposition 5. For a gauge function ρ∗ on X∗ defined by (9) there exists ε0 ∈ (0, 1)
such that

∀x∗ ∈ X∗, (1− ε0)‖x∗‖∗ ≤ ρ∗(x∗) ≤ ‖x∗‖∗. (11)

In particular, if ρ is symmetric, then ρ∗ is an equivalent norm on (X∗, ‖ · ‖∗).

Proof. Since ρ(x) = +∞ whenever ‖x‖ ≥ 1 and ρ ≥ 1, we obtain that

ρ∗(x∗) = sup
e∈X

〈x∗, e〉
ρ(e)

= sup
‖e‖≤1

〈x∗, e〉
ρ(e)

≤ sup
‖e‖≤1

〈x∗, e〉 = ‖x∗‖∗.

On the other hand, since ρ is continuous and ρ(0) ∈ [1,+∞), there exists a δ ∈ (0, 2ρ(0))
such that ρ(x) ∈ [1, 2ρ(0)] whenever x ∈ Bδ = { x ∈ X | ‖x‖ ≤ δ }. Hence,

ρ∗(x∗) = sup
e∈X

〈x∗, e〉
ρ(e)

≥ sup
e∈Bδ

〈x∗, e〉
ρ(e)

≥ 1

2ρ(0)
sup
e∈Bδ
〈x∗, e〉 ≥ δ

2ρ(0)
‖x∗‖∗,

i.e., (11) holds for 1− ε0 = δ/2ρ(0).

Our main result is based on the following two simple facts.
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Proposition 6. Let ρ be a β-well function on X, e0 ∈ X with ρ(e0) finite. If there
exists x∗0 ∈ X∗ such that

c :=
〈x∗0, e0〉
ρ(e0)

= sup
e∈X

〈x∗0, e〉
ρ(e)

= ρ∗(x∗0) > 0, (12)

then

(i) ρ is β-differentiable at e0 and

x∗0 = c∇βρ(e0); (13)

(ii) for any S ∈ β and any ε > 0, there exists δ > 0 such that

D(ρ, e0, x
∗
0, δ) :=

{
x∗ ∈ X∗

∣∣∣ c− δ < 〈x
∗, e0〉
ρ(e0)

≤ ρ∗(x∗) < c+ δ

}
(14)

⊂ x∗0 +DS,ε. (15)

Proof. (i) By (12), we have

∀e ∈ X, cρ(e) ≥ 〈x∗0, e〉.

Joining up with (12), it follows

∀e ∈ X, cρ(e)− cρ(e0) ≥ 〈x∗0, e− e0〉.

Hence, x∗0 ∈ c∂βρ(e0). On the other hand, from the definition of β-well function (5),

∂βρ(e0) is nonempty, and then, ∂βρ(e0) must be a singleton. Thus, (13) holds.

(ii) Suppose that S ∈ β and ε > 0. From (13), we can take a fixed t0 > 0 such that

∀h ∈ S, ρ(e0 + t0h) ≤ ρ(e0) +
1

c
〈x∗0, t0h〉+

εt0
2c
. (16)

If x∗ ∈ D(ρ, e0, x
∗
0, δ) with a sufficiently small δ > 0, then from (9), the definition (14) of

D(ρ, e0, x
∗
0, δ) and (16), we have that

〈x∗, e0 + t0h〉 ≤ ρ∗(x∗)ρ(e0 + t0h) ≤ (c+ δ)ρ(e0 + t0h)

≤ (c+ δ)ρ(e0) +
c+ δ

c
〈x∗0, t0h〉+

c+ δ

2c
εt0,

and then,

〈x∗ − x∗0, t0h〉 ≤ (c+ δ)ρ(e0)− 〈x∗, e0〉+
δ

c
〈x∗0, t0h〉+

c+ δ

2c
εt0

≤ (c+ δ)ρ(e0)− (c− δ)ρ(e0) +
δ

c
〈x∗0, t0h〉+

c+ δ

2c
εt0.

Hence, for a sufficiently small δ > 0, we obtain that

∀h ∈ S, 〈x∗ − x∗0, h〉 ≤
2δ

t0
ρ(e0) +

δ

c
〈x∗0, h〉+

c+ δ

2c
ε < ε;
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i.e., (15) holds.

To obtain the desired generic properties, we have to introduce a Banach–Mazur game
([11]) on an open subset Ω of X. Let W be a subset of Ω. A Banach–Mazur game
with the objective subset W on Ω is a nested open subset (of Ω) sequence U1 ⊃ V1 ⊃
U2 ⊃ V2 ⊃ · · · ⊃ Un ⊃ Vn ⊃ · · ·, where Un and Vn are chosen by player A and player

B alternatively. We say that B is the winner if
⋂∞
n=1 Vn ⊂ W , where

⋂∞
n=1 Vn is not

necessarily nonempty. A strategy for B is a sequence of maps fn such that for any n, fn
is defined for every U1, U2, . . . , Un chosen by A, and fn(U1, U2, . . . , Un) is an open subset
contained in Un. A strategy for B is a winning strategy if for any of A’s choices of {Un}
such that U1 ⊃ f1(U1) ⊃ U2 ⊃ f2(U1, U2) ⊃ · · · ⊃ Un ⊃ fn(U1, U2, · · · , Un) ⊃ · · ·, B is
the winner.

Proposition 7. ([11]) (Banach–Mazur Game Theorem) The objective subset W contains
a dense Gδ subset of Ω if and only if B has a winning strategy.

Finally, we need the following properties of maximal monotone mappings T :X → 2X
∗
.

Proposition 8. Let T :X → 2X
∗

be a maximal monotone mapping. If Ω = int { x ∈
X |T (x) 6= ∅ } is nonempty, then

(i) T is locally bounded on Ω;

(ii) T is upper semicontinuous from (X, ‖ · ‖) to (X∗, w∗) on Ω;

(iii) let e ∈ X, U be an open subset of Ω and x̄ ∈ U ; if for some x̄∗ ∈ T (x̄) and some
b ∈ IR, 〈x̄∗, e〉 > b, then there exists an open subset V ⊂ U such that

∀x∗ ∈ T (V ), 〈x∗, e〉 > b. (17)

Proof. i) and ii) are well-known ([14]). iii) has been posed in [15] in a little weaker form.
We show iii) as follows. Take t > 0 such that x̄ + te ∈ U . By the monotonicity of T for
any x∗ ∈ T (x̄+ te) we have 〈x∗, e〉 ≥ 〈x̄∗, e〉 > b, i.e., T (x̄+ te) ⊂ { y∗ ∈ X∗ | 〈y∗, e〉 > b },
which means that { y∗ ∈ X∗ | 〈y∗, e〉 > b } is a w∗-open neighborhood of T (x̄+ te). From
ii), there exists an open neighbourhood V of x̄ + te, V ⊂ U , such that T (V ) ⊂ { y∗ ∈
X∗ | 〈y∗, e〉 > b }.

Now we deal with our main theorem.

Theorem 1. Assume that X admits a Lipschitz β-differentiable bump function, i.e.,

(H) holds. If T :X → 2X
∗

is a maximal monotone mapping on X and Ω := int { x ∈
X |T (x) 6= ∅ } is nonempty, then T is β-continuous in a dense Gδ subset of Ω.

Proof. By using Proposition 7, we suppose that player A and player B are playing a
Banach–Mazur game on Ω with the objective subset

W = { x ∈ Ω |T is β-continuous atx. } (18)

It means that given A’s choice of {Un}, we will find B’s choice {Vn} such that
⋂∞
n=1 Vn ⊂

W ; i.e., if y∞ ∈
⋂∞
n=1 Vn, then T is a singleton and β-continuous at y∞. For proving that
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T (y∞) is a singleton, we will construct a β-well function of the form ρ∞ in Proposition 3
and show that for e∞ = limn→∞ en, we have

∀y∗∞ ∈ T (y∞),
〈y∗∞, e∞〉
ρ∞(e∞)

= ρ∗∞(y∗∞) = const,

from which, by using Proposition 6 i), it follows y∗∞ = const∇βρ∞(e∞). And then, by

using Proposition 6 ii), we will show that for any S ∈ β and any ε > 0, there exists a
sufficient large n such that T (Vn) ⊂ T (y∞) +DS,ε, which implies the β-continuity of T at
y∞.

We begin this process. Firstly, we take a β-well function ρ0 on X, the existence of which
is due to Proposition 2 and 3. ρ∗0 is generated as in (9) by ρ0 and due to Proposition 5,

we may suppose that ε0 ∈ (0, 1) satisfies

∀x∗ ∈ X∗, (1− ε0)‖x∗‖∗ ≤ ρ∗0(x∗) ≤ ‖x∗‖∗. (19)

For any U1 chosen by A, due to Proposition 8 i), B can choose V1 ⊂ U1 such that T is
bounded in V1. Then the playing is going on with U2 ⊂ V1. Set

s0 = sup
x∗∈T (U2)

ρ∗0(x∗) < +∞. (20)

Without loss of generality, we suppose that s0 > 0; otherwise, the proof is trivial. From
(9) and (20), there exist x̄ ∈ U2, x̄∗ ∈ T (x̄) and e1 ∈ X such that

〈x̄∗, e1〉 > ρ0(e1)(1− ε0)s0. (21)

Due to iii) of Proposition 8, B can choose V2 ⊂ U2 such that

∀x∗ ∈ T (V2), 〈x∗, e1〉 > ρ0(e1)(1− ε0)s0. (22)

For any U3 chosen by A with U3 ⊂ V2, define

D1 =
{
e ∈ X

∣∣∣ sup
x∗∈T (U3)

〈x∗, e〉 ≥ ρ0(e)(1− ε0)s0

}
. (23)

Then (22) implies e1 ∈ D1. In addition, because of the boundedness of T (U3),
x 7→ supx∗∈T (U3)〈x∗, x〉 is continuous, hence, D1 is closed.

Denote
ρ1(x) = ρ0(x) + µ1(x− e1), (24)

where µ1 is defined as in Proposition 4. Set

s1 = sup
x∗∈T (U3)

ρ∗1(x∗). (25)

Then from U3 ⊂ U2 and (10), s1 ≤ s0 and from (22), (24) and (25), we deduce that

∀x∗ ∈ T (U3), (1− ε0)s0 <
〈x∗, e1〉
ρ0(e1)

=
〈x∗, e1〉
ρ1(e1)

≤ s1 ≤ s0. (26)
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Take ε1 so small that

ε1 ∈ (0, (1− ε0)2/22) and (1− ε0)s0 < (1− ε1)s1. (27)

By the same reasoning, B can choose V3 ⊂ U3 and e2 such that

∀x∗ ∈ T (V3), 〈x∗, e2〉 > ρ1(e2)(1− ε1)s1. (28)

For any U4 chosen by A with U4 ⊂ V3, define

D2 =
{
e ∈ X

∣∣∣ sup
x∗∈T (U4)

〈x∗, e〉 ≥ ρ1(e)(1− ε1)s1

}
. (29)

Then e2 ∈ D2, D2 ⊂ D1 and D2 is closed.

Now for ρn−1, sn−1, εn−1, en, Vn+1, Un+2 and Dn given as above, n = 1, 2, . . ., set

ρn(x) = ρn−1(x) + µn(x− en), (30)

sn = sup
x∗∈T (Un+2)

ρ∗n(x∗). (31)

Then

∀x∗ ∈ T (Un+2), (1− εn−1)sn−1 <
〈x∗, en〉
ρn−1(en)

=
〈x∗, en〉
ρn(en)

≤ sn ≤ sn−1. (32)

Take εn so small that

εn ∈ (0, (1− ε0)2/2n+1) and (1− εn−1)sn−1 < (1− εn)sn. (33)

B can choose en+1 and Vn+2 ⊂ Un+2 such that

∀x∗ ∈ T (Vn+2), 〈x∗, en+1〉 > ρn(en+1)(1− εn)sn. (34)

For any Un+3 chosen by A with Un+3 ⊂ Vn+2, set

Dn+1 =
{
e ∈ X

∣∣∣ sup
x∗∈T (Un+3)

〈x∗, e〉 ≥ ρn(e)(1− εn)sn

}
. (35)

Then en+1 ∈ Dn+1, Dn+1 ⊂ Dn and Dn+1 is closed.

As the game continues, B obtains sequences {ρn−1}∞n=1, {sn−1}∞n=1, {εn−1}∞n=1, {en}∞n=1,

{Un}∞n=1, {Vn}∞n=1 and {Dn}∞n=1.

For any xn ∈ Dn+1, from (35), there exists x∗n ∈ T (Un+3) satisfying

〈x∗n, xn〉
ρn−1(xn) + µn(xn − en)

≥ (1− εn)sn > (1− εn−1)sn−1

or

ρn−1(xn) + µn(xn − en) <
〈x∗n, xn〉

(1− εn−1)sn−1
. (36)
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On the other hand, since x∗n ∈ T (Un+3) ⊂ T (Un+1) ⊂ T (U2), by (31), we have that

〈x∗n, xn〉
ρn−1(xn)

≤ sn−1 or ρn−1(xn) ≥ 〈x
∗
n, xn〉
sn−1

. (37)

Obviously, ‖xn‖ < 1; otherwise ρn−1(xn) = +∞, which contradicts (36). So, from (19)
and (20), it follows

〈x∗n, xn〉 ≤ ‖x∗n‖∗ ≤ ρ∗0(x∗n)/(1− ε0) ≤ s0/(1− ε0). (38)

Therefore, from (36), (37), (33), (27) and (38), it follows that

µn(xn − en) ≤ 〈x∗n, xn〉
(1− εn−1)sn−1

− 〈x
∗
n, xn〉
sn−1

≤ εn−1〈x∗n, xn〉
(1− εn−1)sn−1

≤ εn−1

(1− ε0)2
<

1

2n
.

Hence, by (8) i), ‖xn − en‖ < 1/n. Thus, {Dn}∞n=1 is a nested sequence of closed subsets
with diameters decreasing to 0 and hence there exists a unique e∞ ∈ X such that

{e∞} =
∞⋂

n=1

Dn. (39)

Now we show that T is β-continuous at any y∞ ∈
⋂∞
n=1 Vn. In fact, for any y∗∞ ∈ T (y∞) ⊂

T (Vn+2), from (34), we have that

〈y∗∞, en+1〉 ≥ ρn(en+1)(1− εn)sn. (40)

By (32) and (33), sn converges to some s∞ > 0. By using Proposition 4, ρ∞(x) = ρ0(x) +∑∞
k=1 µk(x− ek) is a β-well function on X and ρn → ρ∞ uniformly on {x ∈ X | ‖x‖ < 1}.

Joining up with en → e∞ and εn → 0, from (40), we deduce that

〈y∗∞, e∞〉 ≥ ρ∞(e∞)s∞. (41)

On the other hand, for any n,

〈y∗∞, e∞〉
ρ∞(e∞)

≤ ρ∗∞(y∗∞) ≤ ρ∗n(y∗∞) ≤ sn.

then we also have
〈y∗∞, e∞〉
ρ∞(e∞)

≤ ρ∗∞(y∗∞) ≤ s∞. (42)

Thus, (41) and (42) ensure that

ρ∗∞(y∗∞) =
〈y∗∞, e∞〉
ρ∞(e∞)

= s∞. (43)

From Proposition 6 i), y∗∞ = s∞∇βρ∞(e∞), and it follows that T (y∞) is a singleton.



Y. Li, S. Shi / Differentiability of Convex Functions on a Banach Space 57

Moreover, for any given δ > 0, we have that for n sufficiently large,

∀y∗ ∈ T (Vn+2) ⊂ T (Un+2), ρ∗∞(y∗) ≤ ρ∗n(y∗) ≤ sn < s∞ + δ. (44)

At the same time, from (34), we have

∀y∗ ∈ T (Vn+2),
〈y∗, en+1〉
ρn(en+1)

> (1− εn)sn (45)

and noting (by (31)) that ‖e∞‖ < 1 and ρn ≥ 1,
∣∣∣∣
〈y∗, e∞〉
ρ∞(e∞)

− 〈y
∗, en+1〉

ρn(en+1)

∣∣∣∣

≤
∣∣∣∣〈y∗, e∞〉

(
1

ρ∞(e∞)
− 1

ρn(en+1)

)∣∣∣∣+

∣∣∣∣
1

ρn(en+1)
〈y∗, e∞ − en+1〉

∣∣∣∣

≤ ‖y∗‖∗
(∣∣∣∣

1

ρ∞(e∞)
− 1

ρn(en+1)

∣∣∣∣+ ‖e∞ − en+1‖
)

≤ s0

1− ε0

(∣∣∣∣
1

ρ∞(e∞)
− 1

ρn(en+1)

∣∣∣∣+ ‖e∞ − en+1‖
)
.

When n tends to +∞, the last two terms above tend to 0. Hence, joining up with (45),
we have also that for n sufficiently large,

〈y∗, e∞〉
ρ∞(e∞)

≥ s∞ − δ. (46)

Due to Proposition 6 ii), from (44) and (46), we deduce that for any S ∈ β and ε > 0,
there exists a sufficiently large n such that

T (Vn+2) ⊂ T (y∞) +DS,ε,

i.e., T is β-continuous at y∞. Thus,
⋂∞
n=1 Vn ⊂ W .

Corollary. If a Banach space X admits a Lipschitz β-differentiable bump function, i.e.,
(H) holds, then every continuous convex function on a convex open subset Ω ⊂ X is
β-differentiable in a dense Gδ subset of Ω.

Remark 1. Recall that a map φ: Ω→ 2X
∗
, where Ω may be any Hausdorff space, is said

to be a w∗-usco map if φ is nonempty compact convex valued and upper semicontinuous

for the w∗-topology of X∗. A w∗-usco map φ: Ω→ 2X
∗

is said to be minimal if there is

no w∗-usco map ψ: Ω→ 2X
∗

such that the graph of ψ is a proper subset of the graph of φ
([15]). A maximal monotone mapping on X is an example of minimal w∗-usco map if we
take Ω := int { x ∈ X |T (x) 6= ∅ }. As in [15], we can use the same method to generalize
Theorem 1 as follows.

Theorem 2. Assume that X admits a Lipschitz β-differentiable bump function, i.e.,

(H) holds. If Ω is a Baire space and φ: Ω → 2X
∗

is a minimal w∗-usco map, then φ is
β-continuous in a dense Gδ subset of Ω.
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Remark 2. In the proof of Theorem 1, our aim is to show (43); that is, to show that
there exists e∞ such that for any y∗∞ ∈ T (e∞) and any e ∈ X,

1

〈y∗∞, e〉

(
ρ0(e) +

∞∑

n=1

µn(e− en)

)
≥ 1

〈y∗∞, e∞〉

(
ρ0(e∞) +

∞∑

n=1

µn(e∞ − en)

)

It is similar to the generalization of Ekeland’s ε-variational principle in our paper [11], and
its proof is also as in [11]. So, combining a Banach–Mazur game, it is possible to prove a
more general ε-variational principle. We will discuss this problem in another paper.

Remark 3. The only difference between (H ′) and the existence of a β-smooth norm is
the convexity. In fact, we have the following proposition.

Proposition 9. Let X be a Banach space. If the following assumption holds:

(H ′c)





There exists a (Lipschitz) β-superdifferentiable function

µ:X → [0, 1] such that µ(0) = 0,
[
‖x‖ ≥ 1

]
=⇒

[
µ(x) = 1

]

and for some α ∈ (0, 1/2), µ is convex on {x ∈ X |µ(x) ≤ 2α}.

Then there exists a β-smooth equivalent norm on X.

Proof. Without loss of generality, we can assume that µ is symmetric. Otherwise, con-
sider (µ(x) + µ(−x))/2 instead of µ.

Define the Minkowski function p:X → IR associated to the open convex subset Ω := { x ∈
X |µ(x) < α }, i.e.,

p(x) = inf{λ > 0 | x ∈ λΩ}.
Since Ω is nonempty, symmetric and bounded, p is an equivalent norm on X. We prove
that p is β-smooth away from the origin.

Let G := ∂Ω be the boundary of Ω. It is sufficient to show that p is β-smooth at each
point of G, or, due to Proposition 1, that ∂p is β-continuous on G.

Let x0 ∈ G. Firstly, we notice that µ is convex and continuous on Ω. So, µ is subdifferen-
tiable in the sense of convex analysis at x0, and hence is β-differentiable at x0. We show
that

〈∇βµ(x0), x0〉 > 0. (47)

Otherwise, µ(0) − µ(x0) ≥ 〈∇βµ(x0),−x0〉 ≥ 0, which contradicts the fact that µ(0) =

0 < α = µ(x0).

Secondly, we show that ∂p(x0) is a singleton. In fact, it is well-known that for the indicator
function δΩ:X → IR ∪ {+∞}, defined by

δΩ(x) :=

{
0,

+∞,
if x ∈ Ω,

otherwise,

we have that

∂δΩ(x0) =
⋃

λ≥0

λ∂p(x0) =
⋃

λ≥0

λ∇βµ(x0),
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(see, for instance, [3], pp. 55–56.) and it follows that

∂p(x0) ⊂
⋃

λ≥0

λ∇βµ(x0). (48)

On the other hand, since p is a norm on X, we have that

∀x∗ ∈ ∂p(x0), 〈x∗, x0〉 = p(x0) = 1. (49)

Therefore, from (47), (48) and (49), we deduce that

∂p(x0) =

{ ∇βµ(x0)

〈∇βµ(x0), x0〉

}
.

i.e., the Gâteaux derivative of p at x0 is

∇p(x0) =
∇βµ(x0)

〈∇βµ(x0), x0〉
. (50)

Finally, we show that ∇p is β-continuous on G. In fact, from (50), it is easy to see that
in general,

∀x 6= 0, ∇p(x) = p(x)
∇βµ(x/p(x))

〈∇βµ(x/p(x)), x/p(x)〉 .

So, for any x0 ∈ G and any x, h ∈ X, we have that

〈∇p(x)−∇p(x0), h〉

=

〈
p(x)∇βµ(x/p(x))

〈∇βµ(x/p(x)), x/p(x)〉 −
∇βµ(x0)

〈∇βµ(x0), x0〉
, h

〉

≤
∣∣∣∣

p(x)− 1

〈∇βµ(x/p(x)), x/p(x)〉〈∇βµ(x/p(x)), h〉
∣∣∣∣ (51)

+

∣∣∣∣
1

〈∇βµ(x/p(x)), x/p(x)〉 −
1

〈∇βµ(x0), x0〉

∣∣∣∣ |〈∇βµ(x/p(x)), h〉|

+
1

〈∇βµ(x0), x0〉
〈∇βµ(x/p(x))−∇βµ(x0), h〉.

Take any S ∈ β. Then, suph∈S ‖h‖ < +∞. Since ∇βµ is locally bounded and ‖ · ‖-
w∗-continuous over {x |µ(x) < 2α} and 〈∇βµ(x0), x0〉 > 0, it is easy to deduce that the

function x 7→ 1/〈∇βµ(x/p(x)), x/p(x)〉 is continuous at x0. Hence, joining up with the

continuity of p, when x → x0, the first and second added terms of (51) can be converges
to 0 uniformly on h ∈ S. Moreover, due to the β-continuity of ∇βµ over {x |µ(x) < 2α},
the third one also converges to 0.

Thus, ∇p is β-continuous on G.

Given a C1 bump function, we can apply Leduc’s method to construct a C1 positive
homogeneous function which is different from an equivalent norm only in the subadditivity
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([14], Theorem 3.6). This together with Proposition 9 tells us that the essential obstruction
to the transition from a smooth bump function to a smooth norm is exactly the lack of
convexity.

This is the reason why, in our proof of Theorem 1, we have avoided the use of the subaddi-
tivity and the subdifferentiability of norm; in particular, we did not use Cauchy sequences,
but used sequences of nested closed subsets to show the convergence of {en}.
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