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We study various properties of convex functions and their connections to the structure of the spaces
on which they are defined. In particular, it is shown boundedness properties of convex functions on
various bornologies are related to sequential convergence in dual topologies. Convex functions whose
subdifferentials have range with nonconvex interior are constructed on nonreflexive spaces, and we exhibit
examples of convex functions on infinite dimensional spaces whose subdifferentials have sparse domains.
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1. Introduction

It is often important to know when convex functions are bounded on a certain class
of sets, for example, to show the Moreau-Yosida approximations of a convex function
converge uniformly on bounded sets it is necessary and sufficient to have the function
bounded on bounded sets. In a different direction, in the study of monotone operators
it is of interest to know when the interior of the range of the subdifferential of a convex
function is convex. The goal of this note is to provide limiting examples for these and
other properties of convex functions and their subdifferentials. As a byproduct, several
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Banach space properties will be characterized by the existence (or nonexistence) of lower
semicontinuous convex functions whose subdifferentials possess certain properties.

While it may not be surprising that a Banach space is finite dimensional if and only if
every continuous convex function is bounded on bounded sets, the reason this is true is
not because bounded closed sets are compact, but rather because weak star and norm
convergence agree sequentially only in duals of finite dimensional spaces. Indeed, if one
can construct a continuous convex function on each infinite dimensional space that is
unbounded on some bounded set, then one obtains the Josefson-Nissenzweig theorem as
a corollary (see Lemma 2.3). Moreover, spaces on which continuous convex functions are
bounded on weakly compact sets are characterized by the coincidence of Mackey and weak
star convergence for sequences in the dual space, rather than by the Schur property. A
complete discussion of these results and corresponding results for different bornologies is
presented in section two.

In the third section, a characterization of reflexive spaces is given via convexity properties
of the interior of the range of subdifferential mappings. Using recent results of Moors
([11]) and Fonf ([7]) respectively, we also observe that spaces with the Radon-Nikodým
property and respectively incomplete normed spaces can be characterized in terms of the
size of the range of subdifferentials of certain convex functions.

The fourth section builds on an example of Phelps ([13]) to construct examples of con-
vex functions on infinite dimensional Banach spaces whose domains are large but have
subdifferentials with relatively small domains.

We will work with real Banach spaces, and occasionally with incomplete real normed
linear spaces. For a normed linear space X, its continuous dual will be denoted by X∗,
we also let BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1}. For a convex function
f , the domain of f is the set dom(f) := {x : f(x) <∞}; by convention we will not allow
functions to take the value −∞. The subdifferential of f at x is defined by

∂f(x) := {Λ ∈ X∗ : 〈Λ, y− x〉 ≤ f(y)− f(x) for all y ∈ X}. The domain of ∂f is defined
by dom(∂f) := {x : ∂f(x) 6= ∅} and the range of ∂f is defined by R(∂f) := {Λ ∈ X∗ :
Λ ∈ ∂f(x) for some x ∈ X}.

2. Boundedness properties of convex functions

We will call a collection β of bounded subsets of X a bornology if it contains the compact
sets and if it is closed under addition and scalar multiplication. The topology τβ on X∗

will denote the topology of uniform convergence on β-sets. The classes of interest to us will
be the bounded, weakly compact and compact sets, which in a Banach space respectively
generate the norm, Mackey and bounded weak star topology on X∗, where the latter
agrees with the weak star topology on bounded sets.

Before proceeding to our main results, we record the following well-known facts for com-
pleteness.

Fact 2.A. Let X be a locally convex topological vector space. Then the following are
equivalent:

(a) X is barrelled;
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(b) every lsc convex function on X is continuous throughout the interior of its domain;

(c) every lsc seminorm on X is continuous.

In particular, lsc convex everywhere finite functions on Banach spaces are continuous; this
can be shown in a straightforward fashion using the Baire category theorem. Throughout
our discussion, continuous functions will be everywhere finite.

Fact 2.B. Let f be a continuous convex function on a normed space. Then f is bounded
on β-sets if and only if ∂f is bounded on β-sets, where β is a bornology.

Proof. First, dom(∂f) = X since f is continuous and convex, this means f is bounded
below on bounded sets.

⇒: If ∂f is unbounded on some W ∈ β, we choose {wn}∞n=1 ⊂ W such that Λn ∈ ∂f(wn)

and ‖Λn‖ > n2. Choose hn ∈ X such that ‖hn‖ ≤ 1
n and 〈Λn, hn〉 ≥ n. Now K =

{hn}∞n=1∪{0} is compact and so W+K ∈ β. However, f(wn+hn) ≥ f(wn)+n ≥ inf
W
f+n

and so f is unbounded on W +K.

⇐: If f is unbounded on W ∈ β, it must be unbounded above on W . Thus we fix w0 ∈ W
and choose wn ∈ W such that f(wn) → ∞. For Λn ∈ ∂f(wn) we have 〈Λn, w0 − wn〉 →
−∞ and so ‖Λn‖ → ∞.

Lemma 2.1. Let β be a bornology on some Banach space X. Suppose ‖x∗n‖ = 1,

x∗n
τβ→ 0 and let f be defined by f(x) :=

∞∑

n=1

fn(〈x∗n, x〉), where fn : IR → [0,∞) is defined

by fn(t) := 0 if |t| ≤ 1
2 and fn(t) := n(|t| − 1

2) otherwise. Then:

(a) f is a continuous convex function, in fact for each W ∈ β, the restriction of f to

W + 1
4BX is Lipschitz.

(b) If x∗n does not converge to 0 in the β1-topology on X∗ for some other bornology β1 on
X, then f is unbounded on some β1-set.

Proof. (a) Let W ∈ β, choose n0 such that sup
W
|x∗n| <

1

4
for all n > n0. Then f(v) =

n0∑

n=1

fn(〈x∗n, v〉) for all v ∈ W + 1
4BX . Because each of the functions fn ◦ x∗n is Lipschitz,

this shows f is a finite sum of Lipschitz functions on W + 1
4BX . Therefore the restriction

of f to W + 1
4BX is Lipschitz.

(b) Let W ∈ β1 be such that lim sup
n
{sup
W

x∗n} > ε. Now choose a subsequence {xnk}k
such that sup

W
x∗nk > ε for all k. Letting W1 = 2

εW we can choose wk ∈ W1 such that

〈x∗nk , wk〉 ≥ 2. Then f(wk) ≥ nk, and so f is unbounded on W1.

Observe that a category argument will show that one cannot have homogeneous convex
functions as given by the above lemma.
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Theorem 2.2. Let X be a Banach space. The following are equivalent:

(a) X is finite dimensional;

(b) weak star and norm convergence agree sequentially in X∗;

(c) each continuous convex function on X is bounded on bounded sets;

(d) for each continuous convex function f on X, ∂f is bounded on bounded sets.

Proof. It is clear that (a) implies (c) and the equivalence of (c) and (d) follows from
Fact 2.B. If (b) does not hold, then there is a sequence in SX∗ that converges weak∗ to 0.
Hence Lemma 2.1, with β the compact sets and β1 the bounded sets, shows that (c) is not
satisfied. The implication (b) ⇒ (a) is precisely the Josefson-Nissenzweig theorem (see
[6, Chapter XII]).

To develop results for boundedness properties of convex functions on other bornologies,
we will need the following lemma.

Lemma 2.3. Suppose f : X → IR is continuous convex, {xn}∞n=1 is bounded and

f(xn)→∞. For n such that f(xn) > inf
X
f , let φn = x∗n/‖x∗n‖ where x∗n ∈ ∂f(xn). Then

φn
τβ→ 0, if f is bounded on β-sets.

Proof. Because ‖xn‖ ≤ M for all n and some M > 0, we have 〈φn,−xn〉 ≥ −M for all n.
Suppose φn does not converge to 0 in the τβ-topology. Then by passing to a subsequence

if necessary, we can find W ∈ β such that sup
W

φn > ε for all n. Let W1 = M
ε W and

fix wn ∈ W1 such that 〈φn, wn〉 ≥ M . Consequently 〈φn, wn − xn〉 ≥ 0 for all n and so
〈x∗n, wn − xn〉 ≥ 0 for all n. Therefore

f(wn) ≥ f(xn) + 〈x∗n, wn − xn〉 ≥ f(xn) for all n.

Since f(xn)→∞, this contradicts the boundedness of f on W1.

Remark. Observe that Lemma 2.3 justifies the use of the highly nontrivial Josefson-
Nissenzweig theorem in the proof of Theorem 2.2. Indeed, suppose f is a continuous
convex function on a Banach space that is unbounded on a bounded set. Because f is
continuous, it is bounded on compact sets. Thus we may apply Lemma 2.3, with β the
compact sets, to produce a sequence in SX∗ that converges weak star to 0.

The following theorem, in particular, shows each continuous convex function on an As-
plund space (see [14]) is bounded on bounded sets provided it is bounded on weakly
compact sets.

Theorem 2.4. For a Banach space X, the following are equivalent.

(a) X 6⊃ `1.

(b) Mackey and norm convergence agree sequentially in X∗.

(c) Every continuous convex function on X that is bounded on weakly compact sets is
bounded on bounded sets.
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(d) ∂f is bounded on bounded sets for each continuous convex function f with ∂f bounded
on weakly compact sets.

Proof. The equivalence of (a) and (b) was shown by Ørno ([12]); see also [1, Theorem
5]. It follows from Fact 2.B that (c) and (d) are equivalent.

(b) ⇒ (c): We suppose (b) holds and that f is a continuous convex function satisfying
f(xn) → ∞ where {xn}∞n=1 is bounded. Then {φn}n given by Lemma 2.3 does not
converge in norm to 0. Therefore it does not converge Mackey to 0 by the hypothesis.
Consequently Lemma 2.3, with β the weakly compact sets, shows f is unbounded on some
weakly compact set.

(c) ⇒ (b): Suppose (b) fails. Then there is a sequence {x∗n}∞n=1 ⊂ SX∗ that converges
Mackey to 0. Using this sequence with β the weakly compact sets and β1 the bounded
sets in Lemma 2.1, shows that there is a continuous convex function bounded on weakly
compact sets but unbounded on some bounded set; that is (c) fails.

A Banach space is said to have the Schur property if its weakly compact sets are norm
compact. The principal example of a space with the Schur property is `1(Γ) for any set
Γ.

Theorem 2.5. A Banach space X has the Schur property if and only if every lsc convex
function on X is bounded on weakly compact subsets of the interior of its domain.

Proof. A lsc convex function is continuous on the interior of its domain (see Fact 2.A)
and thus if X has the Schur property such a function is bounded on weakly compact sets
of its domain. Conversely, suppose X does not have the Schur property, then there is a
separable subspace Z ⊂ X which fails to be Schur. Using the w∗-sequential compactness

of BZ∗ , it is not hard to construct {zn, z∗n}∞n=1 ⊂ Z × Z∗ such that zn
w→ 0, z∗n

w∗→ 0,

‖z∗n‖ = 1 while 〈z∗n, zn〉 = 1 for all n (see [2, Theorem 3.4]). Let z̃∗n be a Hahn-Banach

extension of z∗n to all of X. Define f(x) :=
∞∑

n=1

fn(〈z̃∗n, x〉) where the fn’s are as in Lemma

2.1. Now f is unbounded on the weakly compact set {zn}∞n=1 ∪ {0}. On the other hand

arguing as in Lemma 2.1(a), one can check f is continuous on a set containing Z + 1
4BX

(or one may directly check f is finite on this set and apply Fact 2.A).

It turns out that the Schur property does not characterize the spaces for which everywhere
defined continuous convex functions are bounded on weakly compact sets. To see this, we
will need the following lemma.

Lemma 2.6. Suppose f : X → IR is continuous and convex, {xn}∞n=1 is bounded and

f(xn) → ∞. For n such that f(xn) > min
X

f , we let φn = x∗n/‖x∗n‖ where x∗n ∈ ∂f(xn).

Then lim sup
n→∞

〈φn, xn〉 > 0.

Proof. By Lemma 2.3 we know φn
w∗→ 0, and thus {φn}∞n=1 is not relatively norm com-

pact. Hence by passing to a subsequence, we may assume there exists ε > 0 such that
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d(φn, En−1) > ε where En−1 = span{φk : 1 ≤ k ≤ n − 1}. To see this, observe if
lim sup
n→∞

{sup
k
d(φk, En)} = 0, then {φn}∞n=1 would have a finite ε-net for each ε > 0 because

it is a bounded set and because finite dimensional spaces have norm compact balls. This
would contradict the fact {φn}∞n=1 is not relatively norm compact.

Replacing φn with φn
ε we have

d(φn, En−1) > 1 for all n. (2.1)

We suppose lim sup
n→∞

〈φn, xn〉 ≤ 0, since otherwise there is nothing more to show. By

passing to a further subsequence we may assume

〈φn, xn〉 <
1

2n
for all n;

clearly (2.1) still holds for this subsequence. By induction we can choose {hk}∞k=1 ⊂ 2BX
and a subsequence {φnk}∞k=1 such that:

〈φnk , hj〉 = 0 for j ≥ k + 1; (2.2)

〈φnk , hk〉 = 2; (2.3)

|〈φnk , hj〉| ≤
1

2k
for j ≤ k − 1. (2.4)

Indeed, supposing φnj , hj have been chosen for j ≤ k − 1, by w∗-convergence we choose

nk > nk−1 such that |〈φnk , hj〉| ≤ 1
2k

for all j ≤ k − 1. By (2.1), φnk 6∈ Enk−1 + BX∗

which is weak∗ closed because it is the sum of a weak∗ compact ball with a weak∗ closed
subspace. Thus we may choose hk ∈ SX separating Enk−1 + BX∗ and φnk . Multiplying

hk by an appropriate scalar with absolute value not exceeding 2, we have 〈φj, hk〉 = 0 for

j ≤ nk − 1 and 〈φnk , hk〉 = 2. Now let h =

∞∑

k=1

2−khk. Then

〈φnk , h〉 = 〈φnk , 2−khk〉+
∑

j<k

2−j〈φnk , hj〉+
∑

j>k

2−j〈φnk , hj〉. (2.5)

Now, (2.2) implies
∑

j>k

2−j〈φnk , hj〉 = 0, while (2.4) implies

∑

j<k

2−j〈φnk , hj〉 ≥
∑

j<k

2−j(−2−k) > −2−k.

Combining this with (2.3) and (2.5) yields

〈φnk , h〉 > 2 · 2−k − 2−k = 2−k.

Thus 〈φnk , h− xnk〉 > 0 and hence 〈x∗nk , h− xnk〉 > 0 as well. Consequently

f(h) ≥ f(xnk) + 〈x∗nk , h− xnk〉 ≥ f(xnk).
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Because f(xk)→∞, this contradicts the fact f is finite valued.

Since `∞ is a Grothendieck space with the Dunford-Pettis property (see [6, p. 103, 113]),
it follows that weak star and Mackey convergence agree sequentially in `∗∞. Therefore,
the next theorem shows `∞ is a space that does not have the Schur property and yet each
continuous convex function is bounded on weakly compact sets.

Theorem 2.7. Let X be a Banach space. The following are equivalent:

(a) weak star and Mackey convergence agree sequentially in X∗;

(b) each continuous convex function on X is bounded on weakly compact subsets of X;

(c) ∂f is bounded on weakly compact sets for each continuous convex f .

Proof. Fact 2.B shows (b) and (c) are equivalent. To prove (a) implies (b) we suppose
there is a continuous convex function that is not bounded on some weakly compact set
W . We choose {xn}∞n=1 ⊂ W such that f(xn) → ∞. For φn as in Lemma 2.3, we have

that φn
w∗→ 0 by Lemma 2.3. However, by Lemma 2.6, 〈φn, xn〉 6→ 0 and thus φn does not

converge Mackey to 0. The implication (b) ⇒ (a) follows from Lemma 2.1.

More generally, using Lemmas 2.1, 2.3 and 2.6 as in the above theorem, one can prove
the following result (compare also with Theorems 2.2 and 2.4).

Theorem 2.8. For a Banach space X with bornologies β ⊂ β1, the following are
equivalent.

(a) Each continuous convex function bounded on β-sets is bounded on β1-sets.

(b) τβ and τβ1
convergence agree sequentially in X∗.

We refer the reader to [1] for additional characterizations (in terms of differentiability) of
the dual sequential convergence notions studied in this section.

Remark. One can also form dual versions of the results just discussed. For example,
a dual version of Theorem 2.2 is: A Banach space X has the Schur property if and only
if every continuous weak∗-lsc convex function on X∗ is bounded on bounded sets. A dual
version of Theorem 2.7 is: A Banach space X has the Dunford-Pettis property if and only
if every continuous weak∗-lsc convex function on X∗ is bounded on weakly compact sets.
A straightforward variation of Lemma 2.3 in which the x∗n’s there are ε-subgradients (any
fixed ε > 0 will do) can be used to prove these results. Indeed, w∗-lsc, continuous convex
functions on X∗ have ε-subgradients from X at each point in X∗, therefore the dual proofs
can now be performed as the originals without difficulty.

3. Properties of the range of the subdifferential mapping

We begin with a result that will allow us to characterize reflexive spaces via various
properties of the range of the subdifferential mapping, and more generally properties of

maximal monotone operators. We shall say a function f is coercive if lim
‖x‖→∞

f(x)

‖x‖ =∞.
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Theorem 3.1. A Banach space X is reflexive if the interior of R(∂f) is convex for each
coercive continuous convex function f on X.

Proof. Suppose X is nonreflexive and p ∈ X with ‖p‖ = 5 and p∗ ∈ Jp where J is the

duality map, the subdifferential of 1
2‖ · ‖2. Define

f(x) := max

{
1

2
‖x‖2, ‖x− p‖ − 12 + 〈p∗, x〉, ‖x + p‖ − 12− 〈p∗, x〉

}

for x ∈ X.

For a function g defined by g := max{φj : 1 ≤ j ≤ n}, where φj are continuous convex

functions, one has ∂g(x) = conv
⋃{∂φj(x) : φj(x) = g(x)}. Thus we have

∂f(p) = BX∗ + p∗, ∂f(−p) = BX∗ − p∗, ∂f(x) = Jx for x ∈ BX (3.1)

using inequalities like ‖p− p‖ − 12 + 〈p∗, p〉 = 13 > 25
2 = 1

2‖p‖2. Moreover, f(0) = 0 and

f(x) > 1
2‖x‖ for ‖x‖ > 1, thus ‖Λ‖ > 1

2 if Λ ∈ ∂f(x) and ‖x‖ > 1. Combining this with

(3.1) shows R(∂f) ∩ 1
2BX∗ = R(J) ∩ 1

2BX∗ .

Let UX∗ denote the open ball in X∗. Now James’ theorem gives us points x∗ ∈ 1
2UX∗ \

R(J), thus UX∗ \R(∂f) 6= ∅. However from (3.1)

UX∗ ⊂ conv((p∗ + UX∗) ∪ (−p∗ + UX∗)) ⊂ conv intR(∂f)

so R(∂f) has nonconvex interior.

Corollary 3.2. A normed linear space X is reflexive if and only if every continuous
convex function f on X has intR(∂f) convex.

Proof. If X is reflexive, then R(∂f) = dom(∂f ∗) and int dom(∂f ∗) = int dom(f ∗) which
is convex. For the converse, observe that the proof of Theorem 3.1 applies to any normed

linear space for which 1
2UX∗ \ J(X) 6= ∅. Let X̃ denote the completion of X. We have

J(X) ⊂ J(X̃). Hence, if X̃ is not reflexive, then by James’ theorem 1
2UX∗ \J(X̃) 6= ∅ and

so 1
2UX∗ \J(X) 6= ∅. If X̃ is reflexive, then we renorm X̃ with a strictly convex norm (see

e.g. [5, Section VII.2]) so that J(x) ∩ J(y) = ∅ for x 6= y where J is the duality mapping

with respect to the strictly convex norm. Thus, 1
2UX∗ \ J(X) 6= ∅ in this case as well.

Remark. Suppose X is reflexive and f is a continuous, convex and coercive function.
Then for any φ ∈ X∗, f − φ has weakly compact level sets and thus attains its minimum.
Consequently, φ ∈ R(∂f), which shows R(∂f) = X∗. On the other hand, Calvert and
Fitzpatrick showed R(∂f) 6= X∗ if a Banach space X is nonreflexive and f is continuous,
convex and coercive ([4]).

Let us recall a maximal monotone operator T mapping X to subsets of X∗ is said to be
coercive provided there is a function c : [0,∞) → (−∞,∞) such that c(r) → ∞ when
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r →∞ and 〈x∗, x〉 ≥ c(‖x‖)‖x‖ for each (x, x∗) ∈ G(T ). Combining Corollary 3.2 and the
above remark with some properties of maximal monotone operators (see [16]), we obtain
the following theorem.

Theorem 3.3. Let X be a Banach space. The following are equivalent:

(a) X is reflexive;

(b) R(∂f) = X∗ for some coercive continuous convex function f on X;

(c) R(∂f) = X∗ for each coercive continuous convex function f on X;

(d) R(T ) = X∗ for each coercive maximal monotone operator T on X;

(e) the interior of R(∂f) is convex for each coercive continuous convex function f on X;

(f) the interior of R(T ) is convex for each coercive maximal monotone operator T on X;

(g) the interior of R(∂f) is convex for each continuous convex function f on X;

(h) the interior of R(T ) is convex for each maximal monotone operator T on X.

We do not know if X is reflexive provided R(∂f) has nonempty interior for each coercive
continuous convex function f on X.

Recall that a Banach space is said to have the Radon-Nikodým property (RNP) if each
bounded subset is dentable; see [3]. We will say a set is generic if it contains a dense
Gδ-set.

Theorem 3.4. A Banach space has the RNP if and only if R(∂f) is generic for each
coercive convex lsc function f .

Proof. Suppose X has the RNP and f is a coercive, convex, lsc function. Then
dom(f∗) = X∗. Because X has the RNP, Collier’s result ([3, Theorem 5.7.4]) shows
f∗ is Fréchet differentiable on a dense Gδ set—which is contained in R(∂f). To prove
the converse, we suppose X does not have the RNP. By a recent result of Moors ([11,
Theorem 4.4]), there is a norm ‖ · ‖ on X such that for its dual norm ‖ · ‖∗ on X∗, the

set S = {φ ∈ X∗ : ∂‖ · ‖∗(φ) ∩ X 6= ∅} is not generic. Now define f by f(x) = 1
2‖x‖2.

If φ ∈ R(∂f), then there is an x ∈ SX such that 〈φ, x〉 = ‖φ‖. Thus R(∂f) ⊂ S, and so
R(∂f) cannot be generic.

For general normed linear spaces we have the following result.

Theorem 3.5. Let X be a normed linear space. The following are equivalent:

(a) X is a Banach space;

(b) ∂f is maximal monotone for each lsc proper convex f ;

(c) ∂f is maximal monotone whenever R(∂f) 6= ∅ and f is a proper lsc convex function;

(d) dom(∂f) is dense in dom(f) for each proper lsc convex f ;

(e) R(∂f) 6= ∅ for each proper lsc convex f .

Proof. Rockafellar’s theorem ([14, Theorem 3.25]) shows (a) implies (b) while the Bron-
sted-Rockafellar theorem ([14, Theorem 3.18]) shows (a) implies (d). Both (b) implies (c),
and (d) implies (e) are trivial.
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(c) ⇒ (a): Let X be an incomplete normed space. Then X has a separable incomplete
subspace Z that is closed as a subset of X. By a recent result of Fonf ([7]) there is a
closed bounded convex nonempty subset C of Z with no support points. Define g to be
the indicator function of C, so g is 0 on C and ∞ elsewhere. Then g is lsc, because C is

a closed subset of X. Now ∂g is not maximal monotone. Indeed, ∂g(x) = Z⊥ for x ∈ C
and ∂g(x) = ∅ elsewhere. There is a proper maximal monotone extension of ∂g by taking

Tz = Z⊥ for all z ∈ Z.

(e)⇒ (a): Let Z and C be as above and let y ∈ Z \{0}. Define h(x) := inf{t : x+ty ∈ C}
for x ∈ X. As usual we take inf ∅ = ∞. Then h is a lsc, proper and convex function,
and the inf is attained when it is finite. Suppose x∗ ∈ ∂h(x). Then for z ∈ C we have
h(z) ≤ 0 and h(z − h(x)y) ≤ h(x). Now

〈x∗, z − h(x)y − x〉 ≤ h(z − h(x)y)− h(x) ≤ 0

and x+ h(x)y ∈ C so x∗ supports C at x + h(x)y. Thus x∗ ∈ Z⊥.

On the other hand h(x+ y) = h(x)− 1 so 〈x∗, y〉 ≤ h(x+ y)−h(x) = −1 and since y ∈ Z
we obtain the contradiction x∗ /∈ Z⊥. Therefore ∂h(x) = ∅ for all x.

4. Functions whose subdifferentials have small domain

We just saw that Fonf’s result implies there is a proper lsc convex function f on each
incomplete space with dom(∂f) = ∅. In general, dom(∂f) is not convex on spaces of

dimension 2 or larger: indeed, one can consider f(x, y) = max{|x|, 1− √y} on IR2. Our

next examples show that although dom(∂f) is dense in dom(f) in Banach spaces, in other
ways dom(∂f) can be quite small. These examples were motivated by an example of
Phelps ([13, Example 3]) and they build on the techniques therein. In what follows, we
will say X has a separable quotient, if it has a separable infinite dimensional quotient.

Example 4.1. Let X be a Banach space with a separable quotient. Then there exist
proper lsc convex functions f and g such that:

(a) dom(f) = dom(g) and dom(f) is dense in X;

(b) ∂f and ∂g are at most single-valued;

(c) dom(∂f) ∩ dom(∂g) = ∅.

Proof. Let Z be a subspace of X such that X/Z is separable and infinite dimensional.
According to [10, Proposition 1.f.3], X/Z admits a Markushevich basis, thus we can

find a biorthogonal collection {xn, x∗n}∞n=1 such that x∗n ∈ Z⊥, ‖xn‖ = 1 for all n and

span({xn}∞n=1 ∪ Z) is norm dense in X. Now define f and g as follows:

f(x) :=

∞∑

n=1

(n〈x∗n, x〉)2 and g(x) := f(x− y) where y =

∞∑

n=1

n−
7
4xn.

Let us begin by verifying (a). First, span({xn}∞n=1∪Z) ⊂ dom(f) and so dom(f) is dense
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in X. If x ∈ dom(f), then

f(x± y) =

∞∑

n=1

n2(〈x∗n, x〉 ± n−
7
4 )2 ≤

∞∑

n=1

n2(2〈x∗n, x〉2 + 2n−
7
2 ) <∞. (4.1)

It follows from (4.1) that x − y ∈ dom(f) if and only if x ∈ dom(f); consequently
dom(f) = dom(g).

For (b) it suffices to check ∂f is at most single-valued. Suppose Λ1, Λ2 ∈ ∂f(u) for some
u ∈ X. Now for z ∈ Z and xn fixed,

f(u+ t(xn + z)) = f(u) + n2(2t〈x∗n, u〉+ t2).

This is a differentiable function in t and hence Λ1, Λ2 agree on t(xn + z). Because
span({xn}∞n=1 ∪ Z) is norm dense in X, this means Λ1 = Λ2.

To prove (c) we first observe that x 6∈ dom(∂f) if there is a C > 0 such that

|〈x∗n, x〉| > Cn−
7
4 for infinitely many n. (4.2)

Indeed, suppose x ∈ dom(f) satisfies (4.2). Let m be such that |〈x∗m, x〉| > Cm−
7
4 , and

let hm = 〈x∗m, x〉xm. Then ‖hm‖ = |〈x∗m, x〉| and 〈x∗m, x− hm〉 = 0 and thus

f(x− hm)− f(x)

‖hm‖
=

∑
n6=m(n〈x∗n, x〉)2 −∑∞n=1(n〈x∗n, x〉)2

‖hm‖

=
−m2〈x∗m, x〉2
‖hm‖

≤ −Cm 1
4 .

Hence x 6∈ dom(∂f) provided (4.2) holds. Finally if x ∈ dom(∂f), then (4.2) fails to hold,
and it is easy to see x− y satisfies (4.2) and so x 6∈ dom(∂g).

We recall that x ∈ K is said to be a proper support point of the closed convex set K if
there exists Λ ∈ X∗ such that 〈Λ, x〉 = inf

K
Λ < sup

K
Λ. The next example contrasts the

distinction between nonsupport points and interior.

Example 4.2. If X is a Banach space having a separable quotient, then there is a lsc
convex function f on X whose domain K is densely spanning and dom(∂f) is contained
in the proper support points of K.

Proof. Choose {xn, x∗n}∞n=1 and Z as in Example 4.1. Let K = ∩∞n=1{x : 0 ≤ 〈x∗n, x〉 ≤
4−n}. Then K is densely spanning and we let δK be the indicator function of K. Now we
define f by

f(x) := δK(x) +

∞∑

n=1

2n〈x∗n, x〉.

We claim 〈x∗n, x̄〉 = 0 eventually provided x̄ ∈ dom(∂f). Indeed, if 〈x∗n′ , x̄〉 = εn′ for

some subsequence, then f(x̄ − εn′xn′) − f(x̄) ≤ −2n
′
εn′ ; hence in this case ∂f(x̄) = ∅.
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Now, if x̄ ∈ K satisfies 〈x∗n0
, x̄〉 = 0, then x̄ is a proper support point of K because

k̄ = x̄ + 4−n0xn0 ∈ K and 〈x∗n0
, k̄〉 > 0.

Remark. (a) We do not know if functions as in the above examples can be constructed in
every infinite dimensional Banach space. However, if the assumption of densely spanning
domains is dropped, then of course one can construct such examples on every infinite
dimensional separable subspace of a Banach space. Moreover, it is still unknown whether
every Banach space has a separable quotient. Classes of spaces that are known to have
separable quotients are weakly compactly generated spaces, and more generally spaces
with Markushevich bases. The space `∞ is an example of a space with a separable quotient
but no Markushevich basis (see [8, 10]).

(b) If a space admits an uncountable biorthogonal system, then it has a closed convex set
consisting only of proper support points ([9]) and it is still unknown whether such a set
can be constructed in each nonseparable Banach space. However, no such set exists in a
separable space and so Example 4.2 is not redundant. Moreover, it is not clear how to
construct densely spanning support sets in nonseparable spaces when densely spanning
biorthogonal systems do not exist.

The previous two examples provide us with the following characterization of finite dimen-
sional Banach spaces. Let us recall that the relative interior of a convex set is its interior
relative to its affine hull; see [15, Section 6].

Theorem 4.3. For a Banach space X, the following are equivalent.

(a) X is finite dimensional.

(b) dom(∂f) ∩ dom(∂g) 6= ∅ whenever f, g are proper lsc and dom(f) = dom(g).

(c) For every lsc convex function f with compact domain K, dom(∂f) is not contained
in the proper support points of K.

Proof. (a)⇒ (b): This is well-known because convex sets have nonempty relative interior
in IRn and the relative interior of the domain of a convex function is contained in the
domain of its subdifferential; see [15, Theorems 6.2 and 23.4].

(a) ⇒ (c): This is also well-known because points in the relative interior of dom(f) are
not proper support points of dom(f).

(b) ⇒ (a): If X is infinite dimensional, then it contains a separable subspace E so we
may apply Example 4.1 on E.

(c) ⇒ (a): If X is infinite dimensional, then we consider a separable subspace E with a
Schauder basis {xn, x∗n}∞n=1 (see [6, p. 39]). Using this basis in place of the biorthogonal
system in the proof of Example 4.2, we see that the domain K of the function f constructed
there is compact.

Acknowledgment. We owe thanks to S. Simons and several referees for their careful and incisive

reading of an earlier version of this paper.
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