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Let X be a real normed linear space, f, fn, n ∈ IN, be extended real-valued proper closed convex
functions on X . A sequence {xn} in X is called diagonally stationary for {fn} if for all n there exists
x?n ∈ ∂fn(xn) such that ‖x?n‖? → 0. Such sequences arise in approximation methods for the problem of
minimizing f . We present some general quantitative convergence results based upon metric variational
convergence theory, appropriate equi-well-posedness and conditioning concepts for the limit function f ,
and Fejér monotonicity.
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1. Introduction

Let X be a real normed linear space, f, fn, n ∈ IN, be extended real-valued proper
closed convex functions on X, and {xn} be a diagonally stationary sequence for {fn}, in
other words, for all n there exists x?n ∈ ∂fn(xn) such that ‖x?n‖? → 0. Such sequences
are generated by perturbed (or diagonal) constructive processes like regularization or
gradient method combined with approximation like discretization or penalization (see the
bibliography of [9]).

Some convergence results for such diagonally stationary sequences based upon variational
convergence theory and appropriate equi-well-posedness concepts have been presented
in [9]. These previous results were of qualitative kind: the distance d(xn, S) from xn
to the optimal set S := Argminf tends to 0, or, in a reflexive Banach space setting,
any weak accumulation point of {xn} is in S. The present work is devoted to more
precise results for bounded (‖xn‖ ≤ ρ) diagonally stationary sequences based upon metric
variational convergence theory, suitable well-posedness and conditioning concepts for the
limit function f , and Fejér monotonicity. Two main results are established. The first
one is an error estimate: if f is “sufficiently well” conditioned and if the ρ-Hausdorff
excess eρ(∂f

n, ∂f) tends to 0, then d(xn, S) can be estimated in terms of ‖x?n‖? and

eρ(∂f
n, ∂f); these two quantities are under control during the constructive process that
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generates {xn}. Therefore, such an estimate would be of practical interest for deriving a
stopping rule in such a process, at least when it is possible to estimate the appropriate
constants arising in the error estimating formula. Nevertheless, this gives information
on the rate of convergence of the error. In particular, finite termination holds (xn ∈ S
for n large enough) if f is linearly conditioned and if (what we call exact approximation)
eρ(∂f

n, ∂f) = 0 for n large enough. The second main result is norm convergence to some

minimizer (which is stronger than d(xn, S)→ 0). For that, two key concepts are used: well
posedness and Fejér monotonicity, a property currently encountered in iterative processes
but not so much exploited on its own. As a consequence, we show that well posedness
gives a new infinite dimensional case of strong convergence for the Martinet-Rockafellar’s
proximal method.

The paper is organized as follows. Section 2 recalls some definitions about metric vari-
ational convergence theory and diagonal stationarity. Section 3 is devoted to the error
estimate and finite termination. In section 4 we prove that in case of quadratic penal-
ization in convex programming, eρ(∂f

n, ∂f) is of order 1/
√
rn where rn is the penalty

parameter (rn → +∞), and that exact approximation holds true in case of linear penalty.
Finally, in section 5 we show that (quasi) Fejér monotonicity jointly with well posedness
leads to norm convergence of {xn} to some minimizer of f .

2. Notations and definitions

First let us recall some definitions about metric variational convergence theory. Let
(X, ‖.‖) be a normed linear space and (X?, ‖.‖?) its dual. For all subset C in X (resp. in
X?) we denote the distance from some point x in X (resp. x? in X?) to C by

d(x, C) := inf
y∈C
‖x− y‖ (resp. d?(x

?, C))

For all ρ ≥ 0, we denote by ρB the closed ball of radius ρ. For C and D subsets of X, the
Hausdorff excess of C over D is defined by e(C,D) := supx∈C d(x,D) and the ρ-Hausdorff

excess of C over D by eρ(C,D) := e(Cρ, D) where Cρ := C∩ρB. The ρ-Hausdorff distance
between C and D is defined by

hausρ(C,D) := max{eρ(C,D), eρ(D,C)}.

A sequence of extended real valued functions fn epi-distance (or Attouch-Wets) converges
to some function f iff for all ρ ≥ 0, hausρ(f

n, f) → 0, the involved functions being
identified with their epigraphs in the product space X× IR endowed with the “box” norm
max{‖.‖, |.|} [6].

A sequence of set valued operators An from X into X? graph-distance converges to some
operator A iff for all ρ ≥ 0, hausρ(A

n, A)→ 0, the involved operators being identified with

their graphs in the product space X ×X? endowed with the “box” norm max{‖.‖, ‖.‖?}.

Definition 2.1. Let {fn} be a sequence of extended real-valued proper closed convex
functions on X. A sequence {xn} in X is diagonally stationary for {fn} (for short :
{fn} −DS) iff

lim
n→+∞

d?(0, ∂f
n(xn)) = 0
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where ∂fn denotes the subdifferential of Convex Analysis. In other words, for each n ∈ IN,
there exists a subgradient x?n ∈ ∂fn(xn) such that x?n → 0 strongly in X?.

It is an easy consequence of the Brøndsted-Rockafellar’s theorem [12] that a {f n} −DS
sequence does exist if X is a Banach space and if, for all n in IN, fn is bounded from
below [17], [9].

3. Error estimate and finite termination

In all this section, f, fn, n = 1, 2, ... are extended real-valued proper closed convex func-
tions on X, S := Argminf and {xn} is any bounded {fn} − DS sequence (‖xn‖ ≤ ρ
for some ρ > 0), {x?n} is a sequence of subgradients associated with {xn} according to
definition 2.1.

Let us recall the definition of conditioning.

Definition 3.1. A real extended valued function g on X is said to be conditioned if
S := Argming 6= ∅ and if ∃ψ : IR+ → IR+ ∪ {+∞}, ψ(0) = 0 such that

∀x, g(x) ≥ min g + ψ(d(x, S))

Remark 3.2. It is known [24], [11], [17] that firm conditioning (this means that, in
definition 3.1, ψ has the firmness property: ∀{tn} ⊂ IR+, ψ(tn) → 0 ⇒ tn → 0) is
equivalent to well posedness (see definition in proposition 5.1 below). In the following we
need more than firmness.

Proposition 3.3. Let us assume that eρ(∂f
n, ∂f) tends to 0 as n tends to +∞ and that

f is conditioned with a conditioning function ψ such that the function ϕ defined by

ϕ(t) := ψ(t)/t if t > 0, ϕ(0) := 0,

is finite valued, strictly increasing and continuous on [0, t] for some t > 0. Then (S :=
Argminf), for n large enough,

d(xn, S) ≤ eρ(∂f
n, ∂f) + ϕ−1(‖x?n‖? + eρ(∂f

n, ∂f)).

Proof. First it must be noted that ϕ−1 the inverse of ϕ exists, is finite valued, strictly

increasing and continuous on [0, ϕ(t)].

As ‖x?n‖? → 0, for n large enough, ‖x?n‖? ≤ ρ and so, from the definition of the ρ-Hausdorff
excess, d((xn, x

?
n), ∂f) ≤ eρ(∂f

n, ∂f). Then, from the definitions of the box norm and the

distance to some subset, for all ε > 0, there exists xεn and xε?n such that

‖xεn − xn‖ ≤ eρ(∂f
n, ∂f) + ε, ‖xε?n − x?n‖? ≤ eρ(∂f

n, ∂f) + ε

and xε?n ∈ ∂f(xεn). So

∀x ∈ S, f(x) ≥ f(xεn) + 〈xε?n , x− xεn〉
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Therefore
f(xεn)−min f ≤ ‖xε?n ‖?d(xεn, S) ≤ αεnd(xεn, S)

where
αεn := ‖x?n‖? + eρ(∂f

n, ∂f) + ε

Furthermore, from conditioning, ψ(d(xεn, S)) ≤ f(xεn)−min f. Then,

ϕ(d(xεn, S) ≤ αεn

For ε small enough and n large enough, αεn ≤ ϕ(t). Therefore, as ϕ−1 is increasing on

[0, ϕ(t], we get

d(xεn, S) ≤ ϕ−1(αεn).

We conclude from

d(xn, S) ≤ ‖xn − xεn‖+ d(xεn, S) ≤ eρ(∂f
n, ∂f) + ε + ϕ−1(αεn)

and passing to the limit as ε→ 0.

Corollary 3.4. If ψ(t) = γtp, γ > 0, p > 1, then

d(xn, S) ≤ (1 + 1/γ′)(‖x?n‖? + eρ(∂f
n, ∂f))

1
p−1 , ∀n

where γ′ := γ
1
p−1 .

Proof. Take t as large as needed and

ϕ−1(s) =
s

1
p−1

γ

Corollary 3.5. If for all ρ > 0, for all n large enough, eρ(∂f
n, ∂f) = 0 (we then say

that exact approximation holds true), then, for n large enough,

d(xn, S) ≤ ϕ−1(‖x?n‖?).

Remark 3.6. The assumption of exact approximation implies that {xn}n≥n0, for some

n0, is f -stationary because eρ(∂f
n, ∂f) = 0 is equivalent to (∂fn)ρ ⊂ ∂f and therefore

x?n ∈ ∂f(xn) for n large enough.

Remark 3.7. By [6], [7], [21], for a given ρ > 0 large enough the ρ-Hausdorff distance
between ∂fn and ∂f can be controled by the γ-Hausdorff distance between fn and f for
some γ > 0 (that depends on ρ). But the first distance can be nul for n large enough
whereas the second one can be different from zero for all n, as it is shown by the following
example: X := IR,

f(x) := ex if x ≥ 0, +∞ otherwise
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fn(x) := ex if x ≥ 0, ex − rnx otherwise, with rn ↑ +∞.

It is proved in [16] that if f has a linear conditioning then any f -stationary sequence
finitely converges to S := Argminf (for instance this is the case for the sequence gener-
ated by the Martinet-Rockafellar’s proximal method [15]), the converse being true if X is
a Banach space. The purpose of the following is to show that, under exact approximation,
finite termination is preserved for any {fn} −DS sequence.

Proposition 3.8. If f is linearly condioned: ψ(t) := γt for some γ > 0, then, for n
large enough,

d(xn, S) ≤ eρ(∂f
n, ∂f).

Proof. Returning to the proof of proposition 3.3 we get

γd(xεn, S) ≤ αεnd(xεn, S)

Taking ε < γ, for n large enough we have

‖x?n‖? + eρ(∂f
n, ∂f) < γ − ε

and then d(xεn, S) = 0. Therefore

d(xn, S) ≤ eρ(∂f
n, ∂f) + ε ∀ ε > 0

The finite termination result is then immediate:

Corollary 3.9. If f is linearly conditioned and if exact approximation holds true, then
{xn} is finitely convergent: for all n large enough xn is in S.

4. Penalization in Convex Programming

In this section we give some estimate of eρ(∂f
n, ∂f) in case of exterior penalization in

convex programming. In particular, we prove that exact approximation holds true in case
of linear penalty.

X := IRd, f := f0 + ψC with

C := {x ∈ X; fi(x) ≤ 0, i = 1, ..., m}

where the f ′is are convex functions from X into IR.

Let us recall the definitions of linear and quadratic penalty approximations.

Linear penalty : fnL := f0 + rn
∑m

i=1 f
+
i , 0 ≤ rn ↑ +∞.

Quadratic penalty : fnQ := f0 + rn
2

∑m
i=1(f+

i )2, 0 ≤ rn ↑ +∞.
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Let us assume the Slater constraint qualification:

∃x̃ ∈ X, fi(x̃) < 0 i = 1, ..., m

Lemma 4.1. For all ρ > 0 there exists γρ > 0 such that for all x 6∈ C, ‖x‖ ≤ ρ, there
exists i such that

fi(x) ≥ γρ d(x, C)

Proof. Let −ε := maxi fi(x̃) < 0 and let x := λx̃ + (1 − λ)x where 0 < λ < 1, be the
boundary point in C that belongs to the open segment ]x̃, x[. We have fi(x) = 0 for some
i and, by convexity,

fi(x) ≥ λε

1− λ ≥ λε

But λ = ‖x − x‖/‖x̃ − x‖. Therefore, as ‖x − x‖ ≥ d(x, C), we are done with γρ :=

ε/(‖x̃‖+ ρ).

Remark 4.2. If C is bounded, γρ doesn’t depend on ρ (in the previous proof take

γρ := ε/2c where c is some norm bound of C), a result already stated in [20].

Then conditioning results on the penalty functions follow immediately.

Proposition 4.3.

(i) The linear penalty function has a local linear conditioning:

‖x‖ ≤ ρ ⇒
m∑

i=1

f+
i (x) ≥ γρ d(x, C).

(ii) The quadratic penalty function has a local quadratic conditioning:

‖x‖ ≤ ρ ⇒
m∑

i=1

(f+
i (x))2 ≥ γ2

ρ d(x, C)2.

From proposition 4.3 we get the following metric estimates.

Theorem 4.4.

(i) For all ρ > 0, hausρ(∂f
n
Q, ∂f) = Oρ(r

− 1
2

n ).

(ii) For all ρ > 0, for n large enough, hausρ(∂f
n
L , ∂f) = 0 (⇔ (∂fnL)ρ = (∂f)ρ).

Proof. (i) 1. Let us prove eρ(∂f, ∂f
n
Q) = Oρ(r

− 1
2

n ).

Let (x, x?) ∈ (∂f)ρ. It is easily proved that x minimizes f0 − 〈x?, .〉 on C. So, thanks to

the Slater condition, there exists a Kuhn-Tucker vector λ ∈ IRm
+ ([22], theorem 28.2):
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∀z ∈ X, f0(x)− 〈x?, x〉 ≤ f0(z)− 〈x?, z〉 +

m∑

i=1

λifi(z)

that implies λ bounded (dependently on ρ):

m∑

i=1

λi ≤ [f0(x̃)− min
‖y‖≤ρ

f0(y) + ρ(ρ+ ‖x̃‖)]/ε

(where x̃ is a Slater point and −ε := maxi fi(x̃) < 0) and (using the trick: 2〈a, b〉 =

‖a‖2/α + α‖b‖2, α > 0),

∀z ∈ X, fnQ(z) ≥ f0(x) + 〈x?, z − x〉 − αn

viz. x? ∈ ∂αnfnQ(x) where αn := (
∑m

i=1 λi)/2rn = Oρ(r
−1
n ).

Finally, thanks to Brøndsted-Rockafellar’s theorem [12], there exists (xn, x
?
n) ∈ ∂fnQ such

that ‖(xn, x?n)− (x, x?)‖ = Oρ(r
− 1

2
n ).

2. Let us prove eρ(∂f
n
Q, ∂f) = Oρ(r

− 1
2

n ).

Let (xn, x
?
n) ∈ (∂fnQ)ρ, xn := proj Cxn and x?n ∈ ∂f0(xn). As {xn} is bounded (by ρ),

{xn} and {x?n} are bounded (by some constant depending on ρ). Moreover we have

∀z ∈ C, f0(z) ≥ f0(xn) + 〈x?n, z− xn〉+ 〈x?n, xn− xn〉+ 〈x?n, xn− xn〉+
1

2
rnγ

2
ρ‖xn− xn‖2

from which we get (using again the above trick) x?n ∈ ∂αnf(xn) where αn :=
‖x?n − x?n‖2

2γ2
ρrn

=

Oρ(r
−1
n ). Again apply the Brøndsted-Rockafellar’s theorem to get (x̃n, x̃

?
n) ∈ ∂f such that

‖(xn, x?n)− (x̃n, x̃
?
n)‖ = Oρ(r

− 1
2

n ).

(ii) 1. Let us prove (∂f)ρ ⊂ ∂fnL for n large enough.

Let (x, x?) ∈ (∂f)ρ. Returning to previous (i) 1. and using

m∑

i=1

λifi(z) ≤ max
i
λi

m∑

i=1

f+
i (z) ≤ rn

m∑

i=1

f+
i (z) ∀n large enough

we get (x, x?) ∈ ∂fnL .

2. Let us prove (∂fnL)ρ ⊂ ∂f for n large enough.

Let (xn, x
?
n) ∈ (∂fnL)ρ. The main point is to show that, for n large enough, xn ∈ C.

Let xn := proj Cxn and x?n ∈ ∂f0(xn). As {xn} is bounded, so are {xn} and {x?n}, we get

rnγρd(xn, C) ≤ rn

m∑

i=1

f+
i (xn) ≤ cρd(xn, C), for some cρ > 0
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Now if rn > cρ/γρ then d(xn, C) = 0.

From corollary 3.4, corollary 3.9 and theorem 4.4, we get the following error estimates.

Corollary 4.5.

(i) Let {xn} be a bounded {fnQ} − DS sequence. If f has a quadratic conditioning (cf.

corollary 3.4 with p = 2) then

d(xn, S) = O(‖x?n‖? + r
− 1

2
n ).

(ii) Let {xn} be a bounded {fnL}−DS sequence. If f has a linear conditioning then {xn}
is finitely convergent to S.

Remark 4.6. As the extended real valued function associated with the linear program-
ming problem is linearly conditioned ([20], [16]), from corollary 4.5 (ii), we recover the
finite termination property of the linear penalty-prox method for linear programming [8].
Moreover, in this case the Slater condition is no more needed because the linear penalty
function being polyhedral condition i) in proposition 4.3 is (even globally) fulfilled.

5. Fejér monotonicity and norm convergence

5.1. Quasi Fejér monotonicity

As noted in [10], the notion of Fejér monotonicity goes back at least to [18]. Here we relax
this notion in the following definition (cf. [13] for a slightly more general extension).

Definition 5.1. Let (X, d) be a metric space and S be a non empty subset in X. A
sequence {xn} in X is quasi Fejér monotone with respect to S (in short S-QFM) iff there

exists a sequence of non negative reals {εn} such that
∑+∞

n=1 εn < +∞ and

∀x ∈ S, d(xn, x) ≤ d(xn−1, x) + εn, n = 1, 2, ...

Remark 5.2. Fejér monotonicity refers to the case where εn = 0 for all n. A typical
example is then given by the iterations of a non expansive mapping with non empty fixed
points set S.

The notion of quasi Fejér monotonicity is motivated by the following result.

Theorem 5.3. Let us assume X to be complete and S to be closed. For all S-QFM
sequence {xn}, if d(xn, S) → 0 then there exists x∞ ∈ S such that xn → x∞ (of course
the converse being always true) with the estimate

d(xn, x∞) ≤ 2 d(xn, S) +
+∞∑

k=n+1

εk, ∀n ∈ IN.
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Proof. First let us show that {xn} is a Cauchy sequence. Let m > n.

∀x ∈ S, d(xm, xn) ≤ d(xm, x) + d(x, xn) ≤ 2d(xn, x) +

m∑

k=n+1

εk

or d(xm, xn) ≤ 2d(xn, S) +
∑m

k=n+1 εk that tends to 0 as m and n tend to +∞.

Therefore xn tends to some x∞ and, thanks to the continuity of the function d(., S) we
have d(x∞, S) = 0 and, as S is closed, x∞ ∈ S.

Finally let m tend to +∞ in the above estimate.

Remark 5.4. Generally, if S is a non empty closed subset in X and if some sequence
{xn} is compact then d(xn, S)→ 0 is equivalent to: any accumulation point of {xn} is in
S.

If X is a reflexive Banach space, f, fn, n = 1, 2, ... are extended real-valued proper closed
convex functions on X such that fn Mosco-converges to f and if {xn} is a bounded
{fn} − DS sequence then fn(xn) → inf f and any weak accumulation point of {xn} is
a minimizer of f ( [9], Proposition 4.3). Furthermore if X is a Hilbert space and {xn}
is Argminf − QFM a classical argument (for instance used in the convergence proof of
the proximal method) shows that the whole sequence {xn} weakly converges to some
minimizer of f . In the finite dimensional setting theorem 5.3 furnishes an alternative
argument of this fact since, in this setting, saying that any accumulation point of a
bounded sequence is in S is equivalent to saying that d(xn, S)→ 0.

5.2. Connection with well posedness and diagonal stationarity

As an immediate consequence of theorem 5.3 we get the following proposition.

Proposition 5.5. Let f be an extended real-valued proper closed function on the com-
plete metric space X. Let us assume f to be well-posed: S := Argminf is non empty
and

f(xn)→ inf f ⇒ d(xn, S)→ 0.

Then any S-QFM f -minimizing sequence converges to some minimizer of f .

Example 5.6. Approximate prox.

Let X be a real Hilbert space and f an extended real-valued proper closed convex function
on X such that S := Argminf 6= ∅. Let {λn} and {εn} be sequences of positive reals such
that

λn ≥ λ > 0,
+∞∑

n=1

√
λnεn < +∞

x0 be given in X, the Auslender’s approximate prox method [2] generates a sequence {xn}
such that

xn ∈ εn − Argmin{ 1

2λn
‖.− xn−1‖2 + f}, n = 1, 2, ...
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It is known [2] that such a sequence satisfies

‖xn − proxλnf xn−1‖ ≤
√

2λnεn, n = 1, 2, ...

viz. {xn} is generated by the Rockafellar’s approximate prox method [23]. Therefore, it
is a direct consequence of the non expansiveness of the prox mapping and because the set
of fixed points of this prox mapping is S, that {xn} is S −QFM . Moreover [15] {xn} is
minimizing (and this does not depend neither of the non vacuity of S nor of the finiteness
of infX f).

It is well known that the sequence generated by the Rockafellar’s approximate prox method
is weakly convergent to some minimizer of f . Actually, if f is well posed, proposition 5.5
shows that, in the Auslender’s approximate (and a fortiori in the exact) prox method, the
convergence holds true for the norm topology.

Proposition 5.7. Let X be a real Banach space and f, fn, n = 1, 2, ... be extended
real-valued proper closed convex functions on X. We assume that f is well posed and that
∂fn graph-distance converges to ∂f . Then any S-QFM (where S := Argminf) {f n}−DS
sequence {xn} is norm convergent to some minimizer of f .

Proof. As a S − QFM sequence, {xn} is bounded. Then, as ∂fn graph-distance con-
verges to ∂f , ∃{xn} stationary for f such that ‖xn − xn‖ → 0. Moreover, f well posed
is equivalent to f has a well asymptotical behaviour in solution (for any f -stationary
sequence {zn}, d(zn, S) tends to 0) [17]. Therefore d(xn, S) → 0. Finally apply theorem
5.3.

Remark 5.8. We recall that in a Banach space the graph-distance convergence of ∂f n

to ∂f is implied by the epi-distance convergence of fn to f [4], [21], [7].

Example 5.9. Diagonal prox.

Let X and f be as in the previous example and 0 < λ ≤ λn ≤ λ < +∞. Let {fn} be a
sequence of extended real-valued proper closed convex functions on X such that

∀ρ > 0,

+∞∑

n=1

hausρ(∂f
n, ∂f) < +∞

x0 be given in X we consider the sequence {xn} generated by the diagonal prox method
[14], [1]:

xn := proxλnfn xn−1 := argmin{ 1

2λn
‖.− xn−1‖2 + fn}, n = 1, 2, ...

Lemma 5.10.

∃ρ > 0, ‖xn − proxλnf xn−1‖ ≤ (2 + λ) hausρ(∂f
n, ∂f)



B. Lemaire / Bounded diagonally stationary sequences in convex optimization 85

Proof. Following [19], let us consider the Yosida semi distance between maximal mono-
tone operators [5]

∀ρ ≥ 0, ∀λ > 0, dλ,ρ(A,B) := sup
‖x‖≤ρ

‖JAλ − JBλ ‖

where JAλ denotes the resolvant of A with parameter λ (recall that proxλf is nothing but

J∂fλ ). A direct application of [6] (theorem 5.1) or [3] (proposition 1.2) gives the following
estimate.

∀ρ ≥ 0 ∃ρ′ > 0 dλn,ρ(∂f
n, ∂f) ≤ (2 + λ) hausρ′(∂f

n, ∂f)

From the non expansiveness of the prox mapping we get easily

∀x ∈ S, ‖xn − x‖ ≤ ‖xn−1 − x‖+ dλn,‖x‖(∂f
n, ∂f)

that combined with the above estimate shows that {xn} is bounded (‖xn‖ ≤ ρ). Then
the result comes from the immediate estimate

‖xn − proxλnfxn−1‖ ≤ dλn,ρ(∂f
n, ∂f)

As in the previous example {xn} is generated by the Rockafellar’s approximate prox

method and so is S − QFM and, [23], ‖xn − xn−1‖ → 0. Moreover, as
xn − xn−1

λn
∈

∂fn(xn), {xn} is {fn}−DS. If f is well posed, proposition 5.7 shows that, still here, the
convergence is strong. Taking fn = f for all n, we again recover (cf. sub-section 6.1) the
strong convergence for the (exact) prox method.
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Analyse Non-Linéaire, Avignon, nov. 1991.

[17] B. Lemaire: Bonne position, conditionnement, et bon comportement asymptotique, Sémi-
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