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1. Introduction

Recently several new topologies on the set of convex subsets of a normed space were
introduced and studied, the two most important ones being the Attouch-Wets topology
(see e.g. [4], [5], [6]) and the slice topology (see e.g. [2], [7], [8]). What is notable about
both of them is that most of their properties (e.g. continuity of the polarity and conjugacy
maps) not only hold in Banach spaces, but also in general normed spaces. However, there
are other notions, (e.g. the subdifferential map) which are not useful outside the Banach
context but were used to characterize these topologies. For example (in the Banach
case), convergence in the Attouch-Wets topology was characterized in [10] in terms of the
behaviour of a certain operator involving the subdifferential map, while in [2] convergence
in the slice topology was characterized in terms of the Kuratowski-Painlevé convergence of
the subdifferential map. Thus it seems appropriate to reformulate these characterizations
in the context of normed spaces, not necessarily Banach. This is what we do in this
paper: we show that the results of Attouch and Beer, and Beer and Thera, as well as
other related results, can be extended to normed spaces if subdifferentials are replaced by
ε-subdifferentials. These extensions are possible because in [13] we proved that Borwein’s
variational principle and Rockafellar’s maximal monotonicity theorem are true in normed
spaces, provided that we replace subdifferentials with ε-subdifferentials.
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2. Notation and preliminary results

In this first part we shall introduce the notation and recall several known results used in
the paper. We shall also extend to ε-subgradients several results concerning subgradients.

Let X be a normed space, B be its unit ball, X∗ be the topological dual of X, and
B∗ be the unit ball in X∗ (with respect to the dual norm). On X∗ we consider only
the strong topology and on products (such as X × X∗ or X × R) we consider the box
norm. We write Γ(X) (resp. Γ(X∗)) for the set of all proper, lower semicontinuous, convex
functions defined on X (resp. on X∗) and with values in (−∞,+∞]. As usual, we denote
a multivalued map by a double arrow.

Given f ∈ Γ(X), x ∈ domf , and ε ≥ 0, we denote by ∂εf(x) the set of all ε-subgradients
to f at x and by ∂εf the set of all pairs (x, x∗) such that x∗ ∈ ∂εf(x). The conjugate
f∗ ∈ Γ(X∗) of f is defined by

f∗(x∗) = sup{〈x∗, x〉 − f(x); x ∈ X}.

Then

〈x∗, x〉 ≤ f∗(x∗) + f(x) for any x ∈ X, x∗ ∈ X∗ (Fenchel’s inequality) (1)

and, if ε ≥ 0,

f∗(x∗) + f(x) ≤ 〈x∗, x〉+ ε if and only if (x, x∗) ∈ ∂εf. (2)

Also

f(x) = sup{〈x∗, x〉 − f∗(x∗); x∗ ∈ X∗}. (3)

The following Brøndsted-Rockafellar type result was proved in [13].

Proposition 2.1. Let f ∈ Γ(X), ε ≥ 0, δ > 0 (δ ≥ 0 if X is a Banach space),
(x, x∗) ∈ ∂ε+δf , and λ > 0. Then there exists (y, y∗) ∈ ∂δf such that:

(a) ‖y − x‖ ≤ ε/λ;

(b) ‖y∗ − x∗‖ ≤ λ;

(c) |f(y)− f(x)| ≤ ε(1 +
‖x∗‖
λ

).

Definition 2.2.

(1) For f ∈ Γ(X), let ∂•f denote the set of all triples (ε, x, x∗) ∈ R×X ×X∗ such that
ε ≥ 0 and x∗ ∈ ∂εf(x).

(2) For f ∈ Γ(X), define df : domf × domf ∗ → [0,+∞) by df (u, u∗) = f∗(u∗) + f(u)−
〈u∗, u〉. Thus u∗ ∈ ∂df (u,u∗)f(u) but u∗ /∈ ∂εf(u) if ε < df (u, u∗).

(3) For f ∈ Γ(X), let ∂]f denote the subset of all (ε, u, u∗) ∈ ∂•f with ε = df (u, u∗).
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Later we shall need the following approximation result.

Lemma 2.3. Let f ∈ Γ(X) and (ε, x∗, x∗∗) ∈ ∂]f∗. Then there exist a bounded net {xι}
in X, weak∗∗-convergent to x∗∗, and a net {ει} converging to ε such that (ει, xι, x

∗) ∈ ∂]f
for each ι. A similar assertion with ∂•f∗ instead of ∂]f

∗ is also true.

Proof. Since epif is weak∗∗-dense in epif ∗∗ (see [12]), by Lemma D in [13], there exists
a bounded net {xι} in X which is weak∗∗-convergent to x∗∗ and such that the net {f(xι)}
converges to f ∗∗(x∗∗). Take ει = f∗(x∗) + f(xι)− 〈x∗, xι〉.

As mentioned in the introduction, we shall need some facts from [13]. Recall that a family
of multivalued maps (Tε)ε≥0 with Tε : X ⇒ X∗ is called a monotone family of operators

if for any x, y ∈ X, ε, δ ≥ 0, x∗ ∈ Tε(x), and y∗ ∈ Tδ(y) we have 〈x−y, x∗−y∗〉 ≥ −ε−δ.
A monotone family of operators (Tε)ε≥0 is called maximal if given any monotone family

of operators (Sε)ε≥0 such that Tε(x) ⊆ Sε(x) for all x ∈ X and ε ≥ 0, then Tε(x) = Sε(x)

for all x ∈ X and ε ≥ 0. One can check easily that (∂εf)ε≥0 is a monotone family of

operators for any f ∈ Γ(X). In [13] we proved that such a family of monotone operators
is maximal.

The following result is a variant of the Rockafellar integration formula.

Lemma 2.4. Let f ∈ Γ(X) and (z, z∗) ∈ domf × domf ∗. Then, for any x ∈ X,

f(x)− f(z) = sup

{
k∑

i=1

(
〈x∗i , xi−1 − xi〉 − df (xi, x

∗
i )
)
}

,

where x0 = x, xk = z, x∗k = z∗ and the supremum is taken with respect to all k ≥ 2,

(xi, x
∗
i ) ∈ domf × domf ∗, i = 1, . . . , k − 1.

Proof. Let

g(x) = sup

{
k∑

i=1

(〈x∗i , xi−1 − xi〉 − εi)
}
,

where x0 = x, xk = z, x∗k = z∗, εk = df (z, z∗) and the supremum is taken with respect to

all k ≥ 2, (εi, xi, x
∗
i ) ∈ ∂•f , i = 1, . . . , k− 1. It is easy to see that g(x) is also equal to the

right side of the formula we want to prove. It was shown in [13] that g ∈ Γ(X), g(z) ≤ 0,
∂αg = ∂αf for any α ≥ 0, and that g and f differ by a constant. Thus the assertion of
the lemma will follow if we prove that g(z) = 0. This is trivial if df (z, z∗) = 0. So assume

that ε = df (z, z∗) > 0 and g(z) < 0. Then g(z) ≤ −β < 0 for some 0 < β < ε. For any

δ ≥ 0 and any y∗ ∈ ∂δf(y) we have

−β ≥ g(z) ≥ 〈y∗, z − y〉 − δ + 〈z∗, y − z〉 − ε
implying that 〈y∗ − z∗, y − z〉 ≥ −δ − (ε − β). From the maximal monotonicity of the
family (∂δf) (see [13], Theorem 2.2) it follows that z∗ ∈ ∂ε−βf(z), which contradicts the

fact that ε = df (z, z∗). Thus g(z) = 0 and the lemma is proved.
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Remark 2.5. We shall also need the following dual result. Let f, ε, z, and z∗ be as in
the previous lemma and let x∗ ∈ X∗. Then

f∗(x∗)− f∗(z∗) = sup

{
k∑

i=1

(〈x∗i−1 − x∗i , xi〉 − df (xi, x
∗
i ))

}
,

where x∗0 = x∗, xk = z, x∗k = z∗ and the supremum is taken with respect to all k ≥
2, (xi, x

∗
i ) ∈ domf × domf ∗, i = 1, . . . , k − 1. If we apply Lemma 2.4 to f ∗, we obtain

the above formula, but with the supremum taken with respect to all couples (x∗i , x
∗∗
i ) ∈

domf∗ × domf∗∗. To obtain our result it is enough to use Lemma 2.3.

For any real number λ > 0 we denote by Kλ the closed, convex cone {(x, t) ∈ X ×R; t ≤
−λ‖x‖}; the interior of Kλ is denoted K̊λ. For λ > 0, the Lipschitz regularization with
parameter λ of f is defined as follows (see for example [11]):

fλ(x) = inf{f(u) + λ‖x− u‖; u ∈ X}.

Here are some of the properties of fλ we need:

fλ(x) ≤ fµ(x) if λ ≤ µ; f(x) = lim
λ→∞

fλ(x) for anyx ∈ X; (4)

either fλ(x) = −∞ for all x ∈ X, or fλ is Lipschitz on Xwith Lipschitz constant λ;

the second alternative occurs iff there exist ε ≥ 0 and (x, x∗) ∈ ∂εf with‖x∗‖ ≤ λ.

}

(5)

For (x, x∗) as above we have

fλ(z) ≥ 〈x∗, z − x〉 + f(x)− ε, for any z ∈ X. (6)

If fλ 6= −∞ and x ∈ X, one can look at fλ(x) as the largest real number t such that epif
and the interior of Kλ + (x, t) are disjoint, i.e.

fλ(x) = max {t; (K̊λ + (x, t)) ∩ epif = ∅} = sup {t; (Kλ + (x, t)) ∩ epif = ∅} . (7)

Following the terminology introduced in [10], an ε-estimator for fλ(z) is a point x ∈ X
such that

f(x) + λ‖z − x‖ < fλ(z) + ε. (8)

Lemma 2.6. Let f ∈ Γ(X), f(0) = 0. Let r > 1, z ∈ rB, 0 < ε < 1, 0 ≤ δ0 < 1,
x∗0 ∈ ∂δ0f(0), λ0 = ‖x∗0‖(1 + 2r) + 2, and λ ≥ λ0. Then:

(a) There exists (x, x∗) ∈ ∂εf such that:



A. Verona, M.E. Verona / Epiconvergence and ε-subgradients of convex functions 91

(i) x is an ε-estimator for fλ(z); (ii) ‖x∗‖ ≤ λ;
(iii) ‖z − x‖ ≤ r + 1 (hence ‖x‖ ≤ 2r + 1); (iv) |f(x)| ≤ λr + 1;
(v) fλ(z)− f(x) ≤ 〈x∗, z − x〉.

(b) The function λ 7→ fλ(z) from [λ0,∞) to R is Lipschitz with Lipschitz constant r+ 1.

Proof. From (5) it follows that fλ is a Lipschitz function on X for any λ ≥ ‖x∗0‖. From

(7), there exist x∗ ∈ X∗ and t ∈ R such that the graph of the affine functional x∗ + t
separates epif and Kλ + (z, fλ(z)). Then ‖x∗‖ ≤ λ and for any x

fλ(z)− λ‖z − x‖ ≤ 〈x∗, x〉+ t ≤ f(x).

Choose now x to be an ε-estimator for fλ(z). It follows from (8) and the above inequalities
that 0 ≤ f(x)− (〈x∗, x〉+ t) ≤ ε, hence x∗ ∈ ∂εf(x). Using (8) again we obtain

λ‖z − x‖ ≤ fλ(z) + ε− f(x) ≤ f(0) + λ‖z‖+ ε− 〈x∗0, x〉+ δ0

≤ λ‖z‖+ ε+ 〈x∗0, z − x〉 − 〈x∗0, z〉+ δ0 ≤ λr + ε+ ‖x∗0‖‖z − x‖ + ‖x∗0‖r + δ0

hence

‖z − x‖ ≤ r(λ+ ‖x∗0‖) + ε+ δ0

λ− ‖x∗0‖
.

from which (iii) follows. To prove (iv) it remains to notice that

−λ ≤ −‖x∗0‖(2r + 1)− 2 ≤ 〈x∗0, x〉 − δ0 ≤ f(x) ≤ fλ(z) + ε ≤ f(0) + λ‖z‖+ ε ≤ λr + 1.

To prove (v), it is enough to see (by what precedes) that

fλ(z) ≤ 〈x∗, z〉 + t = 〈x∗, z − x〉+ 〈x∗, x〉+ t ≤ 〈x∗, z − x〉+ f(x).

To prove (b) let µ > ν ≥ λ0, ε > 0, and x be an ε-estimator for fν(z). We have

0 ≤ fµ(z)− fν(z) ≤ f(x) + µ‖z − x‖ − f(x)− ν‖z − x‖ + ε = (µ− ν)‖z − x‖+ ε.

By part (i), ‖z − x‖ ≤ r + 1, hence

|fµ(z)− fν(z)| ≤ (µ− ν)(r + 1) + ε.

Since ε was arbitrary, this proves part (b).

3. Slice convergence and Kuratowski–Painlevé convergence of ε-subdifferen-
tials

If X is a Banach space, a result of Attouch and Beer [2] (see also [1, Theorem 3.66])
links slice convergence of epigraphs of convex functions with the Kuratowski-Painlevé
convergence of their subdifferentials. In this section we prove that a similar result is true
in a normed space, provided that we replace subdifferentials with ε-subdifferentials. The
main ideas of the proof are the same as in [2], with some changes due to the fact that we
work with ε-subdifferentials. We begin by recalling the necessary notions.
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Given a topological space T and a sequence {Cn} of nonempty subsets of T we denote
by LiCn the set of those x ∈ T such that there exists a sequence {xn} converging to x,
with xn ∈ Cn for all n and denote by LsCn the set of those x ∈ T such that there exists
a sequence 0 < n1 < n2 < . . . and a sequence {xk} converging to x, with xk ∈ Cnk for all

k. The sequence {Cn} is said to be Kuratowski-Painlevé convergent if LiCn = LsCn; this
common value is denoted LimCn.

Another notion we need is that of slice topology on Γ(X), denoted τS (see [7], [9]). Recall
that a subbase for τS consists of

all sets of the form (V ×(−∞, t))−, with V open in X and t ∈ R, where (V ×(−∞, t))−
is the set of all f ∈ Γ(X) such that epif ∩ (V × (−∞, t)) 6= ∅;

and

all sets of the form (s(µ, x∗, η)c)++, with µ > 0, x∗ ∈ X∗, and η ∈ R, where

s(µ, x∗, η) = {(x, t) ∈ X ×R; ‖x‖ ≤ µ, t = 〈x∗, x〉 − η} and (s(µ, x∗, η)c)++ is the set
of all f ∈ Γ(X) such that ((epif) + ε(B × [−1, 1])) ∩ s(µ, x∗, η) = ∅ for some ε > 0.

The following characterization of convergence in this topology is an adaptation to the
context of normed spaces of Theorem 3.1 in [2].

Proposition 3.1. Let X be a normed space, f, fn ∈ Γ(X), n ≥ 1. The following are
equivalent:

(i) f = τS-limfn;

(ii) for any (x, x∗) ∈ X × X∗ there exist a sequence {xn} in X and a sequence {x∗n} in
X∗ converging to x and to x∗ respectively and such that f(x) = lim

n→∞
fn(xn), and

f∗(x∗) = lim
n→∞

f∗n(x∗n).

(iii) for any (x, x∗) ∈ domf × domf ∗ and any α > 0 there exist a sequence {xn} in
X and a sequence {x∗n} in X∗ converging to x and to x∗ respectively and such that

f(x) + α ≥ lim sup
n→∞

fn(xn) and f∗(x∗) + α ≥ lim sup
n→∞

f∗n(x∗n).

Proof. The fact that (i) implies (ii) is proved in [2], Theorem 3.1. Clearly (ii) implies
(iii). It remains to show that (iii) implies (i). So assume that (iii) is true, but (i) is false.
Then, by restricting our attention to a subsequence, we can assume that either

(a) there exist an open subset V of X and t ∈ R such that epif ∩ (V × (−∞, t)) 6= ∅ but
epifn ∩ (V × (−∞, t)) = ∅ for all n

or

(b) there exit µ > 0, z∗ ∈ X∗, η ∈ R and ε > 0 such that ((epif) + ε(B × [−1, 1])) ∩
s(µ, z∗, η) = ∅ and ((epifn) + εn(B × [−1, 1])) ∩ s(µ, z∗, η) 6= ∅ for any εn > 0 and
any n;

is true. It is not difficult to see that, because of (iii) (the part involving x), (a) cannot
be true. So (b) must be true. From Lemma 8.1.1 in [9] it follows that there exists
(x∗, t) ∈ epif∗ such that the graph of the affine functional x∗ − t strongly separates epif
and s(µ, z∗, η), i.e.
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〈x∗, u〉 − t ≤ f(u), u ∈ X
and

〈z∗, u〉 − η ≤ 〈x∗, u〉 − t− δ, ‖u‖ ≤ µ.

for some δ > 0. It is easy to see that there exists µ′ > µ such that the last inequality
becomes

〈z∗, u〉 − η ≤ 〈x∗, u〉 − t− δ/2, ‖u‖ ≤ µ′.

By hypothesis there exists a sequence {x∗n} in X∗ converging to x∗ and such that f ∗(x∗)+

δ/16 ≥ lim sup
n→∞

f∗n(x∗n). Choose n large enough such that ‖x∗−x∗n‖ < δ/(8µ′) and f∗(x∗)+

δ/8 > f ∗n(x∗n). Let u ∈ µ′B. By Fenchel’s inequality, our choices, and the previous
inequalities we have

fn(u) ≥ 〈x∗n, u〉 − f∗n(x∗n) = 〈x∗n − x∗, u〉+ 〈x∗, u〉 − f∗n(x∗n)

≥ −δ/8 + 〈x∗, u〉 − f∗(x∗)− δ/8 ≥ 〈x∗, u〉 − t− δ/4
≥ 〈z∗, u〉 − η + δ/4.

The resulting inequality shows that, if εn > 0, εn < µ′ − µ and 4εn(1 + ‖z∗‖) < δ, then
(epifn + εn(B × [−1, 1])) ∩ s(µ, z∗, η) = ∅, which contradicts (b). It follows that (iii)
implies (i) and the proposition is proved.

Let now f, fn ∈ Γ(X), n ≥ 1. Recall that a sequence {(xn, x∗n)} with (xn, x
∗
n) ∈ domfn×

domf∗n is called normalizing if lim
n→∞

(xn, x
∗
n) = (x, x∗) ∈ domf × domf ∗, lim

n→∞
fn(xn) =

f(x), and lim
n→∞

f∗n(x∗n) = f∗(x∗).

Lemma 3.2. Let f, fn ∈ Γ(X), n ≥ 1. Let also {(xn, x∗n)} be a normalizing sequence

and let lim
n→∞

(xn, x
∗
n) = (x, x∗). Then

(1) lim
n→∞

dfn(xn, x
∗
n) = df (x, x∗).

(2) Assume that ∂εf ⊆ Li ∂εfn for every ε > 0. Let (u, u∗) ∈ domf × domf ∗ and

(un, u
∗
n) ∈ X×X∗, n ≥ 1, be such that lim

n→∞
(un, u

∗
n) = (u, u∗). Let α = df (u, u∗) and

αn = dfn(un, u
∗
n). Then

lim supn→∞ fn(un) + α− lim supn→∞ αn ≤ f(u) ≤
lim infn→∞ fn(un) + lim supn→∞ αn − lim infn→∞ αn

and

lim supn→∞ f
∗
n(u∗n) + α− lim supn→∞ αn ≤ f∗(u∗) ≤

lim infn→∞ f∗n(u∗n) + lim supn→∞ αn − lim infn→∞ αn

(3) If in addition to the conditions in (2) we have lim sup
n→∞

dfn(un, u
∗
n) ≤ df (u, u∗), then

{(un, u∗n)} is a normalizing sequence, i.e. lim
n→∞

fn(un) = f(u) and lim
n→∞

f∗n(u∗n) =

f∗(u∗).
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Proof. The proof of (1) is trivial, so we shall prove only (2) and (3). Let γ = lim inf
n→∞

αn,

and β = lim sup
n→∞

αn. Let k ≥ 2 and (εi, yi, y
∗
i ) ∈ ∂•f , i = 1, . . . , k− 1. Let µ > 0 and µi =

εi + µ/(k− 1) (this is needed in case εi = 0). Then (µi, yi, y
∗
i ) ∈ ∂•f , i = 1, . . . , k− 1 and

since ∂µif ⊆ Li ∂µifn, there exist (yi,n, y
∗
i,n) ∈ ∂µifn such that lim

n→∞
(yi,n, y

∗
i,n) = (yi, y

∗
i ),

i = 1, . . . , k − 1. Let also y0 = x, y0,n = xn, yk = u, y∗k = u∗, εk = α, yk,n = un, and

y∗k,n = u∗n, (thus lim sup
n→∞

αn = β = εk − α + β). From the definition of ε-subgradients it

follows that

fn(xn) ≥ fn(yk,n) +
k∑

i=1

〈y∗i,n, yi−1,n − yi,n〉 −
k−1∑

i=1

µi − αn, n ≥ 1.

By replacing µi with εi + µ/(k − 1) and taking lim sup (with respect to n) we obtain

f(x) ≥ lim sup
n→∞

fn(un) +

k∑

i=1

〈y∗i , yi−1 − yi〉 −
k∑

i=1

εi + α− β − µ.

Lemma 2.4 (more exactly its proof) implies that

f(x) ≥ lim sup
n→∞

fn(un) + f(x)− f(u) + α− β − µ

and, since µ is arbitrary,

f(u) ≥ lim sup
n→∞

fn(un) + α− β.

Similar arguments (the remark following Lemma 2.4 is essential) show that

f∗(u∗) ≥ lim sup
n→∞

f∗n(u∗n) + α− β.

Since
f∗n(u∗n) + fn(un) = 〈u∗n, un〉+ αn,

it follows that

lim inf
n→∞

fn(un) ≥ 〈u∗, u〉+ γ − lim sup
n→∞

f∗n(u∗n)

≥ 〈u∗, u〉+ α− f∗(u∗) + γ − β = f(u) + γ − β.

and therefore

f(u) ≤ lim inf
n→∞

fn(un) + β − γ.

The corresponding inequality involving the conjugate functions can be proved in the same
way. This proves (2).

To prove (3), assume first that β = γ ≤ α. From (2) it follows that β = α, lim
n→∞

fn(un) =

f(u), and lim
n→∞

f∗n(u∗n) = f∗(u∗). To prove the general case (β ≤ α), notice that the
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above arguments imply that every convergent subsequence of {αn} must converge to α.
Therefore the sequence {αn} is convergent (to α) and the lemma is proved.

Lemma 3.3. Let f, fn ∈ Γ(X), n ≥ 1. Then

(1) ∂•f ⊆ Li ∂•fn if and only if ∂•f = Lim ∂•fn

(2) Given any ε ≥ 0, ∂εf ⊆ Li ∂εfn if and only if ∂εf = Lim ∂εfn.

Proof. We shall prove only the first assertion, the proof of the other one being similar.
Since trivially Li ∂•fn ⊆ Ls ∂•fn, it is enough to prove that Ls ∂•fn ⊆ ∂•f if ∂•f ⊆
Li ∂•fn. To this end let (α, x, x∗) ∈ Ls ∂•fn. By definition there exist an increasing
sequence of positive integers n1 < n2 < . . . < nk < . . . and a sequence {(αk, xk, x∗k)} with

(αk, xk, x
∗
k) ∈ ∂•fnk such that

lim
k→∞

(αk, xk, x
∗
k) = (α, x, x∗).

Let ε ≥ 0 and let (y, y∗) ∈ ∂εf . Then (ε, y, y∗) ∈ ∂•f and, since ∂•f ⊆ Li ∂•fn, there exist

(εn, yn, y
∗
n) ∈ ∂•fn, n ≥ 1, such that lim

n→∞
(εn, yn, y

∗
n) = (ε, y, y∗). It is easy to see that

〈y∗nk − x∗k, ynk − xk〉 ≥ −εnk − αk

and, by taking the limit, we obtain

〈y∗ − x∗, y − x〉 ≥ −ε− α.

The fact that (∂εf)ε is a maximal family of monotone operators (see [13], Theorem 2)
implies that x∗ ∈ ∂αf(x), showing that Ls ∂•fn ⊆ ∂•f .

We can now state and prove our main result in this section.

Theorem 3.4. Let X be a normed space and f , fn ∈ Γ(X), n ≥ 1. The following
assertions are equivalent:

(1) f = τS-limfn;

(2) ∂]f ⊆ Li ∂]fn and there exists a normalizing sequence;

(3) ∂•f = Lim ∂•fn and there exists a normalizing sequence;

(4) ∂εf = Lim ∂εfn for every ε > 0 and there exists a normalizing sequence.

Proof. First we shall prove that (1) implies (2). To this end assume that (1) is true
and let (ε, x, x∗) ∈ ∂]f . It follows that there exist sequences {xn} and {x∗n} such that

x = lim
n→∞

xn, x∗ = lim
n→∞

x∗n and f(x) = lim
n→∞

fn(xn), f∗(x∗) = lim
n→∞

f∗n(x∗n). Let εn =

f∗n(x∗n)+fn(xn)−〈x∗n, xn〉, n ≥ 1. Then (εn, xn, x
∗
n) ∈ ∂]fn and clearly lim

n→∞
εn = ε. Thus

(ε, x, x∗) ∈ Li ∂]fn and therefore ∂]f ⊆ Li ∂]fn.

Assume now that (2) is true and let (ε, u, u∗) ∈ ∂•f . Then (α, u, u∗) ∈ ∂]f , where

α = df (u, u∗). Since (2) is assumed true, there exist (αn, un, u
∗
n) ∈ ∂]fn, n ≥ 1, such
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that lim
n→∞

(αn, un, u
∗
n) = (α, u, u∗). Then (ε + αn − α, un, u∗n) ∈ ∂•fn and lim

n→∞
(ε + αn −

α, un, u
∗
n) = (ε, u, u∗), showing that ∂•f ⊆ Li ∂•fn. From Lemma 3.3 it follows that (3) is

true.

Next we shall show that (3) implies (4). So assume that (3) is true and let ε > 0 and
u∗ ∈ ∂εf(u). Our assumption implies that there exist (εn, un, u

∗
n) ∈ ∂•fn, n ≥ 1, such

that lim
n→∞

(εn, un, u
∗
n) = (ε, u, u∗). Let δn = min{ε, εn}. If δn < εn, we can use Proposition

2.1 to find (vn, v
∗
n) ∈ ∂δnfn such that ‖vn − un‖ ≤

√
εn − δn and ‖v∗n − u∗n‖ ≤

√
εn − δn.

If δn = εn, take vn = un and v∗n = u∗n. It follows that lim
n→∞

vn = u and lim
n→∞

v∗n = u∗ and,

since δn ≤ ε, ∂δnfn ⊆ ∂εfn. Thus ∂εf ⊆ Li ∂εfn. From Lemma 3.3 it follows that (4) is
true.

Finally assume that (4) is true. In order to prove that (1) is true, it will be enough to
show that for any (u, u∗) ∈ domf × domf ∗ and any µ > 0 there exist a sequence {un}
in X converging to u and a sequence {u∗n} in X∗ converging to u∗ such that f(u) + µ ≥
lim sup
n→∞

fn(un) and f∗(u∗) + µ ≥ lim sup
n→∞

f∗n(u∗n) (see Proposition 3.1). To this end, let

u ∈ domf , u∗ ∈ domf∗, µ > 0, and ε = df (u, u∗). Then (u, u∗) ∈ ∂ε+µf and, by

hypothesis, there exists a sequence {(un, u∗n)} with (un, u
∗
n) ∈ ∂ε+µfn and such that

lim
n→∞

(un, u
∗
n) = (u, u∗). By Lemma 3.2, {un} and {u∗n} have the required properties.

The following example shows that we cannot expect equality in (2) above.

Example 3.5. Define fn ∈ Γ(R) by fn(x) = −1 if x > 1/n and fn(x) = −nx if
0 ≤ x ≤ 1/n. Then τS-limfn = f , where f ∈ Γ(R) is given by f(x) = −1 if x ≥ 0. Clearly
(1, 0, 0) ∈ ∂]fn for all n ≥ 1, so (1, 0, 0) ∈ Li ∂]fn. However, df (0, 0) = 0, so (1, 0, 0) is

not an element of ∂]f .

Remark 3.6. If X is Banach, it was proved in [2] that assertion (1) of Theorem 3.4 is
equivalent to

∂f = Lim ∂fn and there exists a normalizing sequence.

The following characterization of the slice topology was proved in [7], Theorem 4.11: If X
is a Banach space, the slice topology on Γ(X) is the weakest topology on Γ(X) for which
the multifunction ∆ : Γ(X)⇒ X×R×X∗, ∆(f) = {(x, f(x), x∗); (x, x∗) ∈ ∂f} is lower
semicontinuous. In the case of normed spaces we have:

Theorem 3.7. Let X be a normed space.

(1) The slice topology is the weakest topology on Γ(X) for which all multifunctions ∆ε :
Γ(X) ⇒ X × R × X∗, ∆ε(f) = {(x, f(x), x∗); (x, x∗) ∈ ∂εf}, ε > 0, are lower
semicontinuous.

(2) The slice topology is the weakest topology on Γ(X) for which the multifunction ∆] :

Γ(X) ⇒ X × R × X∗ × R, ∆](f) = {(x, f(x), x∗, ε); x ∈ domf, x∗ ∈ domf∗, ε =

df (x, x∗)}, is lower semicontinuous.
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Proof. Recall first that a multifunction T : A ⇒ B, with A and B topological spaces,
is lower semicontinuous if for any net {aι} converging to a in A we have T (a) ⊆ LiT (aι).
Notice next that in all our results we can replace sequences with nets. Now, arguments
similar to those used in the proof of Theorem 3.4 show that the multifunctions ∆] and

∆ε are lower semicontinuous when Γ(X) is endowed with the slice topology.

Let τ be a topology on Γ(X) for which all multifunctions ∆ε are lower semicontinuous. In
order to prove that the slice topology is weaker than τ it is enough to show that if a net {fι}
is τ -convergent to f then it is also τs-convergent to f . To this end, let {fι} be such a net,
(x, x∗) ∈ domf × domf ∗, ε = df (x, x∗), and µ > 0. The τ -lower semicontinuity of ∆ε+µ

implies that ∆ε+µ(f) ⊆ Li ∆ε+µ(fι). Since (x, f(x), x∗) ∈ ∆ε+µ(f), there exists a net

(xι, fι(xι), x
∗
ι ) ∈ ∆ε+µ(fι) converging to (x, f(x), x∗). From this we get that lim fι(xι) =

f(x) and lim sup f ∗ι (x∗ι ) ≤ f∗(x∗) + µ. Proposition 3.1 implies that {fι} τs-converges to
f and this completes the proof of (1). The proof of (2) is similar.

4. Attouch–Wets convergence and ε-subdifferentials

Another useful topology on the set of closed, convex sets is that introduced by Attouch and
Wets [4]; if convex functions are identified with their epigraphs, we obtain the Attouch-
Wets topology on Γ(X), denoted τAW . In [10], Theorem 3.6, this topology is characterized
in terms of the “uniform lower semicontinuity on bounded sets” of the multifunction
∆ : Γ(X) ⇒ X × R ×X∗ (X is assumed to be Banach). In this section we show that a
similar characterization is true in normed spaces, provided that we replace subdifferentials
with ε-subdifferentials. The ideas of the proof are those in [10], with changes due to the
fact that we work with ε-subdifferentials. We begin by recalling the necessary notions (for
details see [4], [7], [5]).

Let X be a normed space. If A, C are subsets of X, the excess of C over A is defined by
e(C,A) = sup

c∈C
inf
a∈A
‖c− a‖ = sup

c∈C
d(c, A).

For ρ > 0 we write eρ(C,A) = e(C ∩ ρB,A). The ρ-Hausdorff distance between A and C
is

hausρ(A,C) = max{eρ(A,C), eρ(C,A)}.
Finally we say that a sequence {fn} of functions from Γ(X) converges to f ∈ Γ(X) in
the Attouch-Wets sense, denoted τAW-limfn = f , if lim

n→∞
hausρ(epifn, epif) = 0 for each

ρ > 0 (in fact, it is enough that this happens for any ρ larger than some positive number).

Lemma 4.1. Let 0 < ε < 1/2, δ > 0 (δ ≥ 0 if X is Banach), and r > max{2, δ}. If

f, g ∈ Γ(X) verify er(epif, epig) < ε2 and e2r2(epif∗, epig∗) < ε2 then er(∆δ(f),∆δ(g))

≤ δ + 6r2ε.

Proof. Let (x, f(x), x∗) ∈ ∆δ(f) ∩ (rB × [−r, r]× rB∗). Then |f∗(x∗)| ≤ 2r2 and there
exist (y, t) ∈ epig and (y∗, t∗) ∈ epig∗ such that

‖y − x‖ ≤ ε2, |t− f(x)| ≤ ε2, ‖y∗ − x∗‖ ≤ ε2, |t∗ − f∗(x∗)| ≤ ε2.
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It follows that

g(y)− f(x) ≤ ε2, g∗(y∗)− f∗(x∗) ≤ ε2, ezrm and |〈y∗, y〉 − 〈x∗, x〉| ≤ 3rε2.

The above inequalities give

g∗(y∗) + g(y) ≤ f ∗(x∗) + f(x) + 2ε2 ≤ 〈x∗, x〉+ δ + 2ε2

≤ 〈y∗, y〉+ δ + 3rε2 + 2ε2 ≤ 〈y∗, y〉+ δ + 4r2ε2

and therefore y∗ ∈ ∂δ+4r2ε2g(y). From Proposition 2.1 it follows that there exist (z, z∗) ∈
∂δg such that

‖z − y‖ ≤ 2rε, ‖z∗ − y∗‖ ≤ 2rε, ezrm and |g(z)− g(y)| ≤ 4r2ε.

We also have

f(x)− g(y) ≤ 〈x∗, x〉 − f∗(x∗) + δ + g∗(y∗)− 〈y∗, y〉 ≤ 3rε2 + ε2 + δ ≤ 2r2ε+ δ.

Thus
‖z − x‖ ≤ 3rε, ‖z∗ − x∗‖ ≤ 3rε, and |g(z)− f(x)| ≤ δ + 6r2ε,

meaning that er(∆δ(f),∆δ(g)) ≤ δ + 6r2ε.

Lemma 4.2. Let f ∈ Γ(X), f(0) = 0 and choose λ0 as in Lemma 2.6. Let also
0 < ε < 1, 0 < δ < 1, λ ≥ λ0, and ρ = max{2r + 1, λ, λr + 1}. Assume that g ∈ Γ(X)
satisfies eρ(∆δ(f),∆δ(g)) < ε+ δ. Then sup{|fλ(z)− gλ(z)|; z ∈ rB} ≤ 5ρ(ε+ δ).

Proof. Let z ∈ rB and let x be a δ-estimator for fλ(z). Choose x∗ as in Lemma 2.6. Then
(x, f(x), x∗) ∈ ∆δ(f)∩(ρB× [−ρ, ρ]×ρB∗) and therefore there exists (y, g(y), y∗) ∈ ∆δ(g)
such that

‖x− y‖ ≤ ε+ δ, |f(x)− g(y)| ≤ ε+ δ, ‖x∗ − y∗‖ ≤ ε+ δ.

Using the definition of gλ(z), the fact that x is a δ-estimator for fλ(z), and the above
inequalities, we have

gλ(z)− fλ(z) ≤ g(y) + λ‖z − y‖ − f(x)− λ‖z − x‖ + δ

≤ ε+ δ + λ‖x− y‖+ δ ≤ ε+ 2δ + λ(ε+ δ) ≤ 2ρ(ε+ δ).

From Lemma 2.6 (a) (v) it follows that fλ(z) ≤ 〈x∗, z〉 + f(x)− 〈x∗, x〉. Notice also that
‖y∗‖ ≤ λ+ ε+ δ. Using the previous estimation for fλ(z) and (6), we have

fλ(z)− gλ+ε+δ(z) ≤ 〈x∗, z〉+ f(x)− 〈x∗, x〉 − 〈y∗, z − y〉 − g(y) + δ

≤ f(x)− g(y) + 〈x∗ − y∗, z〉+ 〈y∗ − x∗, y〉+ 〈x∗, y − x〉+ δ

≤ ε+ δ + r(ε+ δ) + (ε+ δ)(ρ+ ε+ δ) + ρ(ε+ δ) + δ ≤ 4ρ(ε+ δ).

Finally, from this and Lemma 2.6 (b) we obtain that fλ(z) − gλ(z) ≤ 5ρ(ε + δ) which
completes the proof of the lemma.
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We can now prove the main result of this section.

Theorem 4.3. Let X be normed space and f , fn ∈ Γ(X), n ≥ 1. The following
statements are equivalent:

(1) f = τAW-limfn;

(2) for any ε > 0 there exists ρ0 > 0 such that lim sup
n→∞

eρ(∆ε(f),∆ε(fn)) ≤ ε if ρ ≥ ρ0.

Proof. The fact that (1) implies (2) follows immediately from Lemma 4.1 and a result
established in [6] which asserts that the Fenchel transform (i.e. f 7→ f ∗ from Γ(X) to
Γ(X∗)) is continuous with respect to the Attouch-Wets topology.

The other implication follows from Lemma 4.2 and another result of Beer [8, Theorem
4.3] which asserts that f = τAW-limfn if and only if there exists λ0 such that, for any
λ ≥ λ0, the sequence {(fn)λ} converges uniformly on bounded sets to fλ.

Question. Is it possible to replace (2) in the above theorem with

(2′) for any ε > 0 there exists ρ0 > 0 such that lim sup
n→∞

eρ(∆ε(f),∆ε(fn)) = 0 if ρ ≥ ρ0.

We conclude with an extension to normed spaces of a result from [3].

Theorem 4.4. Let X be normed space and f , fn ∈ Γ(X), n ≥ 1. Assume that f = τAW-
limfn. Then, for any ε > 0, ∂εf = gph-dist lim

n→∞
∂εfn (i.e. lim

n→∞
hausρ(∂εf, ∂εfn) = 0 for

ρ sufficiently large).

Proof. From the proof of Lemma 4.1 it follows that lim
n→∞

eρ(∂εf, ∂εfn) = 0 for ρ large

enough. The arguments given in the proof of Theorem 2.3 of [3] can be adapted to our
context as in the cases discussed above and one can show that lim

n→∞
eρ(∂εfn, ∂εf) = 0 too.
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