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1. Introduction

Let 〈X, d〉 be a separable metric space, and let 〈S,A〉 be a measurable space, i.e., a set S
equipped with a sigma algebra of subsets A. By a set-valued function or multifunction Γ
from S to X, we mean a function that assigns to elements of S non-empty closed subsets

of X. We denote such a function by Γ:S →→ X. Measurability of a single-valued function

f :S → X is defined in the usual way: for each open subset V of X, f−1(V ) is in A.
Measurability for a set-valued function is usually defined as follows: for each open subset
V of X, {s ∈ S : Γ(s) ∩ V 6= ∅} belongs to A. As is well known this is equivalent to
the measurability for each x ∈ X, of the single-valued function s → d(x,Γ(s)). When
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X is Polish, this is also equivalent to the existence of a Castaing representation for the
set-valued function [14, 24], i.e., a sequence of measurable selectors 〈fn〉 for Γ such that
for each s ∈ S, Γ(s) = cl {fn(s): s ∈ S}.
On the other hand, we may equip the nonempty closed subsets CL(X) with a topology
τ , i.e., a prescribed collection of open sets, and view Γ as a single-valued function from S
to CL(X). Then Γ is measurable from this perspective provided for each U ∈ τ , we have

Γ−1(U) ∈ A. These two approaches sometimes give the same notion of measurability. It
has long been known that for compact-valued multifunctions, this is true provided τ is the
familiar Hausdorff metric topology [14, p. 62]. For a general closed-valued multifunction,
Hess [21–22] has shown that this is true for the weaker Wijsman topology, which is the
weakest topology τ on CL(X) such that for each x ∈ X, A→ d(x,A) is τ -continuous.

Let us call a topology τ on F ⊂ CL(X) measurably compatible provided for each multi-
function Γ with values in F , measurability of Γ in the above two senses coincide. When
τ is the Hausdorff metric topology, separability of F is the key issue. Not only does this
guarantee measurable compatiblity, but in this case, one can find a measurably compatible
topology τ ′ on CL(X) such that 〈F , τ〉 is a subspace of 〈CL(X), τ ′〉. Using cardinality
arguments and the continuum hypothesis, we show that measurable compatibility fails
without separability (in the special case that F = CL(X), where separability amounts to
total boundedness of X, the continuum hypothesis need not be assumed). Separability
of F when the elements of F are convex sets is of particular interest, for in this case,
measurability of multifunctions with values in F can be expressed in terms of support
functionals. A parallel analysis is performed for the Attouch-Wets topology, a recent
variant of the Hausdorff metric topology.

2. Preliminaries

We write IN for the set of natural numbers. If A is a set, then 2A will denote the power
set of A, the set of all subsets of A. We denote by c the cardinality of the continuum.
In the sequel 〈X, d〉 will always be a separable metric space. If x ∈ X and t > 0, then
the open ball with center x and radius t will be denoted by St[x]. More generally, if A is

a nonempty subset of X, we write St[A] for the enlargement
⋃
a∈A St[a] of the set A of

radius t. If A and B are nonempty subsets of X, we define the gap Dd(A,B) between A
and B and the excess of A over B by the formulas

Dd(A,B) = inf
a∈A

d(a, B) and ed(A,B) = sup
a∈A

d(a, B).

Gap and excess are both extensions of the usual distance between a point and a set, as
d(x,B) = ed({x}, B) = Dd({x}, B). The Hausdorff distance between A and B is given by

Hd(A,B) = max{ed(A,B), ed(B,A)}
= inf{ε > 0 :A ⊂ Sε[B] and B ⊂ Sε[A]}.

It can also be shown that Hd(A,B) = supx∈X |d(x,A)− d(x,B)|, so that Hausdorff dis-

tance is just uniform distance between distance functionals [17]. We denote the Hausdorff
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metric topology by τHd, and the Wijsman topology determined by d by τWd
. It is well-

known that different admissible metrics give the same Hausdorff metric topologies if and
only if they are uniformly equivalent. The situation for the Wijsman topology, as recently
resolved in [16], is more complex.

In the sequel, K(X) will denote the family of nonempty compact subsets of the metric
space X. We will have occasion to consider normed linear spaces, and in this setting
C(X) will denote the nonempty closed convex subsets of X. For A ∈ C(X), its support
functional δ∗(·, A):X∗ → (−∞,+∞] is defined by the formula δ∗(x∗, A) = sup{x∗(a): a ∈
A}. If A ⊂ X, then spanA will be the linear subspace generated by A, and clcoA will be
its closed convex hull.

Let 〈W, τ〉 be a topological space. The associated Borel field B(W, τ) is the smallest sigma
algebra of subsets of W containing τ . Clearly f : 〈S,A〉 → W is measurable if and only

if B ∈ B(W, τ) ⇒ f−1(B) ∈ A. Now let 〈X, d〉 be a separable metric space. Given a
subfamily F of CL(X), the smallest sigma algebra containing all sets of the form

{F ∈ F :F ∩ V 6= ∅}

where V is open in X is called the Effros sigma algebra E(F) [15]. Clearly, a multifunction

Γ: 〈S,A〉 →→ X with values in F is measurable in the sense that for each open subset V
of X, {s ∈ S: Γ(s) ∩ V 6= ∅} belongs to A, if and only if the associated single-valued
function from S to F is A − E(F) measurable. Thus, if F is equipped with a topology
τ , then measurability for multifunctions agrees with A − B(F , τ)-measurability for the
transformation viewed as a single-valued function provided E(F) = B(F , τ). The Theorem
of Hess [21–22] alluded to in the introduction says this: for any separable metric space
〈X, d〉 and for any F ⊂ CL(X), we have E(F) = B(F , τWd

). In particular, the Borel field

for the Wijsman topology is independent of the metric chosen for the space. As we shall
see in section 3, this is not the case when τWd

is replaced by τHd.

3. On the Borel Field of the Hausdorff Metric Topology

Let 〈X, d〉 be a separable metric space. As is well known, E(K(X)) = B(K(X), τHd). We

first give, using cardinality arguments within ZFC, necessary and sufficient conditions for
E(CL(X)) = B(CL(X), τHd).

Theorem 3.1. Let 〈X, d〉 be a separable metric space. The following are equivalent:

(a) 〈X, d〉 is a totally bounded metric space;

(b) card(τHd) ≤ c;

(c) E(CL(X) = B(CL(X), τHd).

Proof. (a)⇒(c). Total boundedness of 〈X, d〉 is necessary and sufficient for the equality
of the Wijsman and Hausdorff metric topologies [9]. By the Theorem of Hess, we have
E(CL(X)) = B(CL(X), τWd

) = B(CL(X), τHd).

(c)⇒(b). Suppose (b) fails. Then clearly card(B(CL(X), τHd)) > c. On the other hand,

by the Theorem of Hess, E(CL(X)) is the Borel field of a separable metrizable space,
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namely 〈CL(X), τWd
〉. In view of the standard inductive construction of the Borel sets,

the Borel field for any such space has cardinality c [25, p. 347] (this does not use the
continuum hypothesis). As a result, E(CL(X)) 6= B(CL(X), τHd).

(b)⇒(a). Suppose d is not totally bounded. Choose a sequence {xn}∞n=1 and ε > 0

such that d(xi, xk) > ε if i 6= k. Now write B = {xn:n ∈ IN}. Then each element of

2B is a closed subset of X, and when F1 and F2 are distinct elements of 2B, we have

Hd(F1, F2) ≥ ε. Thus, the elements of 2B form a uniformly discrete set in 〈CL(X), τHd〉,
and so each element of 22B is a closed subset in the hyperspace. Moreover, if F1 and F2

are distinct elements of 22B with say F1 6⊂ F2, then we have

eHd(F1,F2) ≥ ε.

This shows that the family of ε-enlargements in 〈CL(X), τHd〉 whose centers run over 22B

are distinct sets. Since each enlargement is open in the Hausdorff metric topology, and

the cardinality of 2B is already c, we get card(τHd) ≥ card22B = 2c. We conclude that

condition (b) fails.

We note that the implication (c)⇒(b) in the proof of Theorem 3.1 can be argued in
another way, using the fact that the Effros Borel field is isomorphic with the Borel field
of some subset of [0,1] (with the relative topology) (see, e.g., [15, p. 7].

Corollary 3.2. Let 〈X, d〉 be a separable metric space. The following are equivalent:

(a) 〈X, d〉 is a totally bounded metric space;

(b) for each measurable space 〈S,A〉, the measurability of a multifunction Γ:S →→ X
implies its A− B(CL(X), τHd)-measurability.

Proof. (a)⇒(b). This is immediate from the coincidence of the Wijsman and Hausdorff
metric topologies, and thus of their Borel fields.

(b)⇒(a). With no assumptions, Γ: 〈CL(X), E(CL(X))〉 →→ X defined by Γ(A) = A is
measurable. If X is not totally bounded, then by the Theorem of Hess, the inclusion
τWd

⊂ τHd, and Theorem 3.1, we see that the inclusion E(CL(X)) ⊂ B(CL(X), τHd)

must be proper. Thus the single-valued function A → A from 〈CL(X), E(CL(X))〉 to
〈CL(X),B(CL(X), τHd)〉 is not measurable.

Corollary 3.3. Let X be a separable metrizable space. Then X has two admissible
metrics d and ρ such that B(CL(X), τHd) 6= B(CL(X), τHρ) if and only if X is not compact.

Proof. If X is compact, then X has a unique compatible uniformity, and so every admis-
sible metric gives the same Hausdorff metric topology. Conversely, if X is noncompact,
then X admits an unbounded metric d [20]. But X can also be embedded into a countable
product of intervals and thus also admits a totally bounded metric ρ. By Theorem 3.1,
the Borel fields for the induced Hausdorff metrics diverge.

We next show that the Borel field of the Hausdorff metric topology agrees with the Effros
sigma algebra for certain subfamilies of CL(X). A point of departure for our next result
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is the following classical fact: if 〈X, d〉 is separable, then 〈K(X), Hd〉 is separable (the
finite subsets of a dense subset of X are dense in K(X)).

Theorem 3.4. Let 〈X, d〉 be a separable metric space, and let F be a subfamily of CL(X)
that is separable with respect to the induced Hausdorff metric. Then E(F) = B(F , τHd).

Proof. We always have E(F) = B(F , τWd
) ⊂ B(F , τHd). The equality is the Theorem of

Hess, whereas the second inclusion follows from τWd
⊂ τHd.

For the inclusion B(F , τWd
) ⊃ B(F , τHd), consider a closed ball in 〈F , Hd〉 with center

F0 ∈ F , say {F ∈ F :Hd(F, F0) ≤ ε}. As Hausdorff distance is a uniform distance
between distance functionals, this closed ball may be written as

⋂

x∈X
{F ∈ CL(X) : |d(x, F )− d(x, F0)| ≤ ε},

a closed set in the Wijsman topology. By second countability of 〈F , τHd〉, each open subset

of 〈F , τHd〉 is a countable union of closed balls and is hence an Fσ-subset of 〈F , τWd
〉. In

particular, each τHd-open set belongs to B(F , τWd
) = E(F).

If one accepts the continuum hypothesis, it can be shown that equality of E(F) and
B(F , τHd) implies that 〈F , τHd〉 is separable. For if the hyperspace is nonseparable, then

we can find a subset W of cardinality c of F and ε > 0 such that if F1 ∈ W and F2 ∈ W
and F1 6= F2, then Hd(F1, F2) > ε. For each subset W ′ of W, form the ε-enlargement of

W ′ in the Hausdorff metric in the space F . Then the family of such ε-enlargements gives
a subfamily of B(F , τHd) of cardinality 2c, which cannot be contained in E(F).

Convex-valued multifunctions Γ whose values lie in a τHd-separable subset are particularly

tractable, for their measurability can be characterized in terms of the measurability, for
each x∗ ∈ X∗, of the associated single-valued functions s → δ∗(x∗,Γ(s)). Evidently,
measurability of these functions is necessary for measurability of the initial multifunction,
because

{s ∈ S : δ∗(x∗,Γ(s)) > t} = {s ∈ S : Γ(s) ∩ {x ∈ X : x∗(x) > t} 6= ∅}.

Before proceeding, we note that there are some other known cases where sufficiency also
holds, e.g., when the values of Γ are bounded and X∗ is strongly separable. For a coun-
terexample in the general case, the reader may consult [5].

We require a well-known dual formula for the distance from a point x ∈ X to a closed
convex set A [23, p. 62]: d(x,A) = sup{x∗(x) − δ∗(x∗, A) : ‖x∗‖ ≤ 1}. We also need
the following elementary known fact whose proof we include for completeness (see, e.g.,
Chapter IX of Bourbaki [13]).

Lemma 3.5. Let X be a separable metric space, and let {fα :α ∈ I} be a family of
continuous real-valued functions on X. Then there exists a countable subset I0 of I such
that for each x ∈ X, sup{fα(x) :α ∈ I0} = sup{fα(x) :α ∈ I}.

Proof. For each α ∈ I, let Vα = {(x, t) ∈ X×R : t < f(x)}, and let V =
⋃{Vα :α ∈ I}.
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Since X × R is Lindelöf, we can find a countable subfamily I0 of I such that V =⋃{Vα :α ∈ I0}. This subset I0 does the job.

Theorem 3.6. Let X be a separable normed linear space, and let 〈S,A〉 be a measurable

space. Suppose F is a separable subspace of 〈C(X), τHd〉, and Γ :S →→ X has values in

F . Then Γ is measurable if and only if for each x∗ ∈ X∗, s→ δ∗(x∗,Γ(s)) is measurable.

Proof. Only sufficiency is in question. Let {Ck : k ∈ IN} be Hd-dense in F . Writing Ek
for {x∗ ∈ X∗ : ‖x∗‖ ≤ 1 and δ∗(x∗, Ck) < +∞}, we have for each x ∈ X,

d(x, Ck) = sup{x∗(x)− δ∗(x∗, Ck) : x∗ ∈ Ek}.

Now for each x∗ ∈ Ek, x → x∗(x) − δ∗(x∗, Ck) is a continuous real-valued function. By
Lemma 3.5, there exists a countable subset Dk of Ek such that for each x ∈ X,

d(x, Ck) = sup{x∗(x)− δ∗(x∗, Ck) : x∗ ∈ Dk}.

Set D =
⋃∞
k=1Dk. We claim that for each x ∈ X and for each A ∈ F , we have d(x,A) =

sup{x∗(x)−δ∗(x∗, A) : x∗ ∈ D}. We need only show that for each t < d(x,A), there exists
x∗ ∈ D with x∗(x) − δ∗(x∗, A) > t. Choose ε > 0 such that d(x,A) > t + ε, and then
choose Ck with Hd(A,Ck) < ε/3. Now choose x∗ ∈ Dk such that

d(x, Ck)−
ε

3
< x∗(x)− δ∗(x∗, Ck).

Since |δ∗(x∗, Ck)− δ∗(x∗, A)| ≤ ‖x∗‖ ·Hd(Ck, A) < ε/3, we get

x∗(x)− δ∗(x∗, A) > x∗(x)− δ∗(x∗, Ck)−
ε

3
> d(x, Ck)−

2ε

3
> d(x,A)− ε > t.

This establishes the claim.

Finally, fix x ∈ X. We may write for each s ∈ S

d(x,Γ(s)) = sup{x∗(x)− δ∗(x∗,Γ(s)) : x∗ ∈ D}.

This means that s → d(x,Γ(s)) is a countable supremum of measurable single-valued
functions and is thus measurable. Measurability of the multifunction Γ now follows.

To close this section, we show that if F is a separable subspace of 〈CL(X), τHd〉, then the

Hausdorfff metric topology restricted to F can be extended to a topology τ on CL(X)
such that E(CL(X)) = B(CL(X), τ). This of course yields Theorem 3.4 above as a
consequence. Our construction is based on ideas developed in [7], and takes into account
the fact that many hyperspace topologies arise as weak topologies determined by families
of gap and excess functionals (perhaps varying the metric in the process) [9, 11]. In
particular, the Hausdorff metric topology is the weak topology on CL(X) determined by
the family {Dd(B, ·) :B ∈ CL(X)} ∪ {ed(B, ·) :B ∈ CL(X)}. In this representation, the
family {Dd(B, ·) :B ∈ CL(X)} may be replaced by {ed(·, B) :B ∈ CL(X)} [11].
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Theorem 3.7. Let 〈X, d〉 be a separable metric space, and let F be a separable subspace
of 〈CL(X), τHd〉. Then there exists a second countable metrizable topology τ on CL(X)

whose subspace topology on F agrees with the Hausdorff metric topology, and such that
E(CL(X)) = B(CL(X), τ).

Proof. Since the Hausdorff metric topology for F is second countable, each base for the
relative topology contains within it a countable base. As a result, we can find a countable
subfamily D of CL(X) such that {Dd(B, ·) :B ∈ D} ∪ {ed(B, ·) :B ∈ D} as a family of
functions on F generates the relative topology. Let {xn :n ∈ IN} be a countable dense
subset of X, and let τ be the topology on CL(X) generated by

{d(xn, ·) :n ∈ IN} ∪ {Dd(B, ·) :B ∈ D} ∪ {ed(B, ·) :B ∈ D},
viewed as a family of functions on CL(X). As a weak topology, τ is automatically com-
pletely regular [20]. Since the family {d(xn, ·) :n ∈ IN} separates points in the hyperspace,
τ is Hausdorff. Since the family of generating functionals is countable, the topology is
second countable. Thus, by the Urysohn metrization theorem, the topology is second
countable and metrizable.

Since d(xn, ·) is τ -continuous for each n ∈ IN, it follows that d(x, ·) is τ -continuous for
each x ∈ X, and so τ contains the Wijsman topology determined by d. This alone implies
that E(CL(X)) ⊂ B(CL(X), τ).

By second countability of τ , it is clear that its Borel field is generated by any system
of generators that yield a subbase for the topology through countable unions, countable
intersections, and complementation. Obviously, one subbase for the topology consists of
all sets of the following form, where t > 0:

{A ∈ CL(X) : d(xn, A) < t}, {A ∈ CL(X) : d(xn, A) > t} (n ∈ IN),
{A ∈ CL(X) : Dd(B,A) < t}, {A ∈ CL(X) : Dd(B,A) > t} (B ∈ D),
{A ∈ CL(X) : ed(B,A) < t}, {A ∈ CL(X) : ed(B,A) > t} (B ∈ D).

Since distance functionals are in particular gap/excess functionals with fixed left argument,
the proof will be completely provided that we can show for each B ∈ CL(X), the sets
{A ∈ CL(X) :Dd(B,A) < t} and {A ∈ CL(X) : ed(B,A) > t} belong to the Effros sigma
algebra. To this end, let {bn :n ∈ IN} be a countable dense subset of B. We compute

{A ∈ CL(X) :Dd(B,A) < t} = {A ∈ CL(X):A ∩ St[B] 6= ∅} ∈ E(CL(X)),

and

{A ∈CL(X) : ed(B,A) > t} =
∞⋃

n=1

{A ∈ CL(X) : d(bn, A) > t}

=
∞⋃

n=1

∞⋃

i=1

{A ∈ CL(X) :A ⊂ {y : d(y, bn) ≥ t+ 1/i}} ∈ E(CL(X)).

This gives E(CL(X)) ⊃ B(CL(X), τ), as required.
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4. On the Attouch-Wets Topology

The Hausdorff metric topology is a flexible tool for analysis only when restricted to
bounded sets. For example, in the plane, the sequence of lines {Ln}∞n=1 where Ln has

equation y = x/n ought to converge to the horizontal axis, but this fails with respect to
the Hausdorff metric topology. Measurability considerations aside, the Hausdorff metric
topology for unbounded closed sets is simply too strong.

The strongest topology that seems to be appropriate for unbounded sets is the so-called
Attouch-Wets topology τAWd

, called elsewhere the bounded-Hausdorff topology, that has

been under intensive investigation over the last five years [1, 2, 3, 4, 6, 8, 10, 11]. From
a function space perspective, this is the topology of uniform convergence of distance
functionals on bounded subsets of X. It can also be expressed in terms of enlargements
[4]; fixing x0 ∈ X, a compatible uniformity for the topology has as a base all sets of the
form

{(A,B) ∈ CL(X)× CL(X) :A ∩ Sn[x0] ⊂ S1/n[B] and B ∩ Sn[x0] ⊂ S1/n[A]}.

Since the topology is Hausdorff and the above uniformity has a countable base, the
Attouch-Wets topology is metrizable.

In this section we look at some of the questions posed in the last section with the Hausdorff
metric topology replaced by the Attouch-Wets topology. The key tool in such an analysis is
the following representation of the Attouch-Wets topology, paralleling the one announced
for the Hausdorff metric topology in section 3: τAWd

is the weak topology on CL(X)

induced by {Dd(B, ·) :B ∈ CLb(X)} ∪ {ed(B, ·) :B ∈ CLb(X)}, where CLb(X) denotes
the closed and bounded nonempty subsets of X [11].

In terms of what is true, there are no surprises, and only one result requires a new proof:
there are complications in producing an analogue of Theorem 3.1. We begin with a
technical fact.

Lemma 4.1. Let IN denote the set of positive integers. There exists a map α→ Iα from

2INin itself such that if α 6= β, then Iα 6⊂ Iβ and Iβ 6⊂ Iα.

Proof. For each α ∈ 2IN, let

Iα = {2n :n ∈ α} ∪ {2n+ 1:n 6∈ α}.

Let α and β be distinct elements of 2IN. Without loss of generality, we may assume
α\β 6= ∅. Taking n ∈ α\β, we have 2n ∈ Iα\Iβ and 2n+ 1 ∈ Iβ\Iα, and thus none of the

inclusions can occur.

Theorem 4.2. Let 〈X, d〉 be a separable metric space. The following are equivalent:

(a) each bounded subset of X is totally bounded;

(b) card(τAWd
) ≤ c;

(c) E(CL(X)) = B(CL(X), τAWd
).
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Proof. (a)⇒(c). Total boundedness of bounded subsets of X is necessary and sufficient
for the equality of the Wijsman and Attouch-Wets topologies [12]. By the Theorem of
Hess, we have E(CL(X)) = B(CL(X), τWd

) = B(CL(X), τAWd
).

(c)⇒(b). This is argued just as in the proof of Theorem 3.1.

(b)⇒(a). Let B be a bounded subset of X that is not totally bounded. Choose a sequence
{xn}∞n=1 in B and ε > 0 such that d(xi, xk) > ε if i 6= k. Consider the family I = {Iα :α ∈
2IN} of Lemma 4.1, and for each α, write

Fα = {xn :n ∈ Iα}.
By construction, each Fα is bounded and has no accumulation points and is thus closed.

By the properties of I, F = {Fα :α ∈ 2IN} has cardinality c, and α 6= β implies both
Fα 6⊂ Fβ and Fβ 6⊂ Fα. Notice also that when α 6= β, we have ed(Fα, Fβ) ≥ ε, for taking

x0 ∈ Fα\Fβ (a nonempty set), we have d(x0, Fβ) ≥ ε.

Consider for each Λ ∈ 22IN
the set

ΣΛ =
⋃

α∈Λ

{F ∈ CL(X) : ed(Fα, F ) < ε}.

Since excess functionals with fixed left argument are τAWd
-continuous [11, p. 516], each

ΣΛ is τAWd
-open. We claim that all the sets ΣΛ are distinct. Let Λ and Λ′ be distinct

elements of 22IN
, and take without loss of generality β ∈ Λ\Λ′. Then ed(Fα, Fβ) ≥ ε for

each α ∈ Λ′, and so Fβ 6∈ ΣΛ′ . Thus, Fβ ∈ ΣΛ\ΣΛ′ , establishing the claim. We have

shown that

card(τAWd
) ≥ card{ΣΛ : Λ ∈ 22IN} = 2c,

and so (b) fails provided (a) does.

The following results are proved using obvious modifications of arguments used in the
proofs in section 3.

Corollary 4.3. Let 〈X, d〉 be a separable metric space. The following are equivalent:

(a) bounded subsets of X are totally bounded;

(b) for each measurable space 〈S,A〉, the measurability of a multifunction Γ :S →→ X
implies its A− B(CL(X), τAWd

)-measurability.

Theorem 4.4. Let 〈X, d〉 be a separable metric space, and let F be a separable sub-
space of 〈CL(X), τAWd

〉. Then there exists a second countable metrizable topology τ on

CL(X) whose subspace topology on F agrees with the Attouch-Wets topology, and such
that E(CL(X)) = B(CL(X), τ).

From Theorem 4.4, it follows that for each separable subfamily F of CL(X) with respect
to the induced Attouch-Wets topology, we have E(F) = B(F , τAWd

), and the converse

holds, assuming the continuum hypothesis.
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We close this section with an investigation of the size of the Attouch-Wets topology,
restricted to the family of closed convex sets. First, a structural lemma.

Lemma 4.5. Let X be an infinite dimensional normed linear space. Then there exists
a sequence {an}∞n=1 in X such that whenever {m,n1, n2, n3, . . . , nk} are distinct positive

integers, then d(am, span{an1 , an2, . . . , ank}) ≥ 1.

Proof. It suffices to construct for each n ≥ 2 a subset An = {a1, a2, a3, . . . , an} of X
such that

(i) d(aj , span(An − {aj}) ≥ 1 (j ≤ n),

(ii) An ⊂ An+1.

This will be done inductively. Suppose A1, A2, A3, . . . , An have been so constructed. Fix
j ≤ n; since d(aj , span(An\{aj}) ≥ 1, we can separate span(An\{aj}) from S1[aj ] by a

norm one element yj of X∗. Clearly, both An\{aj} ⊂ y−1
j (0) and d(aj , y

−1
j (0)) ≥ 1.

Also, let yn+1 be a norm one functional with An ⊂ y−1
n+1(0). It is easily verified that

y1, y2, . . . , yn+1 are linearly independent, and so there exists an+1 ∈
⋂n
j=1 y

−1
j (0) with

yn+1(aj) = 1 [18, p. 421]. Since ‖yn+1‖ = 1, we have d(an+1, spanAn) ≥ 1. By construc-

tion, for each j ≤ n, we have d(aj , y
−1
j (0)) ≥ 1, and since {an+1} ∪ (An\{aj}) ⊂ y−1

j (0),

we get d(aj , span(An+1\{aj}) ≥ 1 for j = 1, 2, . . . , n.

Theorem 4.6. Let X be a separably infinite dimensional normed linear space. Then
both the Attouch-Wets topology and the Hausdorff metric topology restricted to C(X) have
2c elements.

Proof. The finer Hausdorff metric topology has at most 2c elements, for if {xn :n ∈ IN}
is a countable dense subset of X, then all sets of the form clco{xn :n ∈M} where M ⊂ IN
are τHd-dense in C(X), and each open set in the hyperspace can be written as a union

of balls with rational radii whose centers are of this form. It remains to show that the
coarser Attouch-Wets topology has at least this many elements.

Let {an}∞n=1 be the sequence described in Lemma 4.5, and let I = {Iα :α ∈ 2IN} be the

family of indices as described in Lemma 4.1. For each α, form Cα = clco{an :n ∈ Iα}.
Then if α 6= β, we have ed(Cα, Cβ) ≥ 1, as elements in Cβ can be approximated by finite

convex combinations of elements of {an:n ∈ Iβ}. The trace of the sets ΣΛ in the proof of

Theorem 4.2 on C(X) gives 2c τAWd
-open sets in the relative topology.

What happens if C(X) is replaced by CB(X), the family closed and bounded convex sets ?
We conjecture that the statement of Theorem 4.6 remains valid, although we are not able
to prove this in complete generality. The claim is true provided X is a Banach space with
a Schauder basis [18, p. 71] (such spaces are automatically separable, but not conversely
[19]).

Theorem 4.7. Let X be a Banach space with a Schauder basis. Then both the Attouch-
Wets topology and the Hausdorff metric topology restricted to CB(X) have 2c elements.
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Proof. Let {an :n ∈ IN} be a Schauder basis of norm one elements; each x in X may be

represented uniquely as a series: x =
∑∞

i=1 αiai. For each n ∈ IN, define the coordinate

functional yn ∈ X∗ by yn(
∑∞

i=1 αiai) = αn, where x =
∑∞

i=1 αiai. The convergence of the

series to x and the fact that ‖an‖ = 1 for each n imply that {yn(x) :n ∈ IN} is bounded
for each x ∈ X, and so by the uniform boundedness principle, {yn :n ∈ IN} is uniformly
bounded by some µ > 0. In this case, we get for all n ∈ IN, d(an, span{ai : i ∈ IN, i 6=
n}) ≥ µ−1. The arguments of the previous theorem now go through to the bounded case,
since whenever M ⊂ IN, we have clco{an :n ∈M} ∈ CB(X).

5. On the separability of hyperspaces

As we remarked in section 3, when 〈X, d〉 is a separable metric space, then 〈K(X), τHd〉
is separable. More generally, K(X) may be replaced by the closed and totally bounded
subsets of X. One can also show that the family of closed sets whose intersection with
each closed ball is totally bounded is separable in the Attouch-Wets topology τAWd

(this

is a special case of Proposition 5.1 below). There is another positive result regarding
τAWd

-separability that we mention in passing. If X is a normed linear space with strongly

separable dual, then the family of closed flats in X of finite codimension is separable. This
follows for example from the Walkup-Wets Isometry Theorem [27], stating the Hausdorff
distance between the truncation of two cones in X by the unit ball U is the Hausdorff
distance between the truncation of the polar cones in X∗ by the dual unit ball U∗. Sepa-
rability of subspaces with respect to the Attouch-Wets topology plays a role in the theory
of random sets, as Attouch and Wets [3, Theorem 5.2] have given a multivalued law of
large numbers for random convex sets (actually, for random convex lower semicontinuous
functions) with values in a separable subspace.

One is lead to ask: is it possible to link separability of a family F in the Attouch-Wets
topology with the separability of truncations of its members by fixed balls in the Hausdorff
metric topology? In the setting of a normed linear space, we give sufficient condition which
is also necessary in the convex case. The sufficient condition can easily be reformulated
to apply to a general separable metric space, and we leave this task to the reader.

Let F be a family of nonempty closed subsets of a separable normed linear space X. For

each positive integer k, let Fk = {A ∈ F :A ∩ int kU 6= ∅}.

Proposition 5.1. Let X be a separable normed linear space, and let F be a family of
nonempty closed subsets of X.

(a) If for each k ∈ IN for which Fk is nonempty, {A ∩ kU :A ∈ Fk} is τHd-separable,

then F is τAWd
-separable;

(b) If F is a τAWd
-separable family of closed convex sets, then for each k ∈ IN for which

Fk is nonempty, {A ∩ kU :A ∈ Fk} is τHd-separable.

Proof. We prove (a) first. There exists k0 ∈ IN such that Fk0 is nonempty. For each

k ≥ k0 let {Akj : j ∈ IN} ⊂ Fk be chosen so that {Akj ∩ kU : j ∈ IN} is τHd-dense in

{A∩kU :A ∈ Fk}. Now fix A ∈ F and n ∈ IN, and choose k ≥ n such that A∩int kU 6= ∅.
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Choosing Akj with Hd(Akj ∩ kU , A ∩ kU) < 1/n, we get

A ∩ intnU ⊂ A ∩ kU ⊂ S1/n[Akj ∩ kU ] ⊂ S1/n[Akj ],

and
Akj ∩ intnU ⊂ Akj ∩ kU ⊂ S1/n[A ∩ kU ] ⊂ S1/n[A].

This proves that {Akj : k ≥ k0 and j ∈ IN} is τAWd
-dense in F .

For the partial converse (b), let F be a τAWd
-separable family of closed convex sets,

with F0 a countable τAWd
-dense subset of F . We rely on the following theorem of Beer

and Lucchetti [10]: in the convex case, if A = τAWd
-limAn and B = τAWd

-limBn and

A ∩ intB 6= ∅, then A ∩ B = τAWd
-lim(An ∩ Bn). Let A ∈ Fk; by density, there exists a

sequence 〈An〉 in F0 with A = τAWd
-limAn. Clearly, A ∩ int kU 6= ∅ ⇒ An ∩ int kU 6= ∅

eventually. With B = B1 = B2 = . . . = kU , we get

A ∩ kU = τAWd
- lim(An ∩ kU) = τHd- lim(An ∩ kU),

as Attouch-Wets convergence of a sequence of bounded convex sets to a bounded limit

implies its Hausdorff metric convergence. This shows that {A∩kU :A ∈ F k0 } is a countable

τHd-dense subset of {A ∩ kU :A ∈ Fk}, and the proof is complete.

We have no idea whether convexity is really needed in the converse.
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