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The generalized topological degree theory is based on the Brouwer and Leray-Schauder degrees. It can
be defined for general classes of mappings. The purpose of this article is two-fold. One goal is to define
the topological degree for maximal monotone operators. Particular attention is paid to the continuation
methods for this kind of operators and real functions of convex type. This allows us to extend some
recent results (see [5], [6]) by withdrawing the compactness assumptions.
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1. Introduction

The question of stability in optimization deals with what happens to an optimization
problem when the elements of the problem are in some way deformed. As being expressed
by Felix E. Browder, the concept of degree of a mapping, in all its different forms, is one
of the most effective tools for studying the properties of the existence and multiplicity
of solutions of nonlinear equations. Historically, the well known topological degree is a
useful tool in applied mathematics, for example to prove that some nonlinear equations
have solutions and to investigate the stability by using the continuation method. The
notion of the degree was first introduced explicitly by Brouwer in 1912 in the case of
finite dimensional spaces. Leray and Schauder extended this theme in 1934 to the context
of Banach spaces and mappings of the form f = I − g, with I the identity and g a
compact mapping (we refer to [15], [27] and [39] for a wide bibliography on the subject.)
Afterwards many authors defined and developed the topological degree theory for various
classes of non-compact nonlinear mappings between Banach spaces. For references on
these notions see [1], [2], [3], [15], [16], [22]–[24], [26], [27], [29], [31], [33]–[38], [41], [43],
[47] and [50]. In a series of articles [15]–[18] in 1983 Browder has defined and extended
this concept of the classical topological degree for operators of monotone type (class
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(S+) and pseudomonotone operators). His method is based on Galerkin approximations
for which the classical Brouwer degree is defined. Recently, Berkovits and Mustonen
[11]–[13] introduced a new construction of the Browder degree which is based on the
Leray-Schauder degree.
The degree theory obtained can be used by relaying on the continuation methods to
deduce existence theorems for nonlinear inclusion differential equations (see the references
mentioned above), fixed point theory ([14], [16], [25], [36], [44], [52], ...) and optimisation
([5], [6], [45]).
In this paper we show how Browder’s degree, given for operators of class (S+), can be
naturally extended to the case of maximal monotone operators by relying on generalized
Yosida approximates. Particular attention is paid to the normalization and invariance
under homotopies for the topological degree we define. Homotopy methods are used
to prove several theorems on the existence of solutions. This allows us to extend some
recent results (see [5], [6]) of Attouch, Penot and Riahi about the continuation method for
solutions of parametrized monotone nonlinear equations (Theorem 4.5). It is also possible,
by relying on subdifferentials, that our definition could be used to define topological
degrees for real convex functions and convex-concave saddle functions.
Here is the summary of the paper. In section 2, some basic properties of Browder’s degree
are set out. In section 3, we demonstrate an auxiliary continuation theorem (Theorem
3.3). It concerns to pass from graph continuity of maximal monotone operators family
to class (S+) property of the associated generalized Yosida approximation. Section 4 is
devoted to define the topological degree of a maximal monotone operator and to give
familiar properties (Theorem 4.2). Afterwards we give various results on parametrized
nonlinear monotone equations (Theorem 4.5, Propositions 4.6, 4.7). Finally, in section 5
we apply the results of the previous sections to real functions of convex type (Propositions
5.2, 5.3).

2. Notation and preliminaries

Let be given a real reflexive Banach space X with the topological dual X∗. Without loss
of generality we will always assume (X, ‖.‖) and (X∗, ‖.‖) to be locally unifomly convex,
by virtue of the powerful renorming theorem of Asplund, Lindenstrauss, Trojanski and
Zizler (see [27], p.185 or [49]). In particular this implies that the duality mapping J of X
into X∗ given by

J(x) = {x∗ ∈ X∗; 〈x∗, x〉 = ‖x‖.‖x∗‖ = ‖x‖2}
is a homeomorphism between X and X∗. The strong and the weak convergences in each

of the spaces X and X∗ are denoted by “
s→” and “

w→”, respectively.

Let us recall some definitions and results that will be needed in the sequel.

Definition 2.1. Let Ω be an open subset of the reflexive Banach space X and {ft :

Ω −→ X∗; t ∈ T} be a family of demi-continuous operators from Ω in X∗. Then the family
(ft)t∈T is called pseudomonotone (resp. of class (S+)) if for any net (ti)i∈I converging to

t in T and (xi)i∈I in Ω, the relations

xi
w→ x and lim sup

i∈I
〈fti(xi), xi − x〉 ≤ 0
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imply

lim
i∈I
〈fti(xi), xi − x〉 = 0 (resp. xi

s→ x),

if moreover x ∈ Ω the net (fti(xi))i∈I does weakly converge to ft(x).

Theorem 2.2. (Browder’s degree) Let X be a reflexive Banach space, Ω an open bounded

subset of X, F(Ω, y) be the family of all operators of class (S+) such that y /∈ f(∂Ω), and
A(Ω, y) the family of homotopies in F(Ω, y) of class (S+).

On these admissible triplets (f,Ω, y), i.e. (f,Ω, y) ∈ F(Ω, y), one can define a unique
Z -valued function d that satisfies the three basic conditions corresponding to the ones of

Brouwer’s topological degree, namely :

(d1) d(J,Ω, y) = 1 for y ∈ Ω , and d(f,Ω, y) 6= 0 implies y ∈ f(Ω) ;
(d2) d(f,Ω, y) = d(f,Ω1, y) + d(f,Ω2, y) whenever Ω1 and Ω2 are disjoint open subsets

of Ω such that y /∈ f(Ω \ Ω1 ∪ Ω2) ;

(d3) d(ft,Ω, y(t)) is independent of t ∈ T whenever y is continuous on T , the homotopy
(ft)t∈T is of class (S+) and y(t) /∈ ft(∂Ω) on T .

The reader is refered to Browder [15]–[20] for more details.

3. Generalized Yosida approximation

Let X be a reflexive Banach space. In the sequel we assume that X and X∗ are locally
uniformly convex, and we will identify a multi-valued mapping (or operator) A : X 7−→ X∗

with its graph in X × X∗ i.e. A = {(x, y) ∈ X × X∗; y ∈ A(x)}. The domain of A is
denoted by dom(A) = {x ∈ X;A(x) 6= ∅}.
A multi-valued operator A ⊂ X ×X∗ is said to be monotone if for any (xi, yi) ∈ A, with
i = 1,2, one has 〈y1 − y2 , x1 − x2〉 ≥ 0.
A is said to be maximal monotone if it is maximal in the family of monotone operators
in X ×X∗, ordered by inclusion.

Let now A ⊂ X × X∗ be a maximal monotone operator. Then the resolvent JAλ (x) for

λ > 0 and A is defined as the unique solution of the equation

0 ∈ J(JAλ (x)− x) + λA(JAλ (x)).

The Yosida approximation is given by Aλ(x) = 1
λJ(x− Jλ(x)) = (A−1 +λJ−1)−1(x). For

more details see [4], [10], [15], [27].

We will use an extension of the concept of Yosida approximation that is given by Aλ =
Aλ + λJ . This notion will be called generalized Yosida approximation.

Definition 3.1. a) A net {Ai ⊂ X × X∗; i ∈ I} is said to be graph convergent to
A ⊂ X ×X∗ if it converges in X ×X∗ in the Kuratowski-Painlevé sense. In other words
A = graph− limAi if the following inclusions hold :

lim sup
i∈I

Ai ⊂ A ⊂ lim inf
i∈I

Ai

with
lim inf
i∈I

Ai = {(x, y) ∈ X ×X∗; ∃(xi, yi) ∈ Ai → (x, y)}
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and

lim sup
i∈I

Ai = {(x, y) ∈ X ×X∗; ∃K ⊂ I such that ∀ j ∈ K ∃(xj , yj) ∈ Aj → (x, y)}.

For maximal monotone operators the graph-convergence of (Ai)i∈I to A is equivalent to
A ⊂ lim inf

i∈I
Ai.

b) A family {At ⊂ X ×X∗; t ∈ T} is graph-continuous if whenever ti → t in T one has

At = graph− limAti .

Proposition 3.2. ([4], Prop. 3.60) Let (Ai)i∈I and A be a family of maximal monotone
operators in X ×X∗. The following statements are equivalent :
(a) (Ai)i∈I is graph-convergent to A ;
(b) Ai,λ(x) converges strongly to Aλ(x) for every x ∈ X and every λ > 0.

The following theorem summarizes some properties which will be needed in the sequel.

Theorem 3.3. Let X be a reflexive Banach space such that both X and X∗ are locally
uniformly convex. Let {At ⊂ X × X∗; t ∈ T} be a graph-continuous family of maximal

monotone operators. Then for any open bounded Ω ⊂ X the family {Aλt : Ω −→ X∗; t ∈
T, λ > 0} is of class (S+).

Proof. Let Ω be an open bounded subset of X. Suppose that ti → t in T , λi → λ > 0

and xi
w→ x in X satisfy

lim sup
i∈I

〈Aλiti (xi), xi − x〉 ≤ 0.

First of all we obtain

lim sup
i∈I

〈Ati,λi(xi), xi − x〉 ≤ −λ lim inf
i∈I
〈J(xi), xi − x〉 ≤ lim inf

i∈I
〈J(x), xi − x〉 ≤ 0. (1)

If we set yi = Ati,λi(xi), y = At,λ(x) and zi = Ati,λ(x) for every i ∈ I we obtain that the

points (xi − λiJ−1yi, yi) and (x − λJ−1zi, zi) are in Ati . From the monotonicity of Ati
and J−1 it follows that

0 ≤ 〈yi − zi, J−1yi − J−1zi〉 ≤
1

λ
〈yi − zi, xi − x〉+

λ− λi
λ
〈yi − zi, J−1yi〉. (2)

Because of Proposition 3.2, the net (zi)i∈I converges strongly to y.
Now, let (u0, v0) ∈ At. Since Ati graph-converges to At , there exists (ui, vi) ∈ Ati strongly

convergent to (u0, v0). The monotonicity of Ati implies

0 ≤ 〈yi − vi , xi − λiJ−1yi − ui〉 ≤ −λi‖yi‖2 + (‖vi‖+
1

λi
‖ui − xi‖)‖yi‖+ 〈vi, ui − xi〉,

and ‖yi‖2 + α‖yi‖+ β ≤ 0 for some real numbers α and β. Hence (J−1yi)i∈I is bounded
and by using (2) we obtain

lim inf
i∈I
〈yi, xi − x〉 ≥ lim inf

i∈I
(〈zi, xi − x〉+ (λi − λ)〈yi − zi, J−1yi〉) ≥ 0.
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Taking into account (1), we conclude that 〈Ati,λi(xi) , xi−x〉 converges to zero . Because

of lim sup
i∈I

〈Aλiti (xi), xi − x〉 ≤ 0 we deduce

lim sup
i∈I

〈J(xi), xi − x〉 ≤ −
1

λ
lim sup
i∈I

〈Aλiti (xi), xi − x〉 ≤ 0.

As a consequence of the local uniform convexity of X and the weak convergence of (xi)i∈I
to x, we conclude that (xi)i∈I converges strongly to x.

4. Degree for maximal monotone operator

Now we are in a position to define the topological degree for maximal monotone operators.
Let X be a reflexive Banach space, A ⊂ X ×X∗ a maximal monotone operator and Ω a
bounded open subset of X.
We approximate the operator A, for λ > 0, by the generalized Yosida approximation

Aλ = Aλ + λJ . Observe that Aλ is demicontinuous and of class (S+).

Definition 4.1. We define the topological degree of A over Ω at 0 by the formula :

deg(A,Ω, 0) = lim
λ↘0

d(Aλ,Ω, 0). (3)

We first verify that in the definition above, the degree function deg is independent of λ > 0

for λ sufficiently small. On any closed subinterval of [0, λ], the family {Aλ;λ ∈ I} is of
class (S+). Therefore, by invariance of the Browder’s degree function under homotopies

of class (S+), the function d(Aλ,Ω, 0) will be independent of λ ∈ I , provided 0 /∈ Aλ(∂Ω)
for every λ ∈ I. Otherwise, one can find a decreasing sequence (λn) converging to zero

such that 0 ∈ Aλn(∂Ω). Since ∂Ω is bounded and the Banach space X is reflexive, one
can find a weakly convergent sequence xn ∈ ∂Ω to x in X such that

0 = Aλn(xn) = Aλn(xn) + λnJxn.

Thus
lim sup
n→∞

〈Aλn(xn) , xn − x〉 ≤ 0.

By Theorem 3.3 it follows that the sequence (xn) converges strongly to x and so x ∈ ∂Ω.

On the other hand 0 = Aλn(xn) is equivalent to vn ∈ Aun with vn = −λnJxn and

un = xn − λn2J∗(−Jxn). Since A is maximal we deduce that 0 ∈ Ax, for vn
s→ 0 and

un
w→ x. Thus we reach a contradiction with the assumption that 0 /∈ A(∂Ω).

This common value permits us to define the extended degree function (3).
With the above definition one can state the familiar properties of degree theory for max-
imal monotone mappings.

Theorem 4.2. Let Ω be an open bounded subset of a reflexive Banach space X which
is, with its dual X∗, locally uniformly convex . Let A ⊂ X ×X∗ be a maximal monotone
operator. Then we have
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(i) deg(J,Ω, 0) = 1, provided 0 ∈ Ω ;

(ii) deg(A,Ω, 0) = 0 whenever 0 /∈ A(Ω);
(iii) if the homotopy of the maximal monotone operators {At ⊂ X ×X∗; t ∈ T} is graph

continuous and satisfies 0 /∈ ⋃{At(∂Ω); t ∈ T}, then deg(At,Ω, 0) is independent of
t in T ;

(iv) if Ω1 and Ω2 are two disjoint open subsets of Ω such that 0 /∈ A(Ω \ Ω1
⋃

Ω2) , then

deg(A,Ω, 0) = deg(A,Ω1, 0) + deg(A,Ω2, 0).

Proof. Part (i) is obvious, since Jλ = Jλ + λJ =
1 + λ+ λ2

1 + λ
J and

deg(J,Ω, 0) = lim
λ→0+

d(Jλ,Ω, 0) = d(J,Ω, 0).

To prove (ii), suppose deg(A,Ω, 0) 6= 0. Let λ0 > 0 be such that d(Aλ,Ω, 0) 6= 0 for each

0 < λ ≤ λ0. By Browder’s degree theorem (d1) there exists xλ ∈ Ω such that 0 = Aλ(xλ)

for each λ ∈]0, λ0]. Let (λi)i∈I be a net of positive constants which converge to zero. Ω
is bounded, therefore we can find a subnet, also denoted by (xi = xλi)i∈I and elements of

Ω, such that (xi)i∈I converges weakly to x in X and ((1 + λ2
i )xi,−λiJxi) ∈ A for every

i ∈ I. Since A is maximal monotone we conclude that 0 ∈ A(x).

On the other hand {Aλ;λ > 0} is of class (S+), as pointed out in Theorem 3.3. We

deduce that (xi)i∈I converges strongly to x and x ∈ Ω. Thus 0 ∈ A(Ω), as desired.

(iii) By relying on Browder’s degree theorem (d3) and Theorem 3.3 it suffices to show that

for each t ∈ T there exists λ(t) > 0 such that for every λ ∈]0, λ(t)] one has 0 /∈ Aλt (∂Ω)

and inf
t∈T

λ(t) > 0. Assuming the contrary, since Ω is bounded, we can find t0 in T and

nets (λi)i∈I in ]0,+∞[ and (xi)i∈I in ∂Ω such that λi → 0, xi
w→ x in X and 0 ∈ Aλit0 (xi).

As in (ii) one deduces 0 ∈ At0(x). From this and the fact that At0 is monotone, we infer
that

〈λiJxi , x− (1 + λ2
i )xi〉 ≤ 0

and

lim sup
i∈I

‖xi‖ ≤ lim sup
i∈I

1

1 + λ2
i

‖x‖ ≤ ‖x‖.

Hence (xi)i∈I converges strongly to x since X is locally uniformly convex. As ∂Ω is closed
we conclude that x ∈ ∂Ω, a contradiction to 0 /∈ At0(∂Ω).

For (iv), let λ0 > 0 be such that for any 0 < λ ≤ λ0 we have 0 /∈ Aλ(Ω \ (Ω1 ∪ Ω2)).

Otherwise there are λi → 0 and xi
w→ x ∈ X such that (xi)i∈I ⊂ (Ω\(Ω1 ∪ Ω2)) . From

this and the maximality of A we infer, by virtue of (iii), that x ∈ (Ω\(Ω1 ∪Ω2)∩A−1(0),
which is a contradiction. According to the property (d2) of Browder’s degree theorem we
obtain

d(Aλ,Ω, 0) = d(Aλ,Ω1, 0) + d(Aλ,Ω2, 0),
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and so, by letting λ→ 0,

deg(A,Ω, 0) = deg(A,Ω1, 0) + deg(A,Ω2, 0).

Theorem 4.3. On the family of maximal monotone operators there exists one and only
one degree function with invariance under graph-continuous homotopies.

Proof. Let A be a maximal monotone operator and Ω a bounded open subset of X.
Suppose that 0 /∈ A(∂Ω). As stated in Definition 4.1, for λ > 0 sufficiently small we have

deg(A,Ω, 0) = d(Aλ,Ω, 0)

and

0 /∈ Aλ(∂Ω).

Let us consider now a degree function d0 satisfying the properties (i), (ii), (iii) and (iv)
of Theorem 4.2, and let Mλ be the family of the maximal monotone operators At =

tAλ + (1 − t)A , where λ > 0 is sufficiently small and t ∈ T = [0, 1]. It is clear that
Mλ is graph-continuous. So that, if we suppose that 0 /∈ ⋃{At(∂Ω); t ∈ T}, we deduce

by Theorem 4.2, (iii) that d0(A,Ω, 0) = d0(Aλ,Ω, 0); it suffices to take t = 0, 1. Using

the unicity of the Browder’s degree for operators of class (S+), one has d0(Aλ,Ω, 0) =

d(Aλ,Ω, 0). As the degree deg is independent of λ > 0 sufficiently small, it follows
that d0(A,Ω, 0) = deg(A,Ω, 0). Hence, if we suppose that the assertion of the degree

function were false, there would exist un ∈ ∂Ω such that un
w→ u in X, λn → 0 and

tn → t with 0 ∈ Atn(un). By taking some vn ∈ A(un) and wn = Aλn(un) one has

−tnλnJun = tnwn + (1− tn)vn. Now for (x, y) in A, we have by monotonicity that

〈wn − y , un − λnJ−1wn − x〉 ≥ 0

and

〈vn − y , un − x〉 ≥ 0.

Thus, by multiplying these two relations respectively by tn and (1− tn), then adding, we
obtain

〈tnwn + (1− tn)y , un − x〉 = 〈tnλnJun − y , x− un〉 ≤ tnλn〈wn − y , J−1wn〉. (4)

A straightforward calculation shows that

tnλn‖wn‖2 ≤ (tnλn)1/2‖y‖+ (‖tnλnJun − y‖.‖un − u‖)1/2.

Thus the sequence (tnλn‖wn‖2) is bounded. This permits us to deduce that (tnλnwn)
converges strongly to zero. Returning to (4), we have

〈y , un − x〉 ≤ tnλn‖wn‖.‖y‖+ tnλn‖un‖.‖un − x‖.



128 H. Riahi / Topological degree for maximal monotone operators

Letting n → ∞, it follows that 〈y, x − u〉 ≥ 0 for all (x, y) ∈ A. Hence 0 ∈ A(u) by
maximility. Let us take now x = u and y = 0 in (4), then we have

lim sup
n→∞

〈Jun , un − u〉 ≤ 0.

Since J is of class (S+) it follows that un converges strongly to u. This implies that
0 ∈ A(∂Ω) and gives a contradiction.

Remark 4.4. Other properties of the topological degree given by Definition 4.1 can be
proved by using the arguments of the preceding proposition. For example :
a) Up to a translation one can define the degree for maximal operators relative to Ω

at a point y ∈ X, i.e. deg(A,Ω, y) = deg(A′,Ω′, 0) where A′(x) = A(x) − y and

Ω′ = Ω− y.
b) (Homotopy) Suppose that all the conditions of Theorem 4.2 (iii) hold except that

condition 0 /∈ ⋃{At(∂Ω) ; t ∈ T} is replaced by: t 7−→ y(t) is continuous and

y(t) /∈ ⋃{At(∂Ω) ; t ∈ T} for each t in T . Then deg(At,Ω, y(t)) is independent of
t. In fact, it is not hard to show that {At = At − y(t) ; t ∈ T} is a graph-continuous
homotopy of maximal operators.

Comment. Let us now indicate how the above concepts and results for maximal mono-
tone operators can be extended to m-accretive (hyperaccretive) mappings.
An operator A ⊂ X ×X is called accretive if for each (xi, yi) ∈ A , i = 1, 2, one has

〈J(x1 − x2), y1 − y2〉 ≥ 0.

The operator A is m-accretive iff A+ λI is onto X for each λ > 0.
To construct the topological degree for A it is sufficient to replace in the generalized
Yosida approximation the duality mapping J by the identity I of X :

Aλ = (A−1 + λI−1)−1 + λI.

Note. Recently, Attouch, Penot and Riahi (see [5], Thm. 2.7) have investigated via
the continuation methods the existence of solutions for parametrized nonlinear monotone
problems. The approch in [5], [6] was based upon a connectedness argument. As a
consequence of Theorem 4.2 we shall sharpen and extend these results from Hilbert to
reflexive spaces, and also rule out the compactness conditions.

Theorem 4.5. Suppose that assumptions (iii) of Theorem 4.2 hold and the following
condition is satisfied: for some t0 ∈ T one has deg(At0 ,Ω, 0) 6= 0.

Then for each t ∈ T , A−1
t (0) is nonempty and contained in Ω.

The proof relies only on the independence of d(At,Ω, 0) of t in T and the convexity

(connectedness) of A−1
t (0) since At is maximal monotone.

Proposition 4.6. Let A and B be two maximal monotone operators such that dom(A)∩
int(dom(B)) 6= ∅ and A(x) = B(x) for each x ∈ ∂Ω, and moreover 0 /∈ A(∂Ω).
Then deg(A,Ω, 0) = deg(B,Ω, 0).

Proof. The homotopy {At = tA+ (1− t)B ; t ∈ T = [0, 1]} is a graph-continuous family
of maximal monotone operators and satisfies all assumptions of Theorem 4.2 (iii). Then
deg(At,Ω, 0) is independent of t in T . Take t = 0 and t = 1 and the claim follows.
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Proposition 4.7. Suppose that A is maximal monotone and −µJu /∈ A(u) for each u in
∂Ω and µ > 1 (resp. µ ≥ 0). Then deg(A+ J,Ω, 0) = 1 if 0 ∈ Ω and deg(A+ J,Ω, 0) = 0
if 0 /∈ Ω (resp. deg(A,Ω, 0) = 1 if 0 ∈ Ω and deg(A,Ω, 0) = 0 if 0 /∈ Ω).

Proof. Considering the homotopy of maximal monotone operators At = tA + J (resp.
At = tA + (1 − t)J), we have 0 /∈ At(∂Ω) for each t ∈ T = [0, 1]. Thus by Theorem
4.2 (iii) the statement follows, i.e. deg(A + J,Ω, 0) = deg(J,Ω, 0) (resp. deg(A,Ω, 0) =
deg(J,Ω, 0)).

Corollary 4.8. Let A be a maximal monotone operator. Suppose that for some r > 0

and for each λ ≥ 0 ‖(A−1)λ‖ 6= r. Then A−1(0) is nonempty and contained in Br, the
ball with radius r.

Proof. We apply Theorem 4.5 to {At = tA + (1− t)J ; t ∈ [0, 1]}. Since ‖(A−1)λ‖ 6= r

for each λ ≥ 0, one has 0 /∈ ⋃{At(∂Br); t ∈ [0, 1]}. We obtain the desired conclusion.

5. Application to real functions of convex type

In this section we apply the results of section 4 to convex functions and convex-concave
saddle bifunctions.
A - Before we state further consequences, let us first introduce some definitions. For
further details see [4], [10], [27] and [52].

Definition 5.1. 1) Let X be a reflexive space. A function f : X 7−→ IR ∪ {+∞} is
said to be convex lower semicontinuous (lsc) whenever its epigraph, epi(f) = {(x, t) ∈
X × IR ; f(x) ≤ t}, is convex and closed. Here X × IR is endowed with the product
topology.
2) Let F = {ft : X 7−→ IR ∪ {+∞} ; t ∈ T} be a family of convex lsc functions. F
is said to be Mosco-epicontinuous provided the homotopy {epi(ft) ⊂ X × IR ; t ∈ T} is
graph-continuous with respect to the strong topology and the weak convergence of X.
3) Let f be a proper convex lsc function. Then the subdifferential of f at x in X and the
minimum set are given by

∂f(x) = {x∗ ∈ X∗; f(x) ≤ f(u) + 〈x∗, x− u〉 ∀u ∈ X}

and
M(f) = {x ∈ X; f(x) ≤ f(u) ∀u ∈ X}.

Since the subdifferential of f is a maximal monotone operator, one can define the degree
of a proper convex lsc function at y relatively to an open bounded subset Ω of X by:

deg(f,Ω, y) = deg(∂f,Ω, y). (5)

Remark 5.2. This definition permits us to extend the next result from Hilbert (see
[45]) to reflexive spaces.

Proposition 5.3.
a) For a proper convex lsc function f such thatM(f)∩∂Ω = ∅ , deg(f,Ω, 0) 6= 0 implies
∅ 6=M(f) ⊂ Ω.
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b) Let {ft; t ∈ T} be a Mosco-epicontinuous family of proper convex lsc functions such
that M(ft) ∩ ∂Ω = ∅ ∀t ∈ T and deg(ft0,Ω, 0) 6= 0 for some t0 ∈ T .

Then for each t in T one has ∅ 6=M(ft) ⊂ Ω.

Proof. a) This follows immediately from Theorem 4.2 (ii) and the relation (5).
b) Since the Mosco-epicontinuity of {ft; t ∈ T} implies that the family {∂ft ; t ∈ T} is

graph-continuous and M(ft) = (∂ft)
−1(0), the conclusion follows from Theorem 4.5.

B - For bivariate functions (bi-functions), let X and Y be two reflexive Banach spaces
which are in separate duality with X∗ and Y ∗ via pairings denoted by 〈, 〉.
Let us consider a closed convex-concave bifunction F : X × Y 7−→ IR, which is convex
lower semicontinuous (resp. concave upper semicontinuous) with respect to the variable x
in X (resp. y in Y ). In [46] R. T. Rockafellar introduced the operator A = ∂1F ×−∂2F ,
where ∂1F and ∂2F denote the partial subdifferentials of the convex functions F (., y) and
−F (x, .). and proved that A is maximal monotone in X × Y .
It is well known that the set S(F ) = {(x, y) ∈ X × Y ; inf

u∈X
F (u, y) = sup

v∈Y
F (x, v)} of

saddle points of F is exactly A−1(0, 0).
Let us consider a family {Ft ; t ∈ T} of closed convex-concave bifunctions, which is Mosco-
epi/hypocontinuous whenever the homotopy

{Ct(x, y∗) = sup
y∈Y

(Ft(x, y) + 〈y∗, y〉) ; t ∈ T}

of convex parents is Mosco-epicontinuous. Then the homotopy {∂Ct ; t ∈ T} is graph-
continuous. Hence {At = ∂1Ft × ∂2Ft ; t ∈ T} is graph-continuous. Further properties of
these notions can be found in [7]–[9], [30], [46] and [52].

Let F : X × Y 7−→ IR be a closed convex concave bifunction, Ω an open bounded subset
of X∗ × Y ∗ and (x, y) ∈ X × Y . The degree of F at (x, y) is defined by

deg(F,Ω, (x, y)) = deg(A,Ω, (x, y)).

With the above definition and properties one can easily state the analogue of Proposition
5.2 for bifunctions :

Proposition 5.4.
a) deg(F,Ω, 0) 6= 0 and S(F )∩ ∂Ω = ∅ imply that there exists a saddle point of F at Ω.
b) Let {Ft; t ∈ T} be a Mosco-epi/hypocontinuous homotopy such that deg(Ft0,Ω, 0) 6= 0

for some t0 ∈ T and S(Ft) ∩ ∂Ω = ∅ for each t in T . Then for every t ∈ T one has

∅ 6= S(Ft) ⊂ Ω.
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