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1. Introduction and statement of main results

In this note we deal with the problem of the density of smooth functions in weighted
Sobolev spaces (for general results and references on this topic see, for instance, [14], [10],
[2], and the bibliography therein). In order to introduce some definitions, let us fix a
bounded open set Ω ⊆ IRn, a real number p > 1, and a function λ : IRn → IR satisfying

λ(x) > 0 a.e. in IRn, λ ∈ L1
loc(IR

n). (1.1)

We define the following function spaces

W1,p(Ω, λ) = {u ∈W1,1
loc(Ω) : ‖u‖pp,λ =

∫

Ω
(|u|p + |Du|p)λdx < +∞}, (1.2)

H1,p(Ω, λ) = the closure of C1(Ω) ∩W1,p(Ω, λ) in W1,p(Ω, λ)

endowed with the norm ‖ · ‖p,λ,
(1.3)

H̃1,p(Ω, λ) = the completion of C1(Ω) ∩W1,p(Ω, λ)

with respect to the norm ‖ · ‖p,λ.
(1.4)

If u ∈ W1,p(Ω, λ), we denote by Du the usual distributional gradient, that exists by
definition (1.2). If λ satisfies the additional property

if (ϕh)h ⊂ C1(Ω) ∩W1,p(Ω, λ),

∫

Ω
|ϕh|pλdx→ 0 and

∫

Ω
|Dϕh − ν|pλdx→ 0

then ν(x) = 0 a.e. in Ω,

(1.5)
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then if u ∈ H̃1,p(Ω, λ) we can define the gradient ∇u in the following way: if (ϕh)h ⊆
C1(Ω) ∩W1,p(Ω, λ) satisfies

∫

Ω
|ϕh − u|pλdx→ 0,

∫

Ω
|Dϕh − v|pλdx→ 0,

then we set ∇u = v. We remark that condition (1.5) is essential in this context, since in

general the gradient of a function in H̃1,p(Ω, λ) need not be uniquely defined. An example
of this situation is given in [9] (Section 2.1).

An interesting case in which condition (1.5) is satisfied, is when there exists a finite

number of points x1, . . . , xk in Ω such that λ
−1
p−1 ∈ L1

loc(Ω \ {x1, . . . , xk}), (see [9], Section

2.1). Examples of weights of this kind are considered in the theory of Dirichlet forms
(see, for instance, [1], [12]), where condition (1.5) essentially corresponds to the so-called

closability property of a form. It is interesting to observe that even if u ∈ H̃1,p(Ω, λ) and
it has also a distributional gradient, it may occur that Du 6= ∇u (see Example 2.1 in

Section 2). This means that in general H1,p(Ω, λ) and H̃1,p(Ω, λ) are different spaces and

that W1,p(Ω, λ) need not be complete.

If λ satisfies the stronger condition

λ−
1
p−1 ∈ L1(Ω), (1.6)

then W1,p(Ω, λ) is a reflexive Banach space and H̃1,p(Ω, λ) = H1,p(Ω, λ) ⊆ W1,p(Ω, λ)
(see, for instance, [9], Section 2.1, and [6], Lemma 1.1). Therefore it is a natural problem

to investigate when H1,p(Ω, λ) = W1,p(Ω, λ).

The first positive answer to this question is probably the classical result by Meyers and
Serrin ([11]) for the case λ ≡ 1. Other results in this direction are proven in [14], [2],
[10] when λ(x) is of the type dist(x, ∂Ω) (or, more generally, a positive smooth function

of dist(x, ∂Ω)). Another case in which H1,p(Ω, λ) = W1,p(Ω, λ) is when λ belongs to the
Muckenhoupt class Ap, i.e.,

sup
B

(
−
∫

B
λdx

)(
−
∫

B
λ−

1
p−1dx

)p−1
< +∞, (Ap)

where the supremum is taken over all balls B contained in IRn and −
∫
A fdx denotes the

average

−
∫

A
fdx =

1

|A|

∫

A
fdx

of a function f ∈ L1(A), over a measurable set A ⊂ IRn with finite positive Lebesgue
measure |A| (see, for instance, [6], Theorem 2.3). Condition (Ap), first introduced in [13],
in a context of real analysis, has also been used in many papers about the regularity of
the solutions of degenerate elliptic equations (see, for instance, [9]).

The above results suggest to investigate whether conditions (1.1), (1.6) alone are enough

to prove the equality H1,p(Ω, λ) = W1,p(Ω, λ).
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If n = 1 the result is true and can be obtained as a consequence of some results concerning
the relaxation of variational integrals in connection with the so-called gap and Lavrentiev
phenomenon (see [7], [5], and Remark 2.7 in Section 2).

For the case n > 2, if Ω is the unit open ball of IRn, in [8] there is an example of a
quadratic non isotropic form a(x) = (ai,j(x)) satifying the inequality

|ξ|2 ≤
n∑

i,j=1

ai,j(x)ξiξj ≤ w(x)|ξ|2, (1.7)

for a.e. x ∈ IRn, for every ξ ∈ IRn, with w positive measurable function such that
w ∈ Ls(IRn), s > 1, for which the spaces

W(Ω, a) = {u ∈W1,1
loc(Ω) : ‖u‖2a =

∫

Ω
u2dx+

∫

Ω

n∑

i,j=1

ai,jDiuDjudx < +∞}

and

H(Ω, a) = the closure of C1(IRn) in W(Ω, a) endowed with the norm ‖u‖a
are different.

In this note we show that, if n = 2, then for every p > 1 the equality between W1,p(Ω, λ)

and H1,p(Ω, λ) does not hold any more for a suitable weight λ verifying (1.1) and (1.6).
More precisely, by adapting a technique of Zhikov ([15]), we give, for every p > 1, an
example of a weight λ = λ(x) which is positive and continuous for every x 6= 0, such that

λ−
1
p−1 ∈ L1

loc(IR
2), for which H1,p(B(0, 1), λ) is strictly contained in W1,p(B(0, 1), λ) (see

Example 2.2 in Section 2), where B(x, r) denotes the open ball centered at x, with radius
r > 0. Moreover, if p > 2, it is possible to choose the weight λ regular (see also Remark
2.5 in Section 2).

Finally, we note that the weight λ that we construct in Section 2 permits also to give an
example of the so called gap-phenomenon arising in the relaxation of variational integral
functionals (see Remark 2.7, in Section 2).

2. Some examples of H6=W

First of all we give an example in the case p = 2, n = 1, of a weight λ verifying (1.1) and

(1.5), for which there exists a function u ∈ H̃1,p(Ω, λ) whose gradient ∇u is different from
the distributional gradient Du.

Example 2.1. Let λ(x) = |x|1+α, with α > 0, Ω =]− 1, 1[. Since λ−1 ∈ L1(Ω \B(0, ε))
for every ε > 0, condition (1.5) follows immediately. Let u(x) = x

|x| and let uh(x) = v(hx),

where v ∈ C1(IR) is a function such that v ≡ 1 on [1,+∞[, v ≡ −1 on ]−∞,−1]. Then

uh ∈ C1(Ω) and ∫

Ω
|uh − u|2λdx→ 0,

∫

Ω
(u′h)2λdx→ 0.

Therefore, by (1.4), u ∈ H̃1,2(Ω, λ), ∇u = 0, and obviously u /∈W1,2(Ω, λ).
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We now give an example in the case n = 2 of a weight λ verifying (1.1), (1.6), for which

H1,p(Ω, λ) 6= W1,p(Ω, λ). To this aim we need to recall some technical results.

First we recall that by Theorem 1 in [3] one can easily obtain that for every convex,
bounded, open set A, there exists a positive constant c1 = c1(n,A) such that

|v(x)− vA| ≤ c1

∫

A
|x− y|1−n|Dv(y)|dy (2.1)

for every x ∈ A, for every v ∈ C0(A) ∩W1,1(A), where vA = −
∫
A vdx. By (2.1) and by

a direct application of Hölder’s inequality we obtain that, given A as before, q > 1, λ
verifying (1.1), we have

|v(x)− vA| ≤ c1

(∫

A
|Dv(y)|qλ(y)dy

)1
q
(∫

A
λ−

1
q−1 (y)|x− y|(1−n) q

q−1dy
)1− 1

q
, (2.2)

for every v ∈ C0(A) ∩W1,1(A), and for every x ∈ A, for which

∫

A
λ−

1
q−1 (y)|x− y|(1−n) q

q−1dy < +∞. (2.3)

If we choose λ ≡ 1 and q > n, from (2.2) it follows at once the classical Morrey’s estimate,
i.e., there exists a positive constant c2 = c2(n, q, A) > 0 such that

|v(x)− v(y)| ≤ c2diam(A)1−nq ‖Dv‖Lq(A) (2.4)

for every v ∈ C0(A) ∩W1,1(A) and for every x, y ∈ A.

Finally, we recall that, by Hölder’s inequality, for every 1 ≤ q < p, and for every bounded
open set A, if ∫

A
λ−

q
p−q dx < +∞,

then W1,p(A, λ) is continuosly embedded in the classical Sobolev space W1,q(A, 1) ≡
W1,q(A). In fact, for every u ∈W1,p(A, λ) one has

(∫

A
(|u|q + |Du|q)dx

) 1
q ≤ c

(∫

A
(|u|p + |Du|p)λdx

) 1
p
(∫

A
λ−

q
p−q dx

) 1
q− 1

p
. (2.5)

Example 2.2. (i) Case p > 2. Let Ω = B(0, 1) ⊆ IR2 and let p, α, β ∈ IR, with p > 2
and

0 < α < β < 2(p− 1). (2.6)

Given ε ∈]0, π4 [, we denote by Sε = {(x1, x2) ∈ Ω : tan ε < x2
x1

< tan(π2 − ε)}, S+
ε =

Sε ∩ {x2 > 0}, S−ε = Sε ∩ {x2 < 0}. Let us choose a π-periodic, smooth function

k : IR→ [α, β] such that k(θ) = α if ε < θ < π
2 − ε, k(θ) = β if π

2 < θ < π, k′(0) = 0.
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Then we define the weight λ : IR2 → [0,+∞[ as

λ(x) =




|x|k(arccos

x1
|x| ) if |x| 6= 0,

0 if |x| = 0.
(2.7)

It is clear that λ ∈ C0(IR2 \ {0}) and

|x|β ≤ λ(x) ≤ |x|α for every x ∈ Ω, (2.8)

so that the continuity on IR2 follows. By (2.6) and (2.8) it follows also that

λ−
1

p−1 ∈ L1
loc(IR

2).

Now we define u : Ω→ IR as

u(x) =





1 if x1, x2 > 0,

0 if x1, x2 < 0,

x2
|x| if x1 < 0 < x2,

x1
|x| if x2 < 0 < x1.

(2.9)

A direct computation shows that u ∈W1,p(Ω, λ) if

β > p− 2. (2.10)

We claim that for every p > 2 there exist α and β verifying (2.6) and (2.10), such that

u /∈ H1,p(Ω, λ).

By contradiction, let us assume that there exists a sequence (uh)h ⊆ C1(Ω) ∩W1,p(Ω, λ)

converging to u in W1,p(Ω, λ). Then for every q, 2 < q < p, such that

0 < α < 2(
p

q
− 1), (2.11)

by (2.5) uh → u in W1,q(Sε). By applying inequality (2.4) to v = uh, first with A =

S+
ε ∩ B(0, R), 0 < R < 1, y = (0, 0), then with A = S−ε ∩B(0, R), x = (0, 0), and taking

the sum of the two ones we obtain that there exists a constant c = c(q, p) such that

|uh(x)− uh(y)| ≤ cR1− 2
q ‖Duh‖Lq(Sε) (2.12)

for every x, y ∈ Sε, for every h, for every 0 < R < 1. Since we can suppose that, up to a
subsequence, uh(x) → u(x) for a.e. x ∈ Ω, by passing to the limit in (2.12) we obtain a
contradiction.

(ii) Case p = 2. Let Ω, S+
ε , S−ε , k be as in (i), with ε ∈]0, π2 [, α = −1, and β = 1. Then

we define the weight λ : IR2 \ {0} → [0,+∞[ as

λ(x) =





(
ln−2

(
e
|x|

))k(arccos
x1
|x| )

if 0 < |x| ≤ 1

1 if |x| > 1.

(2.13)
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It is clear that λ ∈ C0(IR2 \ {0}) and

ln−2
( e

|x|
)
≤ λ(x) ≤ ln2

( e

|x|
)

for every 0 < |x| < 1, from which it follows at once

λ and λ−1 ∈
⋂

q≥1

Lq
loc(IR

2). (2.14)

Let u be the function defined by (2.9); then a direct computation shows that u ∈
W1,2(Ω, λ). We claim now that u /∈ H1,2(Ω, λ). By contradiction, let us assume that

there exists a sequence (uh)h ⊂ C1(Ω) ∩W1,2(Ω, λ) converging to u in W1,2(Ω, λ). Then,

by (2.2) and (2.3), if we choose A = S+
ε ∩ B(0, R) (0 < R < 1), q = 2, n = 2, x = 0,

v = uh, we obtain that there exists c = c(S+
ε , R) > 0 such that

|uh(0)−−
∫

S+
ε ∩B(0,R)

uhdy| ≤ (2.15)

c
(∫

S+
ε ∩B(0,R)

1

λ(y)|y|2dy
) 1

2
(∫

S+
ε ∩B(0,R)

|Duh|2λ(y)dy
)1

2
,

for every h ∈ N. Analogously

|uh(0)−−
∫

S−ε ∩B(0,R)
uhdy| ≤ (2.16)

c
(∫

S−ε ∩B(0,R)

1

λ(y)|y|2dy
) 1

2
(∫

S−ε ∩B(0,R)
|Duh|2λ(y)dy

)1
2
,

for every h ∈ N. But

−
∫

S+
ε ∩B(0,R)

uhdx→ 1 and −
∫

S−ε ∩B(0,R)
uhdx→ 0

and therefore, by (2.15) and (2.16) we have a contradiction.

(iii) Case 1 < p < 2. Let Ω, S+
ε , S−ε , k be as in (i), with ε ∈]0, π2 [, α = −1, and β = 0.

Then we define the weight λ : IR2 \ {0} → [0,+∞[ as

λ(x) =





(
|x|2−p ln2(1−p)

(
e
|x|

))k(arccos
x1
|x| )

if 0 < |x| ≤ 1

1 if |x| > 1.

(2.17)

It is clear that λ ∈ C0(IR2 \ {0}) and, by definition

1 ≤ λ(x) ≤ |x|p−2 ln2(p−1)
( e

|x|
)

for every 0 < |x| < 1, from which it follows at once that

λ ∈ L1
loc(IR

2) and λ−
1
p−1 ∈ L∞(IR2). (2.18)

Then, if u is defined by (2.9), a direct computation shows that u ∈W1,p(Ω, λ). However,

by arguing as in (ii) we can prove that u /∈ H1,p(Ω, λ).
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Remark 2.3. Actually, with the same notations of example 2.2, by (2.1) we can get

also that C0(Ω) ∩W1,p(Ω, λ) is not dense in W1,p(Ω, λ). In fact, by repeating the same

arguments used in example 2.2, it follows that u cannot be approximated in W1,p(Ω, λ)

by a sequence (vh)h ⊆ C0(Ω) ∩W1,p(Ω, λ).

Remark 2.4. We want to underline that the weight λ defined by (2.7), (2.13), or (2.17)
does not belong to the Muckenhoupt class Ap. In fact by a simple computation it can be
proved that

(
−
∫

B(0,R)
λdx

)(
−
∫

B(0,R)
λ−

1
p−1dx

)p−1
→ +∞ as R→ 0+.

Remark 2.5. If p > 3, it is easy to see that we can choose α > 1 in (2.6), so that

λ ∈ C1(IR2). Moreover, we remark that in cases (i), (ii), (iii) of Example 2.2, by (2.8),

(2.14), and (2.18), we actually have that λ−
1
p−1 ∈ Lq

loc(IR
2) with q > 1.

Remark 2.6. Let us set Ω̃ = Ω × A, where Ω is the unit open ball of IR2 and A is a

bounded open subset of Rm, and let us define the functions ũ and λ̃ as

ũ(x, y) = u(x) λ̃(x, y) = λ(x)

for x ∈ Ω and y ∈ A. By applying Fubini’s theorem one obtains an example of H6=W in
dimension n = 2 +m > 2.

Remark 2.7. Example 2.2 permits to construct also an example of gap phenomenon
in the relaxation of variational integral functionals (see, for instance, [5], [7], [8]). More

precisely, given p > 1, n = 2, Ω = B(0, 1), let us define F , F : W1,1(Ω)→ [0,+∞] as

F (v) =

∫

Ω
|Dv|pλdx,

F (v) = inf{lim inf
h→+∞

F (vh) : vh ∈ C1(Ω), vh ⇀ v weakly in W1,1(Ω)},

where λ is given by (2.7), (2.13), or (2.17). These functionals are sequentially lower

semicontinuous with respect to the weak convergence in W1,1(Ω) (see, for instance, [4]).

But if we take v = u, u defined in (2.9), as u ∈ W1,p(Ω, λ) \ H1,p(Ω, λ), and the spaces

H1,p(Ω, λ), W1,p(Ω, λ) are the domains of F and F respectively, we have that

F (u) < +∞ = F (u).

In particular, for a suitable constant c > 0 we have

Inf
{∫

Ω
|Dv|pλdx+ c

∫

Ω
|v − u|dx : v ∈ C1(Ω)

}
>

Inf
{∫

Ω
|Dv|pλdx+ c

∫

Ω
|v − u|dx : v ∈W1,1(Ω)

}
.



142 V. Chiadò Piat, F. Serra Cassano / Density of smooth functions

Acknowledgment.We want to thank Prof. Giuseppe Buttazzo for his constant interest in this

problem and for the many fruitful discussions. We are also grateful to Prof. Luca Pratelli for

some remarks on this topic.

References
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