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This paper studies the weak efficient set (WEff P ) of a minimization problem P with k objectives defined
on a convex set X of IRn. These objectives are continuous and belong to the class of so-called strictly
quasiconvex functions, which contains, in particular, convex as well as linear fractional functions. When
k is greater than n, it is of interest to replace the original problem by several subproblems, having at most
n objectives. We show that if WEff P is bounded, the knowledge of the efficient sets of such subproblems,
completely determines WEff P .
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1. Introduction

We consider the multiobjective problem

(P ) min
x∈X

(f1, · · · , fk)

where X is a closed convex set in IRn, fi : X −→ IR, i = 1, · · · , k and we focus our
attention on the structure of the weak efficient set WEff P . In [7], it is shown that if the
objectives are continuous and convex, the set WEff P is determinable from the spatial
structure of the efficient sets of subproblems having at most n objectives. The purpose
of this paper is to extend these results to a class of non convex objectives. Namely, we
consider the class of strictly quasiconvex functions, which has been previously introduced
in [2]. This class contains in particular convex functions as well as linear fractional
functions, which gives a wide range of applications. See for instance [5][6] for many
examples and an extensive bibliography on fractional programming in the scalar case.
The paper is divided into two sections. In section 2 we state the problem and give
definitions used in the sequel. In section 3 we extend several results, known in the convex
case, to the strictly quasiconvex case. Then we deduce Theorem 3.7, which is the main
result of this paper.
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2. Basic concepts

Recall that X being a convex set in IRn, a functional f : X −→ IR is quasiconvex on X
iff for all points x, y in X and λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ max(f(x), f(y)).

This class has been extensively studied in the literature, see for instance [1] for many
examples, properties and a bibliography.

We say that f : X −→ IR is strictly quasiconvex [2] iff for every x, y in X and λ ∈]0, 1[
one has :

f(λx+ (1− λ)y) < max(f(x), f(y)) if f(x) 6= f(y)

and
f(λx+ (1− λ)y) ≤ f(x) if f(x) = f(y)·

In particular, linear fractional functions of the form f(x) =
a.x + s

b.x + t
where a, b ∈ IRn and

s, t ∈ IR, are strictly quasiconvex on every convex set X contained in their domain. (Here
. stands for the scalar product in IRn)

Convexity implies strict quasiconvexity and strict quasiconvexity implies quasiconvexity.

As an immediate consequence of the definition, it is easy to prove that if x =
l∑

i=1

λixi, λi >

0, i = 1, · · · , l,
l∑

i=1

λi = 1, and f(xi) ≤ z for i = 1, · · · , l then f(x) < z whenever

{f(xi) : i = 1, · · · , l} is not a singleton.

Consider the problem

(P ) min
x∈X

F (x)

with F = (f1, · · · , fk), each fi, i = 1, · · · , k being strictly quasiconvex. We refer to a
subproblem PI of P when only a nonempty subset I ⊂ {1, · · · , k} of all objectives, is
considered.

The notation |I| stands for the cardinality of I.

Recall that the sets of minimal points and weakly minimal points of P are defined by

MinF (X) = {z ∈ F (X) : (z − F (X)) ∩ (IRk
+\{0}) = ∅}

WMinF (X) = {z ∈ F (X) : (z − F (X)) ∩ int IRk
+ = ∅}·

The corresponding efficient sets in the argument space are:

Eff P = {x ∈ X : F (x) ∈MinF (X)}
WEff P = {x ∈ X : F (x) ∈ WMinF (X)}.
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3. Determination of WEff P

In 1984, Lowe et al.[3] showed that, when all objectives are convex, WEff P is the union
of efficient sets of all subproblems PI , I ⊂ {1, · · · , k}, I 6= ∅.
At first we give a similar result in the strictly quasiconvex case.

Theorem 3.1. Suppose that all objectives fi, i = 1, · · · , k are strictly quasiconvex and
upper semicontinuous along line segments in X then

WEff P = ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅}

Proof. Consider x ∈ X such that x 6∈ WEff P . There exists y ∈ X with fi(y) < fi(x)
for all i and then, for each I ⊂ {1, · · · , k}, x 6∈ Eff PI .

Now, suppose that x 6∈ ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅}. Taking I = {1, · · · , k}, there
must exist i1 ∈ I and x1 ∈ X such that

fi1(x1) < fi1(x) and fi(x1) ≤ fi(x), i ∈ I. (1)

Now if I = I1 = {1, · · · , k}\{i1}, there are i2 ∈ I1 and x2 ∈ X such that

fi2(x2) < fi2(x) and fi(x2) ≤ fi(x), i ∈ I1. (2)

Setting y2 = λx1 + (1− λ)x2, λ ∈]0, 1[, and using the upper semicontinuity of fi1 on the

segment [x1, x2] , we have by (1), for (1− λ) small enough,

fi1(y2) < fi1(x).

On the other hand, the strict quasiconvexity of fi2 implies, for each λ ∈]0, 1[

fi2(y2) < fi2(x).

Further from the quasiconvexity of fi ’s , we have for each λ ∈]0, 1[

fi(y2) ≤ fi(x), i ∈ I2 = {1, · · · , k}\{i1, i2}·

Suppose now, that we have obtained y` and I` = I\{i1, · · · , i`} such that fi(y`) <
fi(x), i ∈ {i1, · · · , i`} and fi(y`) ≤ fi(x), i ∈ I`. Using x 6∈ Eff PI` we get i`+1 ∈ I`
and x`+1 ∈ X satisfying

fi`+1
(x`+1) < fi`+1

(x) and fi(x`+1) ≤ fi(x), i ∈ I`·

Then from the upper semicontinuity of fi1 , · · · , fi` on the segment [yl, x`+1], the strict
quasiconvexity of fi`+1

and the quasiconvexity of other objectives, we obtain y`+1, a

convex combination of y` and x`+1, such that

fi(y`+1) < fi(x), i ∈ {i1, · · · , i`+1}

and
fi(y`+1) ≤ fi(x), i ∈ I`+1 = I\{i1, · · · , i`+1}.
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As the number of objectives is k, we obtain finally yk ∈ X such that

fi(yk) < fi(x), i ∈ {1, · · · , k}, which means that x 6∈WEff P.

Note that convex functions are automatically upper semicontinuous along line segments
and also that the previous theorem remains valid if X ⊂ E, where E is a linear space
without topology.

Now, following an idea developped by Ward [7] in the convex case, which uses Helly’s
Theorem, we give an extension of Theorem 3.1 when n < k.

Helly’s Theorem : Let Ci, i = 1, · · · , m be a collection of convex sets in IRn. If every
subcollection of n + 1 or fewer of these Ci has a nonempty intersection, then the entire
collection of the m sets has a nonempty intersection.

Theorem 3.2. Suppose that fi, i = 1, · · · , k are strictly quasiconvex and upper semi-
continuous along line segments, then

WEff P = ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅, |I| ≤ n + 1}

Proof. From Theorem 3.1 it is sufficient to consider the case k > n+ 1 and to prove the
inclusion ⊂.

Consider x 6∈ ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅, |I| ≤ n + 1}. Then for each J ⊂
{1, · · · , k}, J 6= ∅ with |J | ≤ n + 1, we have x 6∈ ∪{Eff PI : I ⊂ J, I 6= ∅} and from
Theorem 3.1, it follows that x 6∈WEff PJ . Therefore there exists

xJ ∈ X such that fj(xJ ) < fj(x) for all j ∈ J. (3)

For each i ∈ {1, · · · , k} we define the closed convex set

Ci = conv{xJ : J ⊂ {1, · · · , k}, J 6= ∅, |J | ≤ n+ 1, i ∈ J}.

It is clear from (3) that, for all J ⊂ {1, · · · , k} with J 6= ∅, |J | ≤ n + 1, i ∈ J , we have
fi(xJ) < fi(x) and the quasiconvexity of fi entails that for every y ∈ Ci

fi(y) < fi(x). (4)

Now, for a fixed J with |J | ≤ n + 1, the collection {Ci , i ∈ J} has xJ in common and

from Helly’s Theorem, there exists some y∗ belonging to
k⋂

i=1

Ci. Thus from (4), for each

i ∈ {1, · · · , k}
fi(y

∗) < fi(x)

and x 6∈WEff P .

Recall that if C ⊂ IRn, dimC denotes the dimension of the affine space generated by C.
The following lemma will be useful in the sequel.

Lemma 3.3. Let C = conv{yi ∈ IRn : i = 1, · · · , n + 1}. Suppose that there exists
x ∈ C which cannot be written as a convex combination of fewer than n + 1 points yi,
then dimC = n and x ∈ intC.
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Proof. Suppose that dimC ≤ n− 1. By Carathéodory’s Theorem [4] , every point of C
can be expressed as a convex combination of n elements yi. This is a contradiction with

the assumption about x. It remains to prove that x ∈ intC. Suppose that x =
n+1∑

i=1

λiyi,

with all λi > 0. As dimC = n, the vectors yn+1 − yi, i = 1, · · · , n are independent. We
consider the neighborhood of 0 in IRn defined by

N = {z : z =
n∑

i=1

γi(yn+1 − yi) , |γi| < λi i = 1, · · · , n, |
n∑

i=1

γi| < λn+1}.

We have for every z ∈ N ,

x+ z =

n∑

i=1

(λi − γi)yi + (λn+1 +

n∑

i=1

γi)yn+1 ∈ C.

Thus x +N ⊂ C and x ∈ intC.

Lemma 3.4. Suppose that x ∈ WEff PJ and that for every j ∈ J there exists yj such
that

fi(yj) < fi(x), i ∈ J\{j}, (5)

then
x ∈ intC where C = conv{yj : j ∈ J}·

Proof. For each j ∈ J , consider the closed, convex subset of X,

Cj = conv{yk : k ∈ J\{j}}.

Obviously, by (5), fj(yk) < fj(x) for k ∈ J\{j} and the quasiconvexity of fj implies

∀y ∈ Cj fj(y) < fj(x). (6)

From (6), for all j ∈ J , x 6∈ Cj and since x ∈WEff PJ we have ∩{Cj : j ∈ J} = ∅.
Now let us define C ′j = conv(Cj , {x}) for j ∈ J .

The intersection of n + 1 of the sets {(C ′j)j∈J , C} is nonempty. Indeed, all C ′j contain x

and if we take a collection of the form {(C ′j)j∈J\{j0}, C}, all of these sets contain yj0 .

Applying Helly’s Theorem, there exists z ∈


⋂

j∈J
C ′j


⋂C. If z 6= x, then for each

j ∈ J , z = λjx+(1−λj)y, with λj ∈ [0, 1[, y ∈ Cj . From (6) and the strict quasiconvexity

of fj , for each j ∈ J, fj(z) < fj(x) which contradicts x ∈ WEff PJ . Thus z = x and

x ∈ C. Thus we can write x =
∑

j∈J
λjyj , λj ≥ 0,

∑

j∈J
λj = 1.



148 C. Malivert, N. Boissard / Structure of efficient sets

Suppose that λj0 = 0 for some j0 ∈ J . By definition of yj, fj0(yj) < fj0(x), for all

j ∈ J\{j0} and fj0 being quasiconvex, fj0(x) ≤ max(fj0(yj), j ∈ J\{j0}) < fj0(x),
a contradiction. Thus every λj is strictly positive and using Lemma 3.3 we conclude
x ∈ intC.

It is well known that the continuity of fi’s implies that WEff P is a closed set. Let us
denote by bd(WEff P ) the boundary of WEff P .

Theorem 3.5. Suppose that fi, i = 1, · · · , k are strictly quasiconvex and continuous.
Then

bd(WEff P ) ⊂ ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅, |I| ≤ n}.

Proof. By Theorem 3.1 it is sufficient to consider the case k > n.

Suppose that x ∈ bd(WEff P ) \ ∪ {Eff PI : I ⊂ {1, · · · , k}, I 6= ∅, |I| ≤ n}. Using
Theorem 3.2 we have x ∈ Eff PJ for some J ⊂ {1, · · · , k}, with |J | = n+1 and x 6∈ Eff PJ ′

for all J ′ ⊂ J, J ′ 6= ∅, J ′ 6= J . In particular for every j ∈ J, x 6∈ ∪{Eff PJ ′ : J ′ ⊂
J\{j}, J ′ 6= ∅}. But from Theorem 3.1 , this latter set is WEff PJ\{j}. Thus

∀j ∈ J ∃yj ∈ X fi(yj) < fi(x), i ∈ J\{j}.

It follows from Lemma 3.4 that x ∈ int C, where C = conv{yj : j ∈ J}. From Lemma
3.3, each y ∈ bd C can be written as a convex combination of only n points yj , say

{yj : j ∈ J\{i}} and by the quasiconvexity of fi, fi(y) < fi(x). It follows that

∀y ∈ bd C max
j∈J

(fj(x)− fj(y)) > 0· (7)

As max
j∈J

(fj(x) − fj(y)) is continuous with respect to y, it achieves its minimum on the

compact set bd C.

Denote by m = min
y∈bd C

max
j∈J

(fj(x)− fj(y)) , we have m > 0.

Now consider the neighborhood of x in IRn defined by

V = {y ∈ C : max
j∈J

(fj(x)− fj(y)) < m}·

Note that by the definition of m, V ∩ bd C = ∅ and then V ⊂ intC. We show that
V ⊂ Eff PJ .

Suppose on the contrary that y ∈ V \Eff PJ . Then

∃u ∈ X (fi(y)− fi(u))i∈J ∈ IRn
+\{0}· (8)

As y ∈ intC and C being a compact set, we can find t0 = max{t > 0 : y+ t(y− u) ∈ C}.
We have z = y + t0(y − u) ∈ bd C and by (7), there exists i0 ∈ J such that

fi0(x)− fi0(z) ≥ m > 0· (9)
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As y ∈ V we have also fi0(x)− fi0(y) < m and with (9)

fi0(y)− fi0(z) > 0· (10)

Now using the fact that y is a convex combination of u and z, and the strict quasiconvexity
of fi0 , we get either fi0(u) = fi0(z) ≥ fi0(y), which contradicts (10), or

fi0(u) 6= fi0(z) and fi0(y) < max(fi0(u), fi0(z)). (11)

But fi0(y) > fi0(z) by (10) and then (11) entails fi0(y) < fi0(u), a contradiction with (8).

Thus we have proved that V ⊂ Eff PJ , which means that x ∈ int(Eff PJ ). As Eff PJ ⊂
WEff PJ , we have got a contradiction with the assumption x ∈ bd(WEff PJ ) and the
proof is complete.

In the following we adopt the notations of Ward [7] :

r[x, v] = {x+ tv : t ≥ 0} x ∈ X, v ∈ IRn,

U(P, n) = ∪{Eff PI : I ⊂ {1, · · · , k}, I 6= ∅, |I| ≤ n}
S(P, n) = {x ∈ X\U(P, n) : ∀v 6= 0, r[x, v] ∩ U(P, n) 6= ∅}.

The result of (lemma 4, [7]) remains true in the strictly quasiconvex case.

Lemma 3.6. Suppose that fi, i = 1, · · · , k are strictly quasiconvex, then S(P, n) ⊂
Eff P.

Proof. Assume that x ∈ S(P, n)\Eff P . Then, there exists y ∈ X such that

(fi(x)− fi(y))i=1,···,k ∈ IRk
+\{0}

and we can find z ∈ r[x, x − y] ∩ U(P, n). As x 6= z and x 6= y, x = λz + (1− λ)y with
λ ∈]0, 1[. If fi(y) = fi(z) then the strict quasiconvexity of fi implies fi(x) ≤ fi(z). If
fi(y) 6= fi(z) the strict quasiconvexity of fi implies fi(x) < max(fi(y), fi(z)) and with
fi(x) ≥ fi(y) one has fi(x) < fi(z). Therefore, in all cases, fi(x) ≤ fi(z), i = 1, · · · , k. As
z ∈ Eff PI for some I such that |I| ≤ n, we get also x ∈ Eff PI , contradicting x 6∈ U(P, n).

Theorem 3.7. Let fi, i = 1, · · · , k be strictly quasiconvex, continuous functions and
suppose that WEff P is bounded, then WEff P = U(P, n) ∪ S(P, n).

Proof. The inclusion ⊃ is clear from Lemma 3.6 and Theorem 3.2.

For ⊂ observe that WEff P = bd(WEff P ) ∪ int(WEff P ). From Theorem 3.5 follows
bd(WEff P ) ⊂ U(P, n).

Now we prove that int(WEff P )\U(P, n) ⊂ S(P, n).

Consider x ∈ int(WEff P )\U(P, n) and an halfline r[x, v]. Since WEff P is bounded,
there exists z ∈ r[x, v] ∩ bd(WEff(P )), z 6= x. By Theorem 3.5, z ∈ r[x, v] ∩ U(P, n) and
then x ∈ S(P, n).
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4. Conclusion

The subset S(P, n) is a kind of convex hull of U(P, n) and the knowledge of U(P, n)
completely determines S(P, n). Thus it is sufficient to solve subproblems PI with at most

n criteria, to obtain WEff P . In IR2 a graphical representation of WEff P can be obtained,
even with a great number of criteria, as soon as bicriteria subproblems can be solved.

Acknowledgment. The authors wish to thank anonymous referees for their careful checking

and their helpful suggestions that improved the quality of this paper.

References
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